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Abstract: Accurate 6DoF (degrees of freedom) pose and focal length estimation are important in
extended reality (XR) applications, enabling precise object alignment and projection scaling, thereby
enhancing user experiences. This study focuses on improving 6DoF pose estimation using single
RGB images of unknown camera metadata. Estimating the 6DoF pose and focal length from an
uncontrolled RGB image, obtained from the internet, is challenging because it often lacks crucial
metadata. Existing methods such as FocalPose and Focalpose++ have made progress in this domain
but still face challenges due to the projection scale ambiguity between the translation of an object
along the z-axis (tz) and the camera’s focal length. To overcome this, we propose a two-stage strategy
that decouples the projection scaling ambiguity in the estimation of z-axis translation and focal length.
In the first stage, tz is set arbitrarily, and we predict all the other pose parameters and focal length
relative to the fixed tz. In the second stage, we predict the true value of tz while scaling the focal
length based on the tz update. The proposed two-stage method reduces projection scale ambiguity
in RGB images and improves pose estimation accuracy. The iterative update rules constrained to
the first stage and tailored loss functions including Huber loss in the second stage enhance the
accuracy in both 6DoF pose and focal length estimation. Experimental results using benchmark
datasets show significant improvements in terms of median rotation and translation errors, as well
as better projection accuracy compared to the existing state-of-the-art methods. In an evaluation
across the Pix3D datasets (chair, sofa, table, and bed), the proposed two-stage method improves
projection accuracy by approximately 7.19%. Additionally, the incorporation of Huber loss resulted
in a significant reduction in translation and focal length errors by 20.27% and 6.65%, respectively, in
comparison to the Focalpose++ method.

Keywords: 6DoF; pose estimation; focal length; uncontrolled RGB images; XR

1. Introduction

Precise real and virtual object registration is of importance in extended reality (XR)
applications for creating immersive and interactive user experiences. It allows seamless
integration of virtual objects with real environments. To ensure precise alignment of
virtual objects in the real environment, the accurate 6DoF pose information of the objects
and camera parameters are required. The 6DoF pose estimation involves determining
the position and orientation of an object in 3D space. Consequently, it has become an
increasingly important research topic among the computer vision community.

Most existing methods for 6DoF pose estimation require calibrated intrinsic camera
metadata to achieve high precision [1–9]. However, this task becomes particularly challeng-
ing when dealing with uncontrolled ’in the wild’ RGB images, which often lack metadata
such as camera focal length. These include images obtained from the internet, educational
books, newspapers, or photos taken in environments where camera settings are unknown.
While many consumer-grade cameras and smartphones include metadata in their EXIF
data, there are many scenarios where this information may not be available due to privacy
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settings or because image editing software strips away this metadata. Additionally, images
captured as screenshots often lose their original data. The absence of camera metadata
can affect precise object overlay, significantly impacting both the accuracy and reliability
of 6DoF pose estimation. When camera metadata are unavailable, the estimation process
must compensate for the lack of focal length, which is crucial for accurate scaling and depth
perception. This absence can lead to errors in determining the correct size and position of
virtual objects relative to the real-world scene, resulting in a less immersive and convincing
user experience.

Solutions that can precisely register virtual objects to uncontrolled real images are
essential in many applications where accurate 6DoF poses of these objects are required,
but challenging due to the lack of camera information. For example, in AR applications
for enhancing tourist experiences at historical sites, images from the internet are often
used to create virtual reconstructions. Without reliable camera information, conventional
methods struggle to overlay and scale the virtual objects to the images, reducing the
immersive experience. In real estate and interior design, accurate pose estimation ensures
that virtual furniture fits correctly in real spaces. Photos taken by potential buyers during
property visits are often compressed for easier sharing, which removes important metadata
such as focal length. This loss affects the precise placement of virtual objects, which is
important for decision-making and visualization. In educational settings, AR transforms
learning experiences by projecting interactive content onto textbook pages. Printed images
in textbooks do not provide readable metadata such as focal length. To overlay these virtual
objects, accurate 6DoF pose estimation can enable the interactive 3D contents to be projected
on physical pages. Additionally, in application areas such as 3D multi-object tracking and
detection, methods of estimating camera matrices or adaptive updates are beneficial. For
instance, methods in [10,11] demonstrate how accurate camera matrix estimation is critical
for improving tracking performance in complex environments. Knowing camera intrinsic
parameters can improve the initialization and re-identification of tracks, handle occlusions
better, and adapt to changes in camera configurations. These applications highlight the
importance of developing reliable solutions for 6DoF pose estimation and focal length
estimation to enhance the immersive experience.

Various methods have been introduced for 6-DoF pose estimation, primarily using
RGB-D [1–3] and RGB images. RGB-D methods leverage the depth information available,
making the estimation process less reliant on accurate focal length, as the depth information
can be utilized in pose determination. DenseFusion [3] integrates RGB and depth data for
6-DoF pose estimation, demonstrating high robustness in cluttered and occluded scenes.
On the other hand, RGB-based methods [4–9] mostly rely on focal length information,
which can result in significant challenges when intrinsic focal length is unavailable, as it
influences the scaling and depth of the objects in the image.

Several investigations [9,12,13] have been introduced to jointly estimate the 6D pose
and the camera’s focal length from a single RGB image. Among those works, FocalPose [13]
by Ponimatkin et al. and Focalpose++ [14] by Cifka et al. can be considered as the existing
state-of-the-art work related to this domain. It employs a pose and focal length update rule
using a render-and-compare approach, showing improved results on benchmark datasets.
Extending the FocalPose [13], FocalPose++ [14] improves the translation update rules
instead of the approximation used in FocalPose. However, simultaneous estimation of the
focal length of a camera and z-axis translation of an object in the update rules of both [13,14]
affects the scaling of the projected object rendering on the image. This challenge arises from
the correlation inherent to the scaling property between internal focal length and external
z-axis translation within the perspective projection of the pinhole camera model. Hence,
the simultaneous estimation of these two correlated parameters causing the projection scale
ambiguity should be addressed.

The proposed work addresses this issue by presenting a two-stage strategy that
mitigates the projection scale ambiguity by decomposing the simultaneous estimation
of focal length and z-axis translation (tz). The contributions of this work are as follows:
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We introduce a two-stage strategy for 6DoF pose and focal length estimation from single
RGB images taken in uncontrolled environments without camera metadata. The proposed
approach addresses projection scale ambiguity by separating the estimation of the camera’s
focal length and the object’s z-axis translation. In the initial stage, (tz) translation is
fixed to an arbitrary constant value, simplifying the estimation process for the other pose
parameters (tx, ty, r1, r2, r3, and focal length ( f )). Experimental results show that this initial
simplification enhances the precision of estimations and provides a reliable foundation
for subsequent refinements in Stage II. In the second stage, the value of the previously
set (tz) translation is predicted, and the focal length is scaled relative to the predicted
(tz) value. Additionally, from this work, the Huber loss of tz is introduced to the loss
function of the second stage to further enhance the estimation of the initially fixed tz,
resulting in a 2.79% decrease in translation error and a 0.41% decrease in focal length error
on average. The effects of different loss functions are discussed in the ablation studies,
highlighting their impact on performance. This work also shows the effect of selecting
different arbitrary values for tz in the first stage and how this choice impacts pose estimation
accuracy. Additionally, it examines the divergence issue when applying a refiner in the
second stage. This two-stage approach resolves previous uncertainties and demonstrates
an improvement of projection accuracy by 7.19% over the existing methods, as presented by
the experimental results. These contributions are useful across various fields, including XR,
robotics, and 3D object tracking, enhancing the integration of virtual objects with real-world
environments and improving user experiences.

2. Related Works

Pose estimation is fundamental in numerous computer vision applications, especially
for augmented reality (AR) and robot vision. Among the numerous efforts made by the
computer vision research community [15,16], this section categorizes and presents the ap-
proaches based on classical and deep learning-based methods. This classification is chosen
because it highlights the evolution from conventional techniques to modern deep learning
methods, illustrating the advancements in accuracy and robustness. While this classifica-
tion may not cover all types of related research, such as event-based camera systems [17,18],
it provides a high-level overview of the developments in 6D pose estimation research.

2.1. Classical Approaches

Classical pose estimation methods, developed before deep learning, are still prominent
and effective in computer vision. Techniques such as template matching, descriptor-
based, and feature-based algorithms have unique strengths and continue to achieve
significant results.

2.1.1. Template Matching

Template matching algorithms use reference images with distinctive features [19] to
create standard templates for objects. These templates are then compared to the target
image to find the best match and estimate the object’s pose. Methods, such as the iterative
closest point (ICP) [20], can be used to improve the alignment accuracy.

Template matching is effective for objects with minimal texture, relying on global
features. However, these algorithms are highly sensitive to variations in illumination and
object posture, which can significantly impact their performance. Changes in lighting
can alter the appearance of the object, causing mismatches between the template and the
target image due to differences in brightness, shadows, and reflections. Variations in object
posture, such as rotation or tilting, can lead to incorrect pose estimation if the object appears
differently from how it is represented in the template. Hence, it requires many manually
created templates, which is time-consuming [21–23]. Recent advancements have improved
computational efficiency and robustness. For example, Vock et al. [24] developed a fast
method for processing 3D point clouds using a new edge detection and sampling strategy,
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significantly increasing speed. However, this method could benefit from improvements to
handle uneven point densities.

Similarly, Reinbacher et al. [25] proposed a method based on hierarchical silhouette
matching and unsupervised clustering, reducing the matching time by 80% compared to
exhaustive matching and demonstrating scalability. This method is robust for smooth,
untextured, and slightly transparent objects. However, the accuracy with symmetrical
objects could be improved by using multiple views to enhance rotational accuracy.

2.1.2. Descriptor-Based Techniques

Descriptor-based methods are essential for 6DoF pose estimation, encoding an ob-
ject’s local geometry. Point feature histograms (PFHs) [26,27] and fast point feature his-
tograms (FPFH) [28] create multi-dimensional histograms based on spatial differences,
with FPFHs being more efficient. SHOT (signature of histograms of orientations) [29] and
Spin Images [30] describe local surfaces effectively.

Recent advancements combine descriptor-based methods with deep learning to im-
prove feature extraction and pose estimation. For example, the BOLD3D descriptor [31]
uses edge information for robust pose detection, enhancing accuracy in challenging en-
vironments. Future research could further integrate BOLD3D with other descriptors for
better performance.

2.1.3. Feature-Based Methods

Feature-based object detection in 6D pose estimation is based on identifying features
like edges, interest points, and corners. These features are used by detection algorithms to
estimate an object’s pose by comparing them to reference features, accurately determining
the position and orientation of objects in a scene.

Yoon et al. [32] presented a fast-tracking algorithm for real-time pose estimation of
industrial objects using geometric features in a stereo vision setup, achieving high accuracy
and robustness at 60 fps. Further enhancements could include adaptive lighting techniques
and alternative feature shapes for complex industrial scenarios.

Seppälä et al. [33] introduced a tool for feature-based object detection and pose
estimation using 3D point clouds and CAD models. This method improves accuracy and
efficiency in manufacturing environments by matching measurable features from CAD
models to 3D point clouds. Future developments could integrate advanced 3D sensor data
processing and more flexible software.

Teney et al. [34] proposed a unified method for detection, localization, and contin-
uous pose estimation using probabilistic models and kernel density estimation, which
is robust with non-textured objects. Improvements in computational efficiency and data
augmentation strategies could enhance scalability for real-time applications.

2.2. Deep Learning Based Approaches

Deep learning has significantly improved 6D object pose estimation using convo-
lutional neural networks (CNNs) to learn robust feature representations from RGB and
RGB-D images. These methods, despite being data-dependent, enhance accuracy and
robustness by an end-to-end training of the CNNs. They can be broadly categorized into
RGB-D image-based methods and RGB image-based methods.

2.2.1. RGB-D Image-Based Approaches

Combining RGB images and depth information from RGB-D sensors [35,36] enhances
6DoF object pose estimation by providing rich geometric details along with color and texture,
facilitating to overcome occlusions, varying lighting conditions, and cluttered backgrounds.

DenseFusion [3], developed by Wang et al., integrates RGB and depth data for 6D
object pose estimation. It processes RGB and depth data separately and then fuses them
at a pixel level, achieving high robustness and accuracy in cluttered and occluded scenes.
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Enhancements could focus on optimizing the fusion process and better handling varying
depth data quality.

Balntas et al. [1] introduced a method for pose-guided RGB-D feature learning, using
object poses to guide robust feature learning and improve pose recognition accuracy. Potential
improvements include symmetry-aware learning and optimized computational efficiency.

Tian et al. [2] proposed a method for robust 6D object pose estimation using densely
extracted RGB-D features, demonstrating robustness to occlusions and clutter. Further
research could optimize regression strategies and enhance real-time capabilities.

2.2.2. RGB Image-Based Approaches

One of the significant works in this area is DeepIM [4], developed by Li et al. DeepIM
iteratively refines initial pose estimates by aligning a rendered image of the object with the
observed image. Using a CNN, it predicts small adjustments to the pose in each iteration,
making it robust to initial pose errors and suitable for various objects.

Building on DeepIM, CosyPose [5], by Labbe et al., extends the iterative approach
to multiple views and objects, estimating the 6D poses of several objects in a scene from
multiple RGB images. It performs well on benchmarks but can be computationally intensive.
Efforts to speed up these steps and improve scalability would be beneficial.

Park et al. [9] proposed a pipeline for 4-DoF pose estimation using RGB images
and CAD models from the ShapeNet dataset. Their method detects the object, estimates
a 3-DoF rotational pose with the PoseContrast network [37], and determines the 1-DoF
focal length by comparing 2D renderings of CAD candidates. This approach simplifies
pose estimation, making it efficient and suitable for extended reality (XR) applications.
Enhancing robustness to handle a broader range of objects would be beneficial.

Most previous works assume that camera intrinsic parameters are known, limiting the
problem to estimating only the 6DoF pose parameters. However, when dealing with ’in
the wild’ RGB images, the complexity increases as it is required to estimate the camera’s
intrinsic focal length as well. To address this, Ponimatkin et al. introduced FocalPose [13],
which estimates both the 6D pose and the camera focal length from a single RGB image.
Using a render-and-compare strategy, [13] handles uncalibrated RGB images with unknown
focal lengths. While earlier works such as GCVNet [12] and GP2C [38] have also focused
on joint estimation, Focalpose [13] and Focalpose++ [14] can be considered as the state-of-
the-art. GP2C is limited in that it cannot be trained end-to-end as it relies on a separate
non-differentiable optimizer, and GCVNet’s results are limited by the approximation of
the PnPf solver used for differentiability. Built on the CosyPose approach, Ref. [13] uses
a neural renderer for estimating 6DoF pose and focal length. Although it introduces a
loss function that separates the effects of focal length and pose, producing promising
results, room for improvement was identified in the pose update rules of existing methods.
Specifically, the coupling of focal length and z-axis translation (tz) affects object scaling,
suggesting potential areas for further refinement. A most recent work, FocalPose++ [14],
is an extension of FocalPose, improving the update rules of tx and ty by incorporating
the focal lengths of two consecutive iterations according to the principles of perspective
projection. Additionally, it also explores using parametric distribution for synthetic datasets
with real datasets [14]. Despite these improvements, the coupling between tz and focal
length persists.

The proposed approach from this study addresses the scaling issue by decoupling these
parameters and using a two-stage process to simplify estimation and improve accuracy.
Initially, the z-axis translation is fixed (tz) to a constant value, allowing for more reliable
prediction of other pose parameters, including focal length ( f ). In the second stage, fixed
z-axis translation from Stage I is predicted while scaling the focal length relative to the
update of tz. Experimental results show that this strategy overcomes this projection scale
ambiguity identified in [13], providing robust and accurate 6D pose estimation from single
RGB images. Building on our work [39], this study introduces a Huber loss of translation of
z-axis to the loss function to further enhance the results. While the improvements in some
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metrics are comparable, our results still demonstrate improvements in several metrics as
given in the Section 4, and consistently outperform the methods described in [13,14].

3. Methodology
3.1. Motivation

This section explains the existing projection scale ambiguity in the simultaneous
prediction of 6DoF pose and focal length. It also describes the strategic approach of the
proposed work in addressing ambiguity by fixing and re-scaling the correlated parameters.

3.1.1. Projection Scale Ambiguity in Perspective Projection of Pinhole Camera Model

For the experiments, the perspective camera projection for the pinhole camera model
is devised as illustrated in Figure 1. The objective is to determine the 6DoF (six degrees
of freedom) pose of the object that appears in an RGB image that does not have focal
length details.

Figure 1. Projection of an object onto the image plane of a pinhole camera using perspective projection.

Consider the scenario given in Figure 1. The brown-colored chair represents the real-
world object positioned in the world coordinate system that produced the image. Initially,
a CAD model (black color) is placed at Xw, the origin (coordinates represented by Xw, Yw,
Zw), as described by Equation (1), as follows:

Xw =

Xw
Yw
Zw

 (1)

As mentioned above, given only an RGB image (where the real-world chair is the
object that formed the image) the goal of the proposed work is to predict the position and
orientation (6DoF) of the real-world chair from the image. To achieve this, a CAD model
is used as a reference, adjusting its position and orientation using a render-and-compare
strategy. This process iteratively continues until the CAD model is accurately aligned with
the real-world chair. Precise alignment of the CAD model’s rendering on the image of the
chair indicates correct positioning at the target 6DoF and focal length.

To achieve this, rotation R and translation t are applied to the CAD model so that it
aligns with the real-world chair. This process involves applying an extrinsic transformation
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to the CAD model, transforming its reference frame to the camera coordinate system. The
rotation matrix R and translation vector t are defined by Equations (2) and (3), respectively.
The terms r11, r12, and r13 represent the rotational components along the x, y and z axes.
Similarly, tx, ty, and tz represent the translational components along the x, y, and z axes.

R =

rT
1

rT
2

rT
3

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2)

t =
[
tx ty tz

]T (3)

Hence, this transformation will convert the coordinates of the CAD model to the
camera coordinate system Xc, as given by Equation (4). The terms Xc, Yc, and Zc represent
the camera coordinates.

Xc =

Xc
Yc
Zc

 =

rT
1 Xw + tx

rT
2 Xw + ty

rT
3 Xw + tz

 (4)

The coordinates in the camera coordinate system must be multiplied by the intrinsic
matrix to obtain the coordinates in the image plane. This projection results in a new point
in image space represented by u, v, w in homogeneous coordinates. These coordinates must
be converted into Cartesian Coordinates to be usable, as given by Equations (5)–(7). Term f
in these equations represents the focal length.u

v
w

 =

 f 0 0
0 f 0
0 0 1

Xc
Yc
Zc

 (5)

x = u/w =
f

Zc
Xc (6)

y = v/w =
f

Zc
Yc (7)

Substituting the value of Zc in Equation (4) to Equations (6) and (7) results in
the following:

x =
f

rT
3 Xw + tz

Xc (8)

y =
f

rT
3 Xw + tz

Yc (9)

Given the x and y values of the image space coordinates, which are obtained from the
single RGB image, the goal of the proposed work is to estimate the camera’s focal length
and six degrees of freedom (6DoF) from that single RGB image. The FocalPose approach by
Ponimatkin et al. [13] seeks to address this challenge by simultaneously predicting all these
parameters using the update rules. However, this simultaneous estimation introduces a
noticeable scaling ambiguity due to the interdependence of the focal length and the z-axis
translation (tz). This ambiguity critically affects the projection scale of objects onto the
image plane, leading to issues in rendering accuracy and yielding ambiguous results in
pose estimation. Accurate rendering is important for practical applications such as 3D
modeling and augmented reality, where precise depth representation is essential.

3.1.2. Decoupling Ambiguity in Projection Scale by Fixing One Correlated Parameter to an
Arbitrary Constant

Given the complexity introduced by the simultaneous estimation of the focal length
and z-axis translation, the proposed method simplifies the problem by fixing tz to an
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arbitrary constant. This decision is driven by practical and theoretical considerations: fixing
tz reduces the degrees of freedom in the estimation problem and provides a controlled
base from which to accurately re-calibrate other parameters. While it is possible to fix the
focal length instead, choosing tz is often more intuitive and aligns with practical imaging
scenarios where depth can vary widely but is generally within a predictable range. This
approach enables leveraging approximate depth information that might be available or
inferred from the context, making the setup more adaptable to real-world applications.

This section discusses the phenomena of fixing a correlated parameter and how to
tackle the problem strategically. Figure 2 shows the position and orientation of a real-world
chair resulting in the formation of a given RGB image.

Figure 2. Initial position and orientation of the real-world chair and the image plane based on ground
truth values.

Setting tz to an arbitrary constant zarb impacts the projection scale of the image. Fixing
tz changes the camera coordinates to X′

c as shown in Equation (10), as follows:

X′
c =

Xc
Yc
Z′

c

 =

 rT
1 Xw + tx

rT
2 Xw + ty

rT
3 Xw + zarb

 (10)

Thus, this change in the camera coordinate system results in a change in the image
space coordinates x and y to x′ and y′ as given by Equations (11) and (12):

x′ =
f

Z′
c

Xc =
f

rT
3 Xw + zarb

Xc (11)

y′ =
f

Z′
c
Yc =

f
rT

3 Xw + zarb
Xc (12)

By setting tz to a constant value, the perceived distance between the camera and the
object along the z-axis is changed, which inherently changes the scale of the object in the
2D image plane. This effect is demonstrated in Figure 3.



Sensors 2024, 24, 5474 9 of 25

Figure 3. Change of the projection scale of the image after setting tz to an arbitrary value.

The z-axis component directly influences the scaling factor in the perspective projection
formula. Objects closer to the camera appear larger, and those further away appear smaller.
From Equations (6) and (7), the scale change can be represented by Equation (13), where S f
represents the scaling factor. In this equation, only the X axis coordinate is considered for
simplicity in the explanation:

S f =
x′

x
=

rT
3 Xw + tz

rT
3 Xw + zarb

(13)

To prevent this scaling issue and ensure x′ → x, the focal length must be adjusted
accordingly. This adjustment is necessary because the focal length is correlated with tz
in terms of image scaling. To make x′ → x, the focal length is adjusted according to
Equation (14):

x′
x
x′

= x′
1

S f
=

f 1
S f

rT
3 Xw + tz

Xc =
fnew

rT
3 Xw + tz

Xc (14)

The CAD model is represented by a point cloud; hence, it results in numerous Xw
coordinates for each point in the point cloud. Calculating the focal length change fnew for
each point using the scale ratio from Equation (13) is computationally expensive. Therefore,
the weak perspective projection model [40], which sets rT

3 Xw = 0, is used. The weak
perspective projection model simplifies the process by assuming that depth differences are
small compared to the distance from the camera, effectively flattening the scene so all points
are at the same distance. By setting rT

3 Xw = 0, division individually per each coordinate is
avoided, which applies the same scale factor across the entire image, simplifying the math.
Using weak perspective projection maintains a consistent scale throughout the image plane.

In consequence, using the weak perspective projection, Equation (13) can be simplified
to Equation (15):

S f =
tz

zarb
(15)

Thus, to compensate for the altered projection scale caused by fixing tz, it is necessary
to adjust the initial focal length f to fnew using the scaling factor as shown in Equation (16)

fnew =
1

S f
× f =

(
zarb
tz

)
× f (16)
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This overall adjustment results in projecting the image with the same scale as in the
original image, however, in a new image plane with updated focal length as given by
Figure 4. This adjustment of the focal length is crucial for ensuring that the projection on
the image plane reflects the true scale of the scene as observed in the original RGB image.
Without this adjustment, objects could appear incorrectly scaled or positioned, leading to
significant errors in applications requiring high precision, such as augmented reality and
3D modeling.

Figure 4. Obtaining the same projection size of the chair by re-scaling the focal length relative to the
adjustment of tz.

While the initial stages involve fixing tz to simplify the problem, the ultimate goal
is to predict the original tz value accurately. This prediction is achieved using a two-
stage approach.

3.2. Two-Stage Approach for 6DoF Pose and Focal Length Prediction

Following the strategy to simplify the estimation problem by fixing tz to an arbitrary
constant and adjusting the focal length accordingly, a two-stage approach is proposed, as
given in Figure 5.

In the first stage, the “Arbitrary Estimator Network” is used to predict the parameters
by eliminating ambiguity. Hence, tz is fixed to an arbitrary constant, and we rescale the
focal length accordingly as explained in the previous section. Then, the 5DoF pose and
focal length are predicted with tz fixed. Hence, the outputs from Stage I are relative to the
fixed tz.

Then in the second stage, real tz is predicted and f is only scaled up or scaled down
proportionally to the update of the tz prediction by the depth estimator network. Unlike the
first stage, where an iterative refinement step is employed, using a refiner network similar
to [13], the second stage does not employ an iterative refinement step. The main reason is
that multiple iterations have been observed to cause overshooting of the predictions. This
issue of overshooting will be discussed in the ablation studies section.
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Figure 5. Two-stage approach for predicting the 6DoF pose estimation and focal length from a single
uncontrolled RGB image.

3.2.1. Stage I—Arbitrary Estimator Network

The purpose of the “Arbitrary Estimator Network” is to estimate all the parameters
with respect to the fixed tz value. The inputs to Stage I are the uncontrolled RGB image I ,
initial estimates of the 6DoF pose with the focal length, and the corresponding CAD model
M. Here, θk collectively represents the 3DoF rotation (R), the 3DoF translation (tx, ty, tz)
along the X, Y, Z axes, and the focal length f , as in (17).

θk = { f , tx, ty, ty, R} (17)

As tz is fixed to an arbitrary constant zarb, the ground truth of the focal length is
rescaled using the relationship explained by Equation (16) during the training phase. The
value for zarb can be selected to a near approximate value based on intuition. In the
experiments of this study, after analyzing the values of the Pix3D dataset, we set it to 2 m,
which is around the median value. The rescaled ground truth values for focal length f̂new
and pose parameters (t̂x, t̂y, R) with arbitrarily fixed tz to zarb during Stage I are given by
Equation (18):

θ̂ = { f̂new, t̂x, t̂y, zarb, R̂} (18)

In the first stage, both coarse and refined steps are devised, where the coarse network
estimates an approximate value and the refiner converges toward the target value through
multiple iterations. At this stage, the same network described in [13] is used. As a result, the
convergence property is inherited from this network, as demonstrated in [5,13]. The CAD
model M is rendered using renderer R. θk represents the focal length and 5DoF pose com-
ponents with fixed tz at iteration k. A ResNet-50 [41] CNN (convolutional neural network)
is employed in both stages. ResNet-50 was selected due to its proven performance [41] in
image recognition and feature extraction, providing a good balance between accuracy and
computational efficiency. It has also been effectively used in FocalPose, demonstrating its
suitability for 6DoF pose estimation tasks. The rendered image and the observed input
image I are fed to the CNN F . Here, ∆θk denotes the predicted updates of each pose
parameter (vx, vy, vz, vR,1, vR,2, vR,3), and focal length (v f ) individually, from the network
F . The network outputs the values required to update f , tx, ty and R. The update rule U
for each parameter θ is given by Equation (19).

θk+1 = U(θk, ∆θk) (19)

Function U is defined individually for each parameter as given below;

• The 3D translation update rule: With t̂z fixed to zarb, the update rules for the 3D
translation in the x and y directions are given by Equations (20) and (21). [vk

x, vk
y]

represent the outputs predicted for the update of the object’s translation in the x and y
directions by the network F , respectively.

tk+1
x =

(
vk

x
f k+1 +

tk
x

zarb

)
zarb (20)
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tk+1
y =

(
vk

y

f k+1 +
tk
y

zarb

)
zarb (21)

• The 3D rotation update rule: A similar approach to the [13] is used for updating
rotations using Gram–Schmidt orthogonalization. The update is performed using the
Equation (22):

Rk+1 = R(vk
R,1, vk

R,2)Rk (22)

where Rk+1 represents the updated rotation of the object, Rk denotes the current rota-
tion, and R(vR,1, vR,2) is the rotation matrix derived through Gram–Schmidt orthogo-
nalization of the two three-dimensional vectors vR,1 and vR,2, which are predicted by
the alignment network F as a component of ∆θk.

• Focal length update rule: During the training of the first stage, the focal length is
rescaled to compensate for setting tz to an arbitrary constant. However, the focal length
update rule remains the same as in [13] because there are no correlated parameters in
the focal length update rule.

f k+1 = evk
f f k (23)

The loss function adapted to train Stage I is given by Equation (24). Despite fixing one
component (tz) of the translation, this stage still estimates the other two components (tx, ty)
of the focal length. This requires the use of two components in the loss function, which
include pose loss (Lpose) and focal length loss (Lfocal) for joint learning of pose parameters
and focal length during training.

Lstage1(θ, θ̂′) = αLfocal((R, tx, ty, f ), (R̂, t̂x, t̂y, f̂new)) + Lpose((R, tx, ty), (R̂, t̂x, t̂y)) (24)

The Lfocal component of Equation (24) is described by Equation (25). α and β of
Equations (24) and (25) are hyperparameters for the training network. They are calculated
using the Huber regression loss and re-projection loss, which are disentangled into the
focal length and translation components.

L f ocal = βLH

(
f , f̂new

)
+

1
2
Lproj.

(
(R, tx, ty, f̂new), (R̂, t̂x, t̂y, f̂new)

)
+

1
2
Lproj.

(
(R̂, t̂x, t̂y, f ), (R̂, t̂x, t̂y, f̂new)

) (25)

The Huber regression loss LH measures the errors between the estimated and scaled
ground truth focal length using a logarithmic parameterization of focal length as given by
Equation (26)

LH( f , f̂new) = ||log( f )− log( f̂new)||H (26)

The other two terms (Lproj.) in Equation (25) are based on the re-projection error.
Instead of directly adding the re-projection error, it is disentangled to separate the effect of
error due to focal length estimation and pose parameters. This disentanglement is given by
Equation (27). Ref. [13] disentangles this re-projection loss to decouple the effects of the
two correlated parameters. However, the update rule involves these correlated parameters.

The projection error Lproj measures the difference between the ground truth and the
predicted value for each point p in the point cloud of the CAD model M. The L1 norm is
used to calculate the difference between the projected points of the predicted values and the
ground truth. K( f ) represents the intrinsic matrix used to project the camera coordinates to
the image space.
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Lproj.((R, tx, ty, f ), (R̂, t̂x, t̂y, f̂ ′)) = ∑
p∈M

||π(K( f ), R, tx, ty, p)− π(K( f̂ ′), R̂, t̂x t̂y, p)||1 (27)

Lpose of Equation (24) in the loss function of Stage I, represents the disentangled
pose loss of the transformed points from the world coordinate system to the camera
coordinate system. The mathematical formulation is given by Equation (28). Here, the
disentanglement between 2D translation and rotation is considered. As tz is fixed, the effect
due to the translation in the z-axis in Stage I is not considered.

Lpose = D(U(θk, {vk
x, vk

y, zarb, R̂k, v̂k
f }), R̂, t̂)

+ D(U(θk, {v̂k
x, v̂k

y, zarb, Rk, v̂k
f }), R̂, t̂)

(28)

The distance function D() in Equation (28) is defined using the L1 norm as follows:

D({R1, t1}, {R2, t2}) =
1

|M| ∑
p∈M

||(R1 p + t1)− (R2 p + t2)||1 (29)

In Equation (28), θk denotes the current estimates of the 6D pose and focal length at
iteration k. The function D, as described in Equation (29), computes the difference between
the predicted and ground truth values. The function U updates the pose and focal length
based on the predicted changes, as in Equation (19).

3.2.2. Stage II: Depth Estimator Network

Stage I generates the camera’s extrinsic and intrinsic parameters relative to the arbitrar-
ily set (tz). Hence, the goal of Stage II “Depth Estimator Network” is to estimate the actual
depth. Unlike in Stage I, in this stage all the pose parameters are predicted, excluding the
focal length. Instead of predicting the focal length, it is scaled based on the predicted value
of tz.

Similar to the previous stage, a ResNet-50 network is utilized to predict the 6DoF pose.
In contrast to Stage I, Stage II does not iteratively refine parameters; instead, it achieves
better results with a single forward pass, based on experimental observations given the
ablation studies in Section 4.3. The iterative approach in Stage II was found to potentially
lead to divergence, likely due to the already refined estimates from Stage I, where iterative
refinements were applied.

The prediction of tz (represented by tz
stage2) in this depth estimator network can be

represented by Equation (30), where tz
stage1 is the translation along the z-axis predicted by

Stage I.

tz
stage2 = vztz

stage1 (30)

As mentioned previously, instead of predicting the focal length, it is scaled in pro-
portion to the updated tz using the relationship represented by Equation (31). The terms
f stage2 and f stage1 represent the scaled focal length from Stage II and the output focal length
predicted by Stage I, respectively.

f stage2 = f stage1
(

tz
stage2

zarb

)
(31)

Next, the x and y components of the translation are updated using the following equations:

tx
stage2 =

(
vx

f stage2 +
tx

stage1

tz
stage1

)
tz

stage2 (32)

ty
stage2 =

(
vy

f stage2 +
ty

stage1

tz
stage1

)
tz

stage2 (33)
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This approach ensures a clear transition from the initial estimates to a refined predic-
tion of the camera’s pose and focal length.

In this stage, to train the network, only the pose loss, Lpose, is used. Lfocal is not used
to train the network in Stage II. This is because the focal length is not learned in this stage;
instead, it is scaled up or down proportionally to the translation update. Hence, the Stage II
loss function can be represented by Equation (34). As 6DoF is computed here, R represents
3D rotation and t represents 3D translation, which includes tx, ty, and tz.

L1stage2 = Lpose((R, t), (R̂, t̂)) (34)

In contrast to Equation (28), which considered 2D translation, pose loss across 3D trans-
lation and 3D rotation is now considered using disentanglement. Hence, the relationship
can be expressed by Equation (35)

Lpose = D(U(θold, {vx, vy, v̂z, R̂k}), R̂, t̂)

+ D(U(θold, {v̂k
x, v̂k

y, vz, R̂k}), R̂, t̂)

+ D(U(θold, {v̂k
x, v̂k

y, v̂z, Rk}), R̂, t̂)

(35)

Here, in Equation (35), D is similar to the function explained by Equation (29), which
calculates the L1 norm of the distances between transformed ground truth and predicted
points. The terms {vx, vy, v̂z, R̂k}, {v̂k

x, v̂k
y, vz, R̂k}, and {v̂k

x, v̂k
y, v̂z, Rk} in Equation (35) repre-

sents the disentanglement of the pose update across the 2D x − y plane, z-axis and rotations,
respectively.

To further improve the results, experiments were conducted by introducing the Huber
loss of the tz distance in the loss function during the training of Stage II as shown in
Equation (36).

L2stage2 = Lpose((R, t), (R̂, t̂)) + ||log(tz)− log(t̂z)||H (36)

As the Huber loss is less sensitive to outliers in data, it is particularly effective in
handling transformation errors of the primary objective of predicting tz in the second
stage. The introduction of the Huber loss resulted in obtaining better results across several
metrics. Importantly, these results are still better than [13], showing the effectiveness of
the proposed extended methodology. The experiments indicate that incorporating Huber
loss in Stage II yields noticeable improvements over certain metrics. For example, the
Huber loss effectively reduces pose and translation errors. However, for some metrics,
such as translation accuracy in the Pix3D Chair dataset, the results are comparable with
and without Huber loss, yet both still outperform [13]. We believe that this might be due to
using real datasets for training [42], without incorporating synthetic data, which introduce
greater variability and potential errors.

4. Results
4.1. Quantitative Results

To evaluate the effectiveness, the proposed method is compared with [13,14] using the
Pix3D dataset [42]. Specifically, the Pix3D [42] real dataset was used for the evaluation, with-
out employing the synthetic dataset due to hardware constraints in training. The dataset
splits used were the same as in Focalpose [13]: sofa (523 training, 28 validation, 540 test),
bed (193 training, 10 validation, 190 test), table (367 training, 19 validation, 351 test), and
chair (1431 training, 75 validation, 1387 test). To maintain data sufficiency and enhance
generalization, augmentation techniques have been applied during training to increase data
size and variability. These techniques included RGB adjustments (blur, sharpness, contrast,
brightness, and color), background changes using Pascal VOC dataset [43] backgrounds,
and resizing to a 640 × 480 aspect ratio. These augmentations were applied dynamically
during data loading at the training stage, ensuring diverse training samples. The training
was conducted on an NVIDIA RTX 3090 GPU with each dataset undergoing a thorough
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training process of 500 epochs, except for the chair dataset, which underwent 200 epochs.
It was observed that the chair dataset’s performance stabilized after 150 epochs, hence
training was stopped at that stage to optimize resource utilization while ensuring the
quality of the results. The value for tz is intuitively selected based on the data distribution
of tz values in the Pix3D images of the furniture classes. The effect of arbitrarily setting tz is
discussed in the ablation studies.

To assess the performance of the proposed approach, a standard set of evaluation
metrics used by [13,14] we used. The following metrics are included in Table 1:

Median rotation error (MedErr.): Computes the geometric distance between the
predicted rotation R and the ground truth rotation R̂ as given by Equation (37). In the
equation, ||F|| represents the Frobenius norm [44], which is defined as the square root of
the sum of the absolute squares of its elements.

eR =
|| log(R̂⊤R)||F√

2
, (37)

Median translation error (MedErr.): Calculates the normalized translation error given
by Equation (38), where t is the predicted translation and t̂ is the ground truth translation.
Lower median values indicate more accurate translation predictions.

et =
||t − t̂||2
||t̂||2

, (38)

Median pose error (MedErr.): This metric measures the median error in the overall
pose estimation, combining rotation and translation errors using the point-matching error
eR,t in the camera coordinate system as given by Equation (39):

eR,t =
dbbox
dimg

avg
p∈M⋆

||(Rp + t)− (R̂p + t̂)||2
||t̂||2

, (39)

In Equation (39), dbbox is the diagonal of the ground truth 2D bounding box, dimg is the
diagonal of the image, M⋆ is the 3D model of the ground truth object instance, p represents
points in CAD model M⋆, (R, t) is the predicted 6D pose, and (R̂, t̂) is the ground truth
6D pose.

Median focal length error (MedErr.): This metric measures the median error in
the focal length estimation. It is calculated as the relative focal length error e f given by
Equation (40), where f is the predicted focal length and f̂ is the ground truth focal length.
Lower median values indicate more accurate focal length predictions:

e f =
| f − f̂ |

f̂
, (40)

Median projection error (MedErr.): This metric measures the median error in the
reprojection of the 3D points into the image plane, taking into account the focal length f . It
is computed in Equation (41):

eP = avg
p∈M⋆

||π(R, t, f , p)− π(R̂, t̂, f̂ , p)||2
dbbox

, (41)

where p is a 3D point of the object model M⋆, and π(K( f ), R, t, p) is the reprojection of p using
the estimated parameters. Lower median values indicate more accurate reprojections.

Projection accuracy (AccP0.1 , AccP0.05 ): These metrics represent the percentages of im-
ages where the reprojection errors eP are below 0.1 and 0.05 of the image sizes, respectively.
Higher percentages indicate better performance.

Rotation Accuracy at 30°, 15°, 5° (Acc 30°, Acc 15°, Acc 5°): These metrics represent the
percentage of images for which the rotation error eR is within 30°, 15°, and 5°, respectively.
Higher percentages indicate better performance.
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Table 1. Comparison of the proposed approach (Stage I, Stage II with L1, and Stage II with L2) with FocalPose [13] and Focalpose++ [14].

Dataset Method DoF
Rotation Translation Pose Focal

Length Projection

MedErr. ↓ Acc 30° ↑ Acc 15° ↑ Acc 5° ↑ MedErr. ↓ MedErr. ↓ MedErr. ↓ MedErr. ↓ AccP0.1 ↑ AccP0.05 ↑

Pix3D Bed

FocalPose [13] 7 0.436 53.68% 32.11% 3.16% 0.251 0.202 0.222 0.132 41.05% 13.16%

FocalPose++ [14] 7 0.450 53.68% 37.37% 7.37% 0.204 0.176 0.204 0.135 40.53% 18.95%

Proposed (Stage I) 6 0.389 62.11% 37.89% 6.32% 0.019 0.044 0.064 0.104 47.37% 20.53%

Proposed (Stage II-L1) 7 0.382 60.00% 36.32% 7.89% 0.200 0.179 0.208 0.119 45.26% 18.42%

Proposed (Stage II-L2) 7 0.387 57.37% 39.47% 6.84% 0.187 0.174 0.199 0.129 44.21% 17.89%

Pix3D Sofa

FocalPose [13] 7 0.236 79.78% 56.77% 10.39% 0.230 0.153 0.208 0.057 74.77% 43.04%

FocalPose++ [14] 7 0.193 90.74% 69.26% 11.48% 0.203 0.137 0.195 0.048 81.85% 53.89%

Proposed (Stage I) 6 0.134 94.07% 80.37% 30.56% 0.012 0.017 0.038 0.038 87.04% 65.37%

Proposed (Stage II-L1) 7 0.169 92.02% 74.21% 20.04% 0.200 0.132 0.194 0.056 81.45% 41.19%

Proposed (Stage II-L2) 7 0.172 91.47% 73.10% 20.59% 0.192 0.124 0.197 0.055 81.82% 43.97%

Pix3D Table

FocalPose [13] 7 0.762 36.75% 17.38% 1.71% 0.503 0.312 0.323 0.204 19.09% 3.70%

FocalPose++ [14] 7 0.617 42.17% 21.08% 2.28% 0.391 0.277 0.363 0.202 23.36% 6.84%

Proposed (Stage I) 6 0.500 51.28% 27.07% 3.70% 0.021 0.053 0.075 0.136 38.46% 15.38%

Proposed (Stage II-L1) 7 0.587 47.29% 26.50% 4.56% 0.279 0.213 0.315 0.180 27.07% 7.41%

Proposed (Stage II-L2) 7 0.611 46.44% 24.50% 5.13% 0.272 0.211 0.320 0.182 26.21% 5.70%

Pix3D Chair

FocalPose [13] 7 0.964 24.08% 7.47% 0.44% 0.553 0.376 0.210 0.182 16.17% 1.45%

FocalPose++ [14] 7 0.594 45.35% 20.12% 1.66% 0.348 0.229 0.242 0.137 35.11% 9.88%

Proposed (Stage I) 6 0.278 66.69% 47.95% 7.86% 0.020 0.026 0.061 0.068 62.44% 35.26%

Proposed (Stage II-L1) 7 0.288 66.35% 44.96% 7.40% 0.216 0.146 0.210 0.096 51.56% 20.96%

Proposed (Stage II-L2) 7 0.286 66.28% 46.41% 7.54% 0.220 0.147 0.211 0.098 50.69% 21.25%
7-DoF: 6-DoF pose + focal length. 6-DoF: 2-DoF translation + 3-DoF rotation + focal length. Proposed (Stage II-L1) represents the results from the complete pipeline with L1stage2
as a loss function (Equation (34)). Proposed (Stage II-L2) represents the results from the complete pipeline with L2stage2 as a loss function (Equation (36)). Note: The bold values
indicate the best results of the Proposed Stage I when compared with FocalPose and FocalPose++, and the best results of the Proposed Stage II (with L1 and L2) when compared with
FocalPose and FocalPose++. The comparisons for Stage I and Stage II are conducted independently. The symbols “↑” and “↓” indicate that higher and lower values are better under each
metric, respectively.
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Table 1 demonstrates the results of experiments conducted in both Stage I and Stage II
(with the two loss functions of L1stage2 and L2stage2), compared with [13,14]. The results
demonstrate significant improvements across multiple evaluation metrics.

While Focalpose++ [14] demonstrates improved performance over Focalpose [13]
across most evaluated metrics, the methodology proposed in this work achieves outstand-
ing results in nearly all metrics compared with both works. However, there are certain
metrics, such as in the Pix3D Sofa category where it does not perform as well. On average,
Stage I of this study increases projection accuracy by 31.86% and decreases the median
error of focal length by 75.89% compared to Focalpose++. This significant reduction in
focal length error is due to fixing the tz value to an arbitrary constant and estimating only
six parameters in Stage I. By setting the z-axis translation as a constant, the proposed
method simplifies the problem and achieves more precise translation predictions, leading
to a noticeable decrease in median translation error across all datasets. Stage I performs
exceptionally well with this reduced parameter set, making it suitable for applications
where depth detail is intuitive and can be estimated.

Stage II of the proposed approach decreases the median projection error by 9.37% and
7.19% with the L1 and L2 loss functions, respectively. Additionally, there is a significant
decrease in the median translation error, which is 17.56% and 20.27% using L1 and L2,
respectively. Stage II is suitable for applications requiring full parameter estimation. As
the inputs to Stage II are the outputs from Stage I, the performance of Stage II relies on
Stage I. However, there is still a chance for improvement in Stage II. For example, projection
accuracy estimations for the Sofa class in Stage II using L1stage2 are lower compared
to [14]. We believe the proposed method will perform better with training using noise-free
synthetic data.

Experiments demonstrate that the inclusion of the Huber loss in the Stage II loss
function (36) results in improvements across several metrics. On average, the average
median translation error and median focal length error across all the Pix3D classes have
been reduced by 2.79% and 0.41% respectively. This is factored by the addition of a trans-
lation component to the loss function, improving overall transformation accuracy. These
reductions highlight the robustness of the Huber loss in handling outliers and improving
prediction accuracy. However, there were no significant reductions in the median trans-
lation and pose error in the Pix3D Chair class and also across several metrics as shown
by Table 1, though still better than the benchmark set by FocalPose. This inconsistency
might be attributed to only using real datasets for training, which adds more variability
and potential errors compared to synthetic data.

4.2. Qualitative Results

Figure 6 presents a qualitative comparison of the results of the proposed method with
Focalpose and Focalpose++. These images are obtained from the Pix3D dataset [42], and
the focal length details are not available during the inference time When observing the
results given in the figure, it can be seen that the proposed approach achieves more accurate
scaling of the CAD model rendering on real-world RGB images compared to [13,14].
This improvement is primarily due to the proposed strategy of decoupling the correlated
parameters, which simplifies the complexity of the estimation. When the z-axis translation
and focal length are updated simultaneously during prediction, it often results in locally
optimal solutions, as shown in Figure 6b–d,f,g,o,s, leading to scaling issues. In contrast, the
proposed approach yields better renderings in terms of projection accuracy.

Consequently, the qualitative results presented in this work validate the effectiveness
of the proposed method in addressing the challenges associated with pose estimation and
focal length prediction, demonstrating significant improvements over [13], especially in
terms of projection accuracy and model scaling. The ability to perform well without prior
metadata underlines the robustness and practicality of the approach in real-world scenarios
where such metadata are often unavailable.
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Figure 6. Comparison of the outputs from the proposed method with Focalpose [13] and Focalpose++ [14]
using Pix3D dataset. Subfigures (a–t) represents different classes of chair, sofa, bed and table of Pix3D
Dataset. Metadata of these images are not available during the inference time.
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4.3. Ablation Study
4.3.1. Effect of Using a Refiner in Stage II

In this section, similar to Stage I, an experiment was conducted incorporating an
iterative refinement network in Stage II. The results of these experiments indicate that
there is a divergence in the network output. This divergence may be caused by the already
existing refinement process in Stage I, which causes behavior similar to an exploding
gradient when values are already near convergence. Although a prediction relative to a
fixed tz is done in Stage I, tx, ty, and the rotational components are converged close to the
target values due to the refiner in Stage I. Consequently, Stage II is primarily focused on
estimating tz while adjusting the focal length. The usage of another refiner at this stage is
likely to cause the previously converged values to diverge. In Figure 7, the divergence effect
caused by multiple refiner iterations in the Stage II network is clearly seen. As the number
of iterations increases, the predicted position and orientation (shown by the green-colored
contour) are diverged from the accurate prediction of Stage I.

Figure 7. (a) Input single RGB image, (b) prediction from Focalpose [13], (c) prediction from the
proposed work (Stage II output), (d) outputs by employing multiple refiner iterations to Stage II
of the proposed approach. The green-colored contours represent the predicted pose during each
iteration in the refiner of Stage II, and the red colored contour represent the ground truth.

4.3.2. Effect of Loss Functions

Experiments on the other possible loss functions for Stage II were also conducted to
evaluate their impact on the metrics. The effect of including versus excluding the projection
error in the loss function of Stage II was experimented with. This study was conducted
using the Pix3D Bed dataset. As shown in Table 2, the performance is better when the
projection error is not included in the loss function in Stage II. This improvement is based
on the reason that Stage II focuses solely on the camera coordinate space and not the image
coordinate space (as the focal length is not predicted but scaled in Stage II). Hence, only the
transformation error (Lpose) directly relates to the spatial arrangement of the camera and
the object in the camera space. By excluding the projection error, the model can optimize
the camera parameters without being influenced by discrepancies in the image space.
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Table 2. Ablation study results: impact of including the projection error in the loss function of Stage II.

Parameter Metric Lstage2 = Lpose Lstage2 = Lpose + Lproj

Rotation

MedErr. ↓ 0.3821 0.4305
Acc 30° ↑ 0.6000 0.5737
Acc 15° ↑ 0.3632 0.3421
Acc 5° ↑ 0.0789 0.0474

Translation MedErr. ↓ 0.1997 0.2451

Focal MedErr. ↓ 0.2084 0.2961

Pose MedErr. ↓ 0.1788 0.1954

Projection
MedErr. ↓ 0.1189 0.1239
AccP0.1 ↑ 0.4526 0.4211
AccP0.05 ↑ 0.1842 0.1684

Note: The bold values indicate the outperforming values under each metric. The symbols “↑” and “↓” indicate
that higher and lower values are better under each metric, respectively.

4.3.3. Effect of Selection of tz Value in Stage I

During Stage I, the value of tz is initially fixed to an arbitrary constant to simplify the
6DoF pose estimation problem. The choice of this value is important as it can influence the
accuracy of the pose and focal length predictions. Through a set of experiments, the effect
of different tz values on the overall performance was analyzed.

In Figure 8, the normalized distribution of the filtered tz values for each category
of Pix3D was plotted to visualize the spread and central tendency of the data. These
distributions are very useful for understanding the typical range of translations in the
Pix3D Dataset.

Figure 8. Distribution of tz across different classes in Pix3D dataset.
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The tz value was chosen based on the observed median values of the filtered translation
along the z-axis in the Pix3D dataset. A filtering process was applied by removing outliers
using the interquartile range (IQR) method. After this filtering, the mean and median
tz values for four classes (bed, chair, table, and sofa) were calculated. The results are
summarized in Table 3.

Table 3. Mean and median tz values for different categories in the Pix3D dataset.

Category Mean (m) Median (m)

Bed 1.53 1.27
Chair 1.77 1.35
Table 2.35 1.93
Sofa 1.67 1.39

Based on these observations and the distribution of values, tz = 2 m was selected as
a reasonable and approximate value that lies as a rounded value for the range of these
categories. Based on the experimental results shown in Table 4, it is proven that this value
serves as a good initialization point for the translation along the z-axis.

To assess the impact of different tz values, experiments were conducted with values
that were too small (0.2 m), near the mean and median (2 m), and excessively large (20 m)
on the Pix3D bed class. The results are summarized in Table 4.

Table 4. Impacts of different tz values on performance metrics on the Pix3D bed class.

Parameter Metric tz = 0.2 m tz = 2 m tz = 20 m

Rotation

MedErr. ↓ 0.3286 0.3893 1.1300
Acc 30° ↑ 0.5947 0.6211 0.1053
Acc 15° ↑ 0.4158 0.3789 0.0158
Acc 5° ↑ 0.0632 0.0632 0.0053

Translation MedErr. ↓ 0.1554 0.0185 0.0217

Focal MedErr. ↓ 0.1325 0.0641 0.0985

Pose MedErr. ↓ 0.3445 0.0440 0.0116

Projection
MedErr. ↓ 0.2102 0.1040 0.2416
AccP0.1 ↑ 0.2053 0.4737 0.1053
AccP0.05 ↑ 0.0368 0.2053 0.0158

Note: The bold values indicate the outperforming values under each metric. The symbols “↑” and “↓” indicate
that higher and lower values are better under each metric, respectively.

From the results, it is proved that:

• Small tz (0.2 m): This value resulted in relatively high translation and focal length
estimation errors.

• Optimal tz (2 m): This value produced the best balance, with lower median errors in
translation and focal length, and also a higher projection accuracy. This validates the
choice of 2 m as a good approximation for initialization.

• Large tz (20 m): This value degraded the performance, with comparatively higher
errors in focal length estimation and lower projection accuracy.

5. Discussion

While this study presents promising results across most of the evaluation metrics,
it has several limitations. The dependency only on real datasets for training introduces
variability and potential errors that may affect performance due to the noisiness in data.
The proposed method can be improved in projection accuracy for specific classes such as
Pix3D Sofa. Sensitivity to real-world noise suggests that incorporating noise-free synthetic
data could enhance robustness. The training was performed on real data due to hardware
constraints. The training time for the largest dataset, the Pix3D Chair class, nearly takes
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30 h for Stage I and 17 h for Stage II. After training Stage I, the outputs should be used as
inputs for Stage II training, which requires running inference on all the datasets for another
30 h. Therefore, considering the total time for the Pix3D Chair dataset alone, it takes around
70–80 h to complete an end-to-end experiment on a single NVIDIA RTX GPU.

The choice of the tz value is critical, as it influences directly pose and focal length
accuracy. While this study presents a rationale for the selected 2-meter initialization value
based on intuition and data distribution, different tz values can significantly impact perfor-
mance. Experiments showed that small or excessively large tz values degrade performance,
highlighting the need for an optimal tz setting which is a near-approximate. The proposed
method relies on the assumption that an approximate depth can be intuitively estimated
based on contextual information or user input. This dependency could limit the method’s
effectiveness in scenarios where such intuitive estimation is not feasible

It is important to note that, when compared to state-of-the-art pose estimators such
as [4,5], which consider the focal length as a prerequisite, the results of Stage II of the
proposed approach along with Focalpose and Focalpose++ do not achieve the same level
of accuracy in renderings. This discrepancy is expected, given that the problem domain
involves the additional complexity of estimating the focal length alongside the 6DoF pose,
making the problem inherently more complex.

6. Conclusions

This study presents a novel two-stage method for estimating 6DoF object poses and
focal lengths from single RGB images obtained in uncontrolled environments. The approach
addresses the projection scale ambiguity that arises from the correlation between the z-
axis translation (tz) and the camera’s focal length ( f ), and decouples these parameters to
enhance the accuracy of pose and focal length estimation.

In the first stage, the z-axis translation is fixed to an arbitrary value, simplifying the
estimation process for the other pose parameters and the focal length. This initial sim-
plification provides a foundation for more accurate predictions. In the second stage, the
true value of the z-axis translation is predicted, and the focal length is adjusted accord-
ingly. This two-stage approach significantly reduces projection errors, as demonstrated by
experimental results on benchmark datasets.

Validation using the Pix3D real dataset shows substantial improvements compared to
state-of-the-art methods of Focalpose and Focalpose++. On average, Stage I of this study
increases projection accuracy by 31.86% and decreases the median error of focal length
by 75.89% compared to FocalPose++. Stage II of the proposed approach decreases the
median projection error by 9.37% and 7.19% with the L1 and L2 loss functions, respectively.
Additionally, there is a significant decrease in the median translation error, which is 6.16%
and 6.65% using L1 and L2, respectively. When comparing the two loss functions of Stage
II L1 and Stage II L2, the introduction of Huber loss to Stage II loss function decreases the
average median translation error by 2.79% and the average median focal length error by
0.41% across the Pix3D classes.

This method demonstrates significant improvements in 6DoF pose estimation using
uncontrolled RGB images, providing a reliable solution for applications in extended reality
(XR), robotics, and 3D object tracking. Future research may focus on refining the model
by incorporating synthetic datasets and exploring additional loss functions to improve
performance across various scenarios. Additionally, incorporating a separate depth esti-
mation pipeline to initialize a value for tz could further enhance the applicability of the
proposed method.
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