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Abstract: Wearable flexible strain sensors require different performance depending on the application
scenario. However, developing strain sensors based solely on experiments is time-consuming and
often produces suboptimal results. This study utilized sensor knowledge to reduce knowledge redun-
dancy and explore designs. A framework combining knowledge graphs and graph representational
learning methods was proposed to identify targeted performance, decipher hidden information,
and discover new designs. Unlike process-parameter-based machine learning methods, it used the
relationship as semantic features to improve prediction precision (up to 0.81). Based on the proposed
framework, a strain sensor was designed and tested, demonstrating a wide strain range (300%) and
closely matching predicted performance. This predicted sensor performance outperforms similar
materials. Overall, the present work is favorable to design constraints and paves the way for the
long-awaited implementation of text-mining-based knowledge management for sensor systems,
which will facilitate the intelligent sensor design process.
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1. Introduction

Due to recent advancements in nanomaterials and nanotechnology, wearable electronic
devices, particularly flexible and stretchable strain sensors, have garnered significant
interest across various fields, such as healthcare and human motion detection, sports
and physical training, and smart robotics [1,2]. In this process, these devices can be
directly attached to the body to collect signal information, which can be utilized for various
physical activities and health states. Currently, 5G communication technology has matured,
and strain sensors are anticipated to have extensive applications in the field of motion
perception systems.

Generally, a reliable implementation for detecting strain signals involves hybridizing
a network composed of conductive materials (metal nanowires, carbon-based materials,
etc.) with stretchable substrates (cotton, yarn, etc.). The indicators of strain sensor perfor-
mance include gauge factor, strain range, long-term stability, and response time. The gauge
factor and strain range are the two most critical factors among them, as they have a direct
correlation with the application scenarios of strain sensors [3]. The performance of a strain
sensor is significantly influenced by the choice of materials and their respective structures.
Currently, viable research is divided into two categories. The first category involves design-
ing sensor structures, such as segregated conductive networks and polymeric conductive
composites [4–7]. The second category focuses on incorporating advanced nanomaterials
such as 0D carbon black, metal nanoparticles, and graphene, as well as flexible substrates
such as rubber [8–12] to improve sensors’ performance. For the design of strain sensors,
most of the work to date has been focused on improving performance with a high sensitiv-
ity, strain range, and cycle ability, etc. This leads to extensive trial-and-error experiments to
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optimize the process parameters, which involves high costs. The data-driven method is
no doubt a new research paradigm for designing high-performance strain sensors, which
have already been used in some fields. Recent research has concentrated on incorporating
machine learning techniques (ML) into sensor design processes to forecast sensor char-
acteristics [13–20]. Wang et al. [21] developed a silent speech recognition system based
on a linear discriminant analysis (LDA) algorithm. Ravenscroft et al. [18] implemented
a selection of machine learning algorithms, including artificial neural networks (ANN),
random forests (RF), and k-nearest neighbor (KNN), for categorizing input signals. The
above studies rely on ML methods to recognize the motion information. In particular, using
ML techniques to facilitate the sensor design process has seldom been investigated. An
alternative method involves mathematical statistics or sensor modeling tools to optimize
sensor characteristics [22]. Remarkably, a recent study utilized active learning technology
to automate the design of sensors based on composites [23]. Although these methods have
their advantages, the intricate relationships within the sensor data and the influence of var-
ious semantic information on the performance are still unclear. Sensor design may consider
factors of conductive materials, flexible substrates, manufacturing methods, and structures
to optimize performance. The correlation among the above items, which are regarded as
semantic features in the ML field, is crucial for discovering the underlying information.
However, utilizing semantic features, especially the relationship feature, into a single re-
gression model (based on text feature) poses a significant challenge in facilitating sensor
designs. Moreover, current predictions usually have a unidirectional nature, concentrating
exclusively on either the positive or negative aspects of the design process. Consequently,
the current ML regression methods lack the ability to describe sensor knowledge.

Therefore, there is a need to develop a new framework that harnesses machine learn-
ing techniques for accurate predictions and recommendations based on semantic features
while efficiently managing sensor knowledge, particularly in the era of rapid data growth.
Effective knowledge interpretation necessitates a thorough understanding of the sensor.
In this context, knowledge graphs (KGs) can facilitate the creation of unified standard
representations for data fusion by representing knowledge in the form of entities and rela-
tionships. It can aggregate the relationships of multiple aspects via semantic associations.
By extracting semantic features, it can serve as a foundation for the development of robust
modeling. Despite their effectiveness in managing and visualizing complex relationships
and characteristics in the literature [24,25], knowledge graphs are still underutilized for
innovative design discovery. Since representational learning methods can extract multi-
dimensional information as inputs, it has been proposed to apply representational learning
methods to deep feature processing for prediction and the discovery of new things. For
example, Nie et al. utilized word embeddings to extract semantics features for literature
mining of materials [25]. However, the disadvantage of this method is that the extracted
features lack structural information, which is difficult to apply to the task of sensors. There-
fore, a machine learning framework based on the combination of knowledge graphs and
representational learning was further developed for the prediction of strain sensors. This
framework’s efficiency is described as follows. (1) Storing both textual and data informa-
tion in an organized manner and using algorithms to convert it into scientific knowledge.
(2) Efficiently conducting reasoning analyses on a trained neural network after learning
its representation, which involves tasks such as mining sensor designs and predicting
performance. (3) The finding design is relatively consistent with the model and shows
excellent sensing performance (300% of strain range). Meanwhile, the durability of the
sensor (above 1000 cycles under 10% strain) is excellent under the stretching–releasing
process. Compared to extreme strain cases (small stain range (<50%) or low sensitivity
(<20)), the performance enables real-time monitoring of in-plane strains between 30% and
300%. (4) Ultimately, once established, the AI framework becomes accessible, as scientific
knowledge from previous publications can serve as a guide or platform for the rapid design
of multifunctional devices in the future.
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2. Materials and Methods

The purpose of this work is to create a new framework (KGAI) based on the knowledge
graph for properties prediction and design exploration. Graph construction, representation
learning, and knowledge reasoning are the three primary modules of the KGAI architecture
(Figure 1) in the context of data-driven AI analyses.
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Figure 1. Illustration of a KGAI architecture developed with three procedures for (a) knowledge
graph building of strain sensors, (b) representation learning of the knowledge graph (feature engi-
neering), (c) knowledge reasoning of sensor design (performance prediction, sensor design query,
and exploration).

2.1. Knowledge Graph Building of the Strain Sensors

Firstly, 200 fabrication methods of strain sensors based on piezoresistive mechanisms
were collected from the literature. Secondly, the nodes of the graph were extracted by
keyword-matching rules and manual extraction. These nodes include materials (flexi-
ble and conductive), manufacturing methods, sensor structure, and performance (strain
range, measurement factor, and period). Among them, flexible materials included cot-
ton, ecoflex, thermoplastic polyurethane (TPU), fibers, polymethylsiloxane (PDMS), ny-
lon, polyurethane, rubber, and fabrics. Conductive materials included carbon nanotubes
(CNTs), MXene, carbon black (CB), graphene, gold nanoparticles (AuNPs), silver nanowires
(AgNWs), reduced graphene oxide (rGO), multi-carbon nanotubes (MWCNTs), PEDOT:
PSS, cellulose nanofibers (CNFs), polyvinylidene fluoride (PVDF), cellulose nanocrystals
(CNCs), carbon nanoparticles, polyacrylonitrile, and liquid metals. Then, the node data
were standardized (SS1). After that, the triples were built using the above nodes as entities
(Figure S2). In a triple, there is a head node, a relationship node, and a tail node, where
the relationship between the head and tail nodes can be learned. The relationship can be
divided into the following aspects: flexible matrix, functional material, structure, method,
strain range, measurement factor, and cyclic stability. The number of constructed triples
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and entities is 978 and 2000, respectively. Finally, all triples were written to the graph
database (nebula graph database).

2.2. Representation Learning

The representative learning module in Figure 1b converts semantic relationships from
text strings into low-dimensional dense vectors, quantifying data within the knowledge
graph using matrix calculations. Generally, generating embedding is a key procedure
that affects the overall performance of the method. Given the size of the database, four
lightweight algorithms (TranSE [26], DistMult [27], HOLE [28], and Node2vec [29]) are
utilized. Meanwhile, two general indicators of Mean Reciprocal Rank (MRR) and Hit@n
(namely, the proportion of correct entities ranked in the top 1/3/5/10) [26–28] are then
applied to compare the performance of the algorithms above. The specific definitions
of these two factors are given in detail in the Supplementary Materials. The aim is to
learn representations of entities and relations that best explain a dataset by minimizing the
logistic loss. The training epoch is 10,000. The optimizer is stochastic gradient descent, and
the learning rate is 0.01. The L2_regularization is used for avoiding over-fitting and is set
to 0.01.

2.3. Knowledge Reasoning

In the last stage of knowledge reasoning, functions such as prediction, mining, and
detection are enabled using the embedding vectors established in the previous module.
To achieve the property prediction and new findings, machine learning techniques that
learn from a training dataset are utilized to make accurate predictions on unseen samples.
Three robust and nonlinear methods of extreme gradient boosting (XGB), support vector
machine (SVM), and multi-layer perception (MLP) are employed to compare performance
and identify the best model for determining the probability of combinations of flexible
substrates and functional materials. Furthermore, to make a distinction between positive
and false designs, the probability threshold of classification is determined after extracting
the embedding of the entity. The classification threshold is set above 0.74, according to the
probability range of positive material combinations of sensors in the literature (Table S2).

2.4. Fabrication of a Designed Strain Sensor

According to the knowledge reasoning, the TPU/graphene/CB system was first
found with a high correlation (0.93). Meanwhile, TPU with conductive composites had
good merit in balancing the sensitivity and strain range as compared to the traditional
design [6,15,16,30–33] of PDMS, rubber, cotton, etc./graphene/CB; therefore, it was chosen
in the present study. Subsequently, a commonly used electro-spinning method was used to
create the TPU composite film.

First, 2 g of TPU was dissolved in a dimethylformamide (DMF)/tetrahydrofuran
(THF) (Macklin, Shanghai, China) mixture solution (volume ratio of 1:1) for 6 h by magnetic
stirring to form a 20 wt% solution. Subsequently, the collecting distance was set to 20 cm,
a flow rate of 3 mL h−1, and a high voltage of 20 KV was supported. The syringe tip
was 0.65 mm, and a rotation drum as the receiving device was set at 100 rpm. After
3 h, the TPU fibrous membranes were prepared. Next, 2 g of CB and graphene were
ultrasonically dispersed in the solution (sodium dodecyl benzene sulfonate and deionized
water) (Macklin, Shanghai, China) at 300 w ultrasonic power. Finally, the obtained TPU
fibrous mats were placed in the suspension three times at the same work power. After three
washing operations and drying at 70 ◦C for 90 min, the fibrous membrane was successfully
prepared. The layer structure was obtained via the rolling-up process.

2.5. Characterization

The surface morphology of carbon-based TPU fibers was observed with a scanning
electron microscope (JEOL 7001F, JEOL Ltd., Tokyo, Japan). Samples were subjected to
electron microscopy after gold spraying. The electrical and mechanical properties of the
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fibers were measured by monitoring their resistance to the cyclic tensile tests in real-time
with an electrochemical workstation (Ametek P4000, Ametek Inc., Berwyn, IL, USA) and
Micro Tester (Instron 5948, Instron, Shanghai, China).

3. Results and Discussion
3.1. The Effect of the KGAI Representation Method

It is found that the algorithm of HOLE has the highest values of MRR (~0.899) and
Hit@n (over 0.8) compared to the other three (Figure 2a,b). In order to consider the connec-
tions between multicomponent attributes, the same attribute relations are extracted through
added embeddings, termed improved representations. For example, the combination of
MXene and carbon nanotubes is examined both as a whole and as an individual, illumi-
nating connections between various material combinations. Nevertheless, the original
representation (OR) fails to take into account the relationship between materials.

To clarify the advantage of improved representation (IR), different combinations of flex-
ible matrices and functional materials were tested. Figure 2c,d displays two-dimensional
coordinates of various material combinations in the embedding space of the IR and OR
methods. The distribution indicates that different functional materials with the same flexi-
ble substrate are more closely clustered together. The statement suggests that the design
vector generated by the knowledge representation algorithm contains semantic information
about sensor design. Additional findings from KMeans clustering indicate that a stronger
correlation exists between flexible matrices and functional materials, leading to an increased
likelihood of sensor design formation. Moreover, Table S3 provides a detailed list of typical
combinations of matrix and functional material with a short distance from the improved
method, which is consistent with previous experiments. Furthermore, the distance between
the flexible substrate and functional materials in the new combinations is comparatively
greater than in prior designs. The effective integration of existing material combinations
between data indicates that the enhanced method is a reasonable representation of the
sensor knowledge. Currently, the majority of studies [16–20] only focus on material prop-
erties as a feature to accomplish the prediction task. However, the relationship between
materials in sensor design is vital, especially in the hydrogel design, which represents the
interfacial property.

A heat map, which was reported to extract the correlation among different vectors [23],
was also applied to demonstrate the relevance of designs. The correlations between 8 flexi-
ble matrixes and 8 functional materials were then extracted, and the results are plotted in
Figure 2e. The block’s color transition from pale yellow to dark yellow signifies a stronger
correlation between them. Materials such as cotton, TPU, PDMS, and yarn exhibit significant
correlations in their matrix structure, which is consistent with earlier research [34,35]. Previ-
ous research [36] has established a strong correlation between MXene and flexible matrices
(PDMS and cotton). Furthermore, graphene/CB combinations with cotton and PDMS sub-
strates follow the literature [37]. The observed correlation between TPU and graphene/CB is
a new design due to comparable production processes. Despite the lack of direct reports for
PEDOT/PSS combinations, the KGAI method’s correlation learning revealed potential for
yarn and graphene/cellulose nano-crystalline (CNC) designs. The involvement of domain
experts with a thorough understanding of the nuances and interactions of material factors is
required to interpret these complexities. In conclusion, the information-to-knowledge route
(KGAI method) is capable of searching for existing designs.

In order to evaluate the prediction error of the KGAI method, a standard radar
graph [23] is presented in Figure 2f. The false positive stands for the number of wrong
predictions of designs in the graph database, while the true negative represents undetected
designs. The KGAI method demonstrates robust strain sensor design capabilities, with
fewer than 4 wrong predictions out of 64 samples.
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Figure 2. The evaluation of the KGAI method. (a,b) Values of MRR and Hit@n metrics of knowledge
graph construction. (c,d) Cluster atlas of different combinations of representation methods (improved
method with considering the correlation between functional materials and hole method without con-
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correlation. (f) The value of false positive (value = 1, wrong prediction in database) and true negative
of designs (value = 3, undetected designs in database).
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3.2. Navigation Model of Prediction

In order to assess prediction performance for the classification task (Figure 3a), typi-
cally used evaluation indicators like precision, recall, and F1-score were chosen. To evaluate
the feasibility of the design, the classification task was executed. Ultimately, the multi-layer
perceptron method performed better than SVM and XGB techniques and was selected as
the study’s navigation model (Figure 3b). The MLP method’s accuracy and precision are
shown in Figure 3c for ten distinct test sets, with corresponding values of 0.81 and 0.78,
respectively. Figure 3d,e indicates that the predicted labels are basically consistent with the
real labels.
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samples (one and four misclassified samples, respectively).

In this study, the prediction of performance is also considered and constructed, in
addition to the possibility of predicting sensor designs. The regression task (XGB and
MLP methods) utilizes the mean absolute error (MAE) and mean squared error (MSE)
as measures of performance. Unlike accuracy, a smaller MAE value indicates a higher
level of prediction accuracy in the decision-making process. Thus, the regression model is
derived by training the multi-layer perception network using cross-validation to prevent
over-fitting. The mean absolute error (MAE) is used as a metric to assess performance
(Figure 4a,b). It is evident that the MAE and MSE of the MLP method are relatively
smaller than SVM and XGB methods, owing to the learning and nonlinear approximation
capabilities of the neural network. The final MAE of the MLP method on the training
data is 0.98, and on the test data, it is 1.73. Additionally, the predictions of the data are
illustrated in Figure 4c,d, showcasing relative fitting results. The results demonstrate that
the feature generated by the relationship-based representation method is an effective way
to predict properties.
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To further demonstrate the advantages of the relationship-based representation method
(KGAI), the traditional method directly using text features [24] (e.g., the word2vec method
without considering relationships) is used to complete regression tasks for comparisons
(partial data in Table S2). Figure 4e demonstrates that the KGAI method has reduced the
maximum absolute value error by nearly 8 times and the maximum square value error by
nearly 5 times in comparison to the traditional method (Figure 4f). The primary reason
for the excellent results is the utilization of deeper-level information hidden in the data,
enhancing representations of the interaction between materials. The findings suggest that
using ergodic sensor attribute knowledge as an entity and using relationships between
attributes as features can improve the precision of traditional text-based machine learning
methods, hence facilitating strain sensor mining and design tasks.

Most machine learning work of strain sensors in the literature either focuses on sig-
nal processing for resistance readout or lacks a comprehensive framework that combines
knowledge graph-based data fusion with machine learning techniques for modeling. How-
ever, the graph embedding framework under study focuses on the correlation between
performance and design, bridging the gap in the strain sensor field. This approach specifi-
cally addresses the issue of ignoring intra-aspect relationships, which is often present in
medical modeling. The proposed method has obvious advantages: enhanced generaliza-
tion, simplicity, and efficiency. The algorithm converts triples into low-dimensional and
dense vectors to achieve efficient design reuse. A potential limitation of the present work
is the inconsistent performance of most reports, restricting the capability of the machine
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learning model. Future data augmentation is warranted to enhance predictive power. This
work is a preliminary demonstration of the application of the knowledge graph method
for strain sensor fabrication. Future research could explore model optimization for the
fabrication process.

3.3. Entity Prediction

The knowledge reasoning process, as shown in Table 1, is capable of executing two-
way tasks, including (1) sensor performance prediction and (2) recommendation of feasible
sensor designs. Since the construction of a knowledge graph consists of key characteristics
of sensors (referred to as entity), these two-way predictions can be regarded as entity
predictions. The performance of strain sensors is evaluated by two crucial parameters: the
gauge factor (GF) and strain range (l). GF is defined by the slope of the relative resistance
change versus the strain range change.

Table 1. The query is implemented in the strain sensor graph.

Code: Graph Query Implemented to Access Results

Query rules: Match (v:matrix{name: “PDMS”})\WHERE v. matrix.name == “PDMS”\
RETURN v;

Results = graph. run(match_str)

Table 2 presents a forward design for predicting performance based on the inputs
of the flexible matrix and functional materials. The performance of rGO is significantly
affected by the type of fabric it is coupled with, such as yarn and cotton, even if they
are manufactured in a similar manner [38,39]. In an inverse design, Table 3 displays the
recommended materials and structures for achieving an appropriate design with extremely
high-performance results (e.g., 1 gauge factor, 120% strain range, and 500% strain range
are set in advance). Moreover, the performance of various material combinations and
structures can be captured. For example, Figure 5 demonstrates the trend of performance
and structure strategies. Further, the balance between strain range and sensitivity of PDMS
should be considered. In this regard, the utility of the KGAI framework enables rapid
tracking of the current trend in strain sensors.

Table 2. Task 1 (Forward design to predict performance).

Input Verification

Flexible substrate: yarn
Gauge factor:50

Strain range: 90% Reference [38]Functional materials: rGO

Method: dip-coating

Flexible substrate: cotton
Gauge factor: 4

Strain range: 11.6% Reference [39]Functional materials: rGO

Method: dip-coating

Table 3. Task 2 (Inverse design to predict materials and structure).

Input Verification

Functional material: carbon nanotubes (CNTs)

Substrate: Flax fabric Reference [40]Gauge factor: 1.24

Strain range: 120%

Substrate: Polyaniline

Functional material:
Silver nanowires

Reference [41]
Gauge factor: 1

Strain range: 500%

Strain range: 240%
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3.4. Automatic Strain Sensor Design

Due to the high correlation of materials in Section 3.1, TPU was first chosen as the
matrix in this work due to its merits such as biocompatibility, breathability, flexibility,
and toughness. The KGAI method found a mixed graphene/CB design due to their
excellent correlation. The classification of this combination (TPU/graphene/CB) obtained
a high probability (above 0.93), signifying the feasibility of this combination. Regarding
the manufacturing method, electro-spinning technology was predicted to be used. The
machine learning model applied to predict this combination had a good strain range (above
240%). Moreover, the verification in a later section shows that the combination of TPU and
graphene/CB exhibits a strain range that is relatively consistent with the model prediction.

3.5. Characteristics of the Designed Strain Sensor

The fabrication process of the strain sensor is shown in the Method section. Figure 6
demonstrates the characteristics of flexibility, ultra-thin structure, and surface morphology.
The multi-layer network from the top surface of the film was observed. Additionally, it was
found that carbon-based materials were evenly distributed on the fibers, attributed to the
loose structure of the TPU substrate, which may facilitate good contact between functional
materials and substrates, resulting in excellent stability [42].

In order to verify practical performance, the mechanical properties of the strain sensor
were first evaluated by a tensile test, as shown in Figure 7a. It is evident that over a 300%
strain range was obtained, conforming to the prediction. Except for the strain range, the
relative resistance change corresponding to the strain range is shown in Figure 7b, which
demonstrated a good gauge factor (110 at 80% strain). When comparing spherical CB
nanoparticles, CB and graphene are more likely to form a complete conductive network,
thereby enhancing electrical conductivity. Table 4 summarizes the comparisons of perfor-
mance (such as strain range, gauge factor, and durability) to compare the performance of
the designed sensor. It can be seen that the designed sensor has a balanced performance be-
tween strain range (300%) and gauge factor (110 at 80% strain). The excellent performance
can be attributed to its internal network structure. The fibers underwent straightening and
elongating, leading to deformation of the internal network structure, resulting in resistance
changes. Meanwhile, the micro-crack that is generated during the stretching process helps
enhance the performance [21]. Figure 7c reveals the sensor ‘s excellent durability under
the stretching–releasing process (10% of strain). The insert picture in Figure 7c shows the
response time (110 ms) and recovery time (112 ms). To further demonstrate the stability of
the strain sensor, different tensile rates (40 mm/min and 20 mm/min) were applied to the
strain sensor, presenting repeatable stress (Figure 7d,e). The first cycle exhibits a relatively
large variation in stress, most likely due to the permanent destruction of the conductive
network, which aligns with the previously reported sensor [22]. Stress in subsequent cycles
was reduced compared to the first cycle and almost overlapped, suggesting stable destruc-
tion and reconstruction of the conductive network. The response of the strain sensor during
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stretch–release cycles in various strain ranges (30%, 60%, and 80%) is depicted in Figure 7f.
Different strains exhibit the same response patterns, suggesting a continuous reaction to
cyclic loading. Furthermore, during the stretching and releasing process, the resistance
may increase proportionally to the tensile stress and recover naturally without any external
intervention. This phenomenon can be attributed to the partial breakdown of electrically
conductive pathways and the gradual increase in separation between carbon-based ma-
terials, both leading to an increase in resistance. Furthermore, the sensing signals remain
stable, and the alteration in stress is only determined by strain, indicating the reliability of
the sensor in stress recognition.
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Table 4. The summarization of the reported sensor performance.

Ref. Main Materials Strain Range Sensitivity Repeatability Response/Recovery Times Limit Detection

[1] CNTs ink/PU 350% 2.7 1000 ~ ~

[6] CNTs/CNF/PDMS/TPU 217.5% 12.7 800 ~ ~

[7] Silver fillers/LM ink 170% ~ 5000

[8] CNTs/latex tube 200% 91.1 4000 290 ms/310 ms 0.1%

[15] CB/PDMS 250% 12 1000 ~ ~

[16] CNTs/CB/PDMS 80% 7.7 10,000 100 ms/110 ms 0.04%

[20] CNTs/LiCl/elastic core-spun yarn 100% 1.35 1000 300 ms ~

[30] Graphene/PU 160% 86.86 100 ~ ~

[31] LM/TPU 548% 6 1000 ~ ~

[32] CNTs/TPU 140% ~ 1250 ~ ~

[33] PAN/graphene/TPU 2% 1700 300 ~ ~

[37] CNTs@carbon black/PDMS 80% 7.7 10,000 2%

[40] CNTs/fabric 128% 4.73 ~ ~ ~

[42] MXene/TPU/PAN 80% 9.69 1750 140.6 ms 0.1%

[43] Conductive ink/rubber 50% 12.14 5000 71.43 ms/178.49 ms ~

[44] CNTs/cotton 300% 21.85 ~ ~ ~

This work Graphene/CB/TPU 300% 110 1000 110 ms/112 ms ~



Sensors 2024, 24, 5484 12 of 16
Sensors 2024, 24, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 7. Main metrics of the strain sensor. (a) The stress under different strain ranges. (b) The rel-
ative resistance–strain variation curves and stress–strain curves of strain sensors. (c) The durability 
of the sensor. The insert pictures are the subgraph of the cycle (800–806) and response/recovery 
times of the sensor. (d,e) The three cycles of the stretching process with a tensile rate of 40 mm/min 
and 20 mm/min, respectively. (f) The cycle stability of relative resistances under different strains 
(35%, 45%, and 80%). 

Table 4. The summarization of the reported sensor performance. 

Ref. Main Materials Strain 
Range 

Sensitivity Repeatability Response/Recovery 
Times 

Limit 
Detection 

[1] CNTs ink/PU 350% 2.7 1000 ~ ~ 
[6] CNTs/CNF/PDMS/TPU 217.5% 12.7 800 ~ ~ 
[7] Silver fillers/LM ink 170% ~ 5000   
[8] CNTs/latex tube 200% 91.1 4000 290 ms/310 ms 0.1% 

[15] CB/PDMS 250% 12 1000 ~ ~ 
[16] CNTs/CB/PDMS 80% 7.7 10,000 100 ms/110 ms 0.04% 

[20] CNTs/LiCl/elastic core-
spun yarn 

100% 1.35 1000 300 ms ~ 

[30] Graphene/PU 160% 86.86 100 ~ ~ 
[31] LM/TPU 548% 6 1000 ~ ~ 
[32] CNTs/TPU 140% ~ 1250 ~ ~ 
[33] PAN/graphene/TPU 2% 1700 300 ~ ~ 
[37] CNTs@carbon black/PDMS 80% 7.7 10,000  2% 
[40] CNTs/fabric 128% 4.73 ~ ~ ~ 
[42] MXene/TPU/PAN 80% 9.69 1750 140.6 ms 0.1% 
[43] Conductive ink/rubber 50% 12.14 5000 71.43 ms/178.49 ms ~ 
[44] CNTs/cotton 300% 21.85 ~ ~ ~ 
This 
work 

Graphene/CB/TPU 300% 110 1000 110 ms/112 ms ~ 

3.6. Demonstration of a Human Action Monitoring Application 
According to the above results, the prepared composite sensor has excellent proper-

ties such as extensive strain range, flexibility, and good sensitivity, showing great 
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relative resistance–strain variation curves and stress–strain curves of strain sensors. (c) The durability
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of the sensor. (d,e) The three cycles of the stretching process with a tensile rate of 40 mm/min and
20 mm/min, respectively. (f) The cycle stability of relative resistances under different strains (35%,
45%, and 80%).

3.6. Demonstration of a Human Action Monitoring Application

According to the above results, the prepared composite sensor has excellent properties
such as extensive strain range, flexibility, and good sensitivity, showing great prospects in
wearable devices. Consequently, it was used to detect human motion across several levels,
including swallowing, speaking, hand bending, and knee movements. The small strain
of swallowing was first tested by attaching the sensor to the neck, followed by testing the
speaking process of two words (“MXene” and “science”) (Figure 8a,b). Different changes
in relative resistance during these activities caused by vocal cord vibrations were captured,
indicating sensitivity to tiny motions. Figure 8c exhibits that the sensor responded to hand
curvature with a consistent correlation between the bending angle and resistance change. To
monitor larger joint movements, measurements were performed while sitting and standing
by mounting the sensor on the knee (Figure 8d). The resistance-time waveform presented a
clear and periodic response, showing promising potential for human-friendly rehabilitation.
The pressure characteristic was also observed according to different forces (Figure S3).

As discussed above, the designed strain sensor has the potential for health applications.
The high-quality design is mainly attributed to the constructed knowledge graph for strain
sensors. On the surface, the sensor design data consists of discrete symbols that fulfill
diverse requirements. However, these discrete symbols represent the semantic correlation
between design elements, such as dimension mixtures. The relationship between designs
(material, structure, property) of strain sensors is unveiled in the graph database, enabling
data-driven mining. With more designs of films or sensors and appropriate data-processing
methods, the model could be continuously updated, leading to improvement [45]. It is fea-
sible to design multifunctional films, such as frost resistance, UV blocking, electromagnetic
interference shielding, and so on.



Sensors 2024, 24, 5484 13 of 16

Sensors 2024, 24, x FOR PEER REVIEW 13 of 17 
 

 

prospects in wearable devices. Consequently, it was used to detect human motion across 
several levels, including swallowing, speaking, hand bending, and knee movements. The 
small strain of swallowing was first tested by attaching the sensor to the neck, followed 
by testing the speaking process of two words (“MXene” and “science”) (Figure 8a,b). Dif-
ferent changes in relative resistance during these activities caused by vocal cord vibrations 
were captured, indicating sensitivity to tiny motions. Figure 8c exhibits that the sensor 
responded to hand curvature with a consistent correlation between the bending angle and 
resistance change. To monitor larger joint movements, measurements were performed 
while sitting and standing by mounting the sensor on the knee (Figure 8d). The resistance-
time waveform presented a clear and periodic response, showing promising potential for 
human-friendly rehabilitation. The pressure characteristic was also observed according to 
different forces (Figure S3). 

 
Figure 8. Applications of the strain sensor to detect human motions. (a,b) Motions of swallowing 
and speaking. (c) The resistance changes with the bending of the hand. (d) The resistance changes 
of knee motions (standing and sitting state). 

As discussed above, the designed strain sensor has the potential for health applica-
tions. The high-quality design is mainly attributed to the constructed knowledge graph 
for strain sensors. On the surface, the sensor design data consists of discrete symbols that 
fulfill diverse requirements. However, these discrete symbols represent the semantic cor-
relation between design elements, such as dimension mixtures. The relationship between 
designs (material, structure, property) of strain sensors is unveiled in the graph database, 
enabling data-driven mining. With more designs of films or sensors and appropriate data-
processing methods, the model could be continuously updated, leading to improvement 
[45]. It is feasible to design multifunctional films, such as frost resistance, UV blocking, 
electromagnetic interference shielding, and so on. 

4. Conclusions 

Figure 8. Applications of the strain sensor to detect human motions. (a,b) Motions of swallowing
and speaking. (c) The resistance changes with the bending of the hand. (d) The resistance changes of
knee motions (standing and sitting state).

4. Conclusions

This work develops a framework that combines knowledge graphs and graph repre-
sentation learning methods to reveal the interconnectedness of strain sensor design. The
established knowledge graph has a high MRR (mean reciprocal rank), with a value greater
than 0.89, allowing for effective retrieval and querying of information. Furthermore, by
establishing an MLP regression model, the feasibility of the design and strain range predic-
tion are demonstrated. The strain sensor created using this framework has a prediction
accuracy of 0.93, demonstrating its excellent performance (strain range of 300%) and the
validity of this relational semantic prediction method in strain sensor design. The efficiency
of this method not only opens up the possibility of rapid fabrication of strain sensors
but it is also expected to extend to other material science design challenges by guiding
algorithms to learn and perform specific tasks. For precise prediction, some promising
directions could be considered in future work. (1) The current knowledge graph database
could be expanded to encompass a wider variety of strain sensor data. This will involve the
aggregation of data from diverse sources, thereby improving the model’s generalizability
and applicability. Furthermore, the creation of industry-standard flexible sensor datasets is
imperative to establish a benchmark. For example, the low detection limit, response time,
biocompatibility, and cost should be properly considered. (2) The construction of a dynamic
knowledge graph may help continuously optimize design and prediction models, such
as incremental learning algorithms (online sequential extreme learning machine), online
learning algorithms (adaptive linear neuron), and neural link prediction algorithms (neural
collaborative filtering or matrix factorization techniques). This dynamic nature will allow
the system to automatically absorb new data and knowledge to continuously optimize
designs and predictive models. (3) Future research could explore approaches such as en-
semble learning and deep learning to further improve prediction accuracy. (4) The real-time
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feedback and adaptive design are also important for the design process. By integrating
machining learning models with real-time sensor data, an adaptive design process can be
achieved where the model can automatically adjust design parameters based on new input
data. This method’s application potential will be continually explored as sensor technology
advances and application scenarios expand (including aerospace, medical devices, and
smart manufacturing), and its value is expected to be realized in a broader range of fields
in the future.
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