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S1. Methods 

In general, the representation learning process aims to extract local or global 

connectivity patterns between entities, and reasoning is performed by using these patterns 

to generalize the observed relationship between specific entities. Four representation 

learning methods are adopted to generate embedding, including the Node2vec, TranSE, 

DisMult and HOLE methods. As the final learning method, the HOLE method is adopted 

because it showed the best performance. After that, the multi-layer perception network 

(MLP) was designed and trained for the classification of reasoning combinations , 

predicting the feasibility of combinations. The details regarding the above methods are 

explained as follows:  

Node2vec method 

The Node2vec method seeks to encode each node into an embedding space while 

maintaining the network structure information. Encoding entity relationships allows us to 

capture the context of each data point in addition to its attributes. This algorithm is 

summarized as a two-part process. It begins by generating a sequence of nodes using 

biased second-order random walks. By fine-tuning random walk hyper-parameters, the 

performance of the model changes. Then, nodes serve as inputs for a skip-gram with a 

negative sampling model. The skip-gram model produces pairings of input and context 

nodes based on the size of the context window, before feeding them into a shallow neural 

network. We are able to obtain the hidden layer weights in the form of node embedding 

through the network training procedure. The size of an embedding is determined by the 
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number of hidden layer neurons. It is stated that similar nodes in the network should have 

similar embedding. We measure the similarity in the network between two nodes, and 

compare it to the similarity in the embedding space. Whenever the similarity in the 

embedding space between two nodes does not reflect the similarity in the network, the 

embedding is adjusted. In addition, the Node2vec method uses the cosine distance method 

to calculate the distance of the nodes. 

TranSE and DisMult methods 

The distance model comprises a training set S of triples (h,l,t) composed of two entities 

(h, t), and a relationship l. Relationships are represented as translations in the embedding 

space: if (h, l, t) holds, then the embedding of the tail entity t should be close to the 

embedding of the head entity h, plus a vector that depends on the relationship l, i.e., we 

want h + l≈ t when (h, l, t) holds (t should be a nearest neighbor of h + l ), while h + l 

should be far away from t otherwise. In order to learn such an embedding, we choose the 

L1 or L2 norm. The equation can be expressed as follows: 

                   ∑ ∑ [γ + d(h + l, t) − d(h′ + l, t′)]ା(୦ᇱ,୪,୲ᇱ)∈ୗᇱ(୦,୪,୲)∈ୗ                  (1)                     

where [x]+ denotes the positive part of x, and γ is a margin hyperparameter. The loss 

function (1) favors lower values of the energy for training triplets than for corrupted 

triplets.  

Different from TranSE model, the DisMult method uses bilinear score function. It is a 

simplification of the neural tensor network. Given a triple S (e1, r, e2), it transforms the 

score function into the range (0,1) to obtain ground-truth confidence. The training 

objective is to minimize the margin-based ranking loss.                     L(Ω) = ∑ max{S൫ୣభᇲ ,୰,ୣమᇲ ൯൫ୣభᇲ ,୰,ୣమᇲ ൯∈୘൫ୣభᇲ ,୰,ୣమᇲ ൯∈୘ᇲ − S(ୣభ,୰,ୣమ) + 1,0}                 (2) 

HOLE Method 

Let θϵ{e୧} ∪୧ୀଵ୬౛ {r୩}୩ୀଵ୬౨  denote the embedding of a signal entity or relation; the score 

formula can be described as follows:                   Pr(∅୮(s, o) =1|θ) = σ(ηୱ୮୭)=σ(r୔୘(eୱ ∘ e୭))                       (3) 
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let fୱ୮୭ = σ(r୮୘(eୱ ⋆ e୭),  the gradient of eq. (3) is then given by:                                               ப୤౩౦౥ப஘ = ப୤౩౦౥ப஗౩౦౥ ப஗౩౦౥ப஘                                                (4) 

By iterating with stochastic gradient descent (SGD), the object’s embedding is updated. 

This approach has two benefits: The first is the use of compositional representations, 

which enables information to be propagated between triples, global dependencies in data 

to be captured, and the desired relational learning effect to be learned. Another advantage 

is that the relationship can be modeled by correlation operation. Rather than simply 

storing associations, the HOLE model learns the embedding that best explains the 

observed data.  

Support Vector Machines (SVMs) 

This method constructs a hyper-plane in a high dimensional space for the classification. 

A good separation can generate the largest distance between the nearest training data and 

the hyper-plane. 

XGBoost (XGB) 

XGB can be understood as a parallel prediction of multiple trees, and the prediction 

scores are added, so that they can be judged. This tree model generates a new tree through 

continuous iteration, so that the predicted value can approach the true value. 

Multi-layer Perception (MLP) 

This method can learn a non-linear function for either classification or regression tasks, 

usually containing the input layer, hidden layer and output layer. For the classification, 

the loss function is given as 

      ( ) 22||W||n0i 2n)yi)ln(1yi(1yln iyin1W)y,,yLoss( 
=

∂+−−+−= ˆˆˆ         (5) 

And for the regression task, the loss function is  

          ( ) ||W||222nn0i ||yy|| 2n1Wy,,yLoss ∂+
=

−−= ˆˆ                        (6) 

S2. Evaluation Metrics 
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The multi-layer perception is adopted after the representation, outputting the label and 

probability of the combination. The activation function chooses the parameter of relu. 

The label has two values, indicating whether the combination is true or not. The output 

of 1 is true, while 0 is false. Meanwhile, the probability of the output denotes the chance 

of the label. In this method, the accuracy and precision are used for the evaluation 

indicator. The accuracy represents the proportion of the predicted correct quantity to the 

total quantity in positive and negative cases, while precision emphasizes the rate at which 

the correct category is correctly predicted. The overall accuracy of the classification task 

on the training dataset is 0.96, with an accuracy of 0.85 on the test dataset. The accuracy 

and precision are between 0 and 1. Moreover, higher accuracy and precision mean a better 

model. In addition, it is found that the probability of true combinations from the literature 

is between 0.74 and 0.99 (Table S3). Meanwhile, the false combinations are clearly less 

than 0.6. Considering this range of probability, the threshold used for identifying the 

feasibility of combinations is set as 0.74. The samples of probability are summarized in 

Table 2. Furthermore, the mean absolute error (MAE) and mean squared error are used 

for the regression task (XGB and MLP methods) of performance. In contrast to the 

accuracy, low relative values of MAE and MSE represent a good model. 

 

  
Figure S1. The introduction of confusion matrix. 
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S2. Evaluation indicators of HOLE, TranSE and DisMult 

Two evaluation indicators, including Mean Reciprocal Ranking (MRR) and Hit ratio, 

with the cut-off values n = 1, 3, 5, 10, are utilized. MRR is the average inverse rank for 

correct entities, with a higher value representing better performance (Figure. S2). Hit@n 

measures the percentage of correct entities in the top n predictions. The formula is 

represented as follows: 

Mean Reciprocal Ranking (MRR):                   MRR = ଵ|ୗ| ∑ ଵ୰ୟ୬୩౟ = ଵ|ୗ||ୗ|୧ୀଵ ( ଵ୰ୟ୬୩భ + ଵ୰ୟ୬୩మ+.... + ଵ୰ୟ୬୩|౏|	 )                   (13) 

Hit@n:                                         HIT@n = ଵ|ୗ| ∑ ∏(rank୧|ୗ|୧ୀଵ ≤ n)                         (14) 

The HOLE method has the highest value, up to 0.89, while the TranSE method has the 

lowest value (about 0.799). Although the algorithm of DistMult also has relatively higher 

values of MRR (~0.822), the vector-based calculation reduces its ability to capture 

information, further affecting accurate prediction. 

S3 The scatter diagram of the HOLE without considering the relationship between 

the same property 
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 We have found nine kinds of material combinations in the original representation 

method by the adjacent points. They are cotton and graphene, fabric and azo, ecoflex and 

Glycerol/kcl, ecoflex and kc/Gly, hydrogel and PAA/TA-CNCs, rubber and 

CNTs/PEDOT: PSS, cotton and graphene/cb, wool and graphene and PDMS/pt. Moreover, 

these above combinations are verified in the database. 

Figures 

 
              Figure S2. The example of the partial knowledge graph. 

 

  Figure S3. The cluster altas of different combinations of TranSE and DisMult methods. 
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Tables 

Table S1. The full names of materials. 

Index Abbreviated name Full name 
1 rGO reduced graphene oxide 
2 CNTs carbon nanotubes 
3 MWCNTs multi-wall carbon nanobutes 
4 GO graphene oxide 
5 MXene MXene (Ti3C2) 
6 AgNWs silver nanowires 
7 SWNT single-wall carbon nanobutes 
8 ACNF aligned carbon nanofiber 
9 VN anadium nitride nanoparticle 
10 CB carbon black 
11 PANI polyaniline 
12 graphene graphene 
13 PMXene polydopamine modified MXene 
14 TPU thermoplastic polyurethane 
15 PI polyimide 
16 PTFE polytetra fluoroethylene 
17 Ecoflex Ecoflex 
18 PDMS polydimethylsiloxane 
19 PVDF poly (vinylidene fluoride) 
20 PVA polyvinyl alcohol 
21 AuNWs au nanowires 
22 SWCNT single-wall carbon nanotubes 
23 CNFs cellulose nanofibrils 
24 PPy polypyrrole 
25 PU polyurethane 
26 TPE thermoplastic elastomer 
27 AgNPs silver nanoparticles 
28 CNCs cellulose nano-crystalline 
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Table S2. The probability of combinations in the literature. 

Index Combinations Probability Ref. 

1 PDMS/CNTs/Mxene 0.84 [45] 

2 Polyurethane/Mxene 0.78 [34] 

3 TPU/CNTs 0.88 [46] 

4 Fiber/MWCNTs 0.97 [47] 

5 PDMS/MXene/poly(ta) 0.99 [48] 

6 Fiber/graphene/pvdf 0.97 [49] 

7 Paper/MXene 0.92 [50] 

8 Yarn/cb/cncs 0.79 [51] 

9 PDMS/CNTs 0.78 [52] 

10 Nylon/PEDOT: PSS/AgNWs 0.87 [53] 

11 Polyimide/MXene/TiO2 0.92 [54] 

12 PDMS/rGO 0.74 [55] 

13 Rubber/CNTs 0.78 [56] 

14 polyvinyl alcohol/cnfs/znso4 0.97 [57] 

15 Ecoflex/egain alloy/sio2 microspheres 0.96 [58] 
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Table S3. The coordinate of some functional materials and substrates. 
Functional 
material 

Flexible 
matrix 

Coordinate of the  
functional material 

Coordinate of the  
flexible matrix 

Distance  Ref 

Glycerol/ 
kcl 

ecoflex 
 

(4.38024, 
 3.37265) 

(3.58242,  
3.64646) 
 

0.714 [58] 

MXene/ 
CNCs 

polyurethane (1.04869,  
-2.493) 

(-2.601,  
-6.121) 
 

26.41 [59] 

CNTs/ 
MXene 

rubber (-1.83273, -
5.20404) 

(-1.74536, -
4.57424) 

0.507 [60] 

CB/ 
MWCNTs 

PDMS (3.64621,  
7.4754) 

(3.45073,  
7.39312) 
 

0.046 [61] 

pedot:pss/ 
agnws 

nylon 
 

(-0.41206,  
3.89873) 
 

(0.00308,  
4.10123) 
 

0.212 [62] 

Graphene 
nanoribbons 

TPU (4.46887,  
-2.55121) 
 

(2.63917, -
0.51695) 

7.432 [63] 

MXene/ 
CNTs 

TPU (3.72447, 
 -0.73028) 

(2.63917, -
0.51695) 
 

1.221 [2] 

Graphene/ 
cb 

TPU (1.42992, 
4.40013) 

(2.63917, -
0.51695) 
 

25.45 This 
work 

The distance of the above combinations in the improved representation method is less 

than 26.41. Therefore, the threshold of the matrix and functional material (D < 26.41) in 

the embedding space is determined in the present study to help evaluate the possibility of 

combinations for strain sensor designs. The distance of the discovered design is also 

found within this range. 

 

 


