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Abstract: To address the issues of low survivability and communication efficiency in wireless sensor
networks caused by frequent node movement or damage in highly dynamic and high-mobility
battlefield environments, we propose a dynamic topology optimization method based on a vir-
tual backbone network. This method involves two phases: topology reconstruction and topology
maintenance, determined by a network coverage threshold. When the coverage falls below the
threshold, a virtual backbone network is established using a connected dominating set (CDS) and
non-backbone node optimization strategies to reconstruct the network topology, quickly restore
network connectivity, effectively improve network coverage, and optimize the network structure.
When the coverage is above the threshold, a multi-CDS scheduling algorithm and slight position ad-
justments of non-backbone nodes are employed to maintain the network topology, further enhancing
network coverage with minimal node movement. Simulations demonstrate that this method can
improve coverage and optimize network structure under different scales of network failures. Under
three large-scale failure operational scenarios where the network coverage threshold was set to 80%,
the coverage was enhanced by 26.12%, 15.88%, and 13.36%, and in small-scale failures, the coverage
was enhanced by 7.55%, 4.90% and 7.84%.

Keywords: tactical edge networks; connected dominating sets; topology optimization; marine
predator algorithm

1. Introduction

In recent years, the U.S. military has proposed new combat styles such as multi-
domain joint operations [1], mosaic warfare [2], distributed operations [3], and swarm drone
operations [4]. These combat styles emphasize dispersed forces and intelligent collaboration.
A typical example is the tactical edge network [5], whose structural composition is shown
in Figure 1. This network integrates combat soldiers with unmanned combat units such as
drones, ground robots, and unmanned combat vehicles, forming small, sophisticated, and
powerful joint units. These units are capable of rapid and precise strikes, thereby creating
advantageous windows across the entire battlefield and accomplishing combat missions
such as key area seizure and urban warfare.

The tactical edge network, designed specifically to meet the communication needs of
modern battlefields and complex environments, features unique structures and function-
alities to ensure stable operation under extreme conditions. This network system deeply
integrates the technological characteristics of wireless sensor networks (WSNs) [6] and
mobile ad hoc networks (MANETs) [7], embodying heterogeneity, high dynamism, large-
scale deployment, self-organization, and self-healing capabilities. In complex battlefield
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scenarios, the tactical edge network plays a crucial role in reconnaissance and surveillance,
target tracking, environmental monitoring, information collection, and communication.

Figure 1. Structure diagram of tactical edge network.

However, during the operation of the tactical edge network, nodes are susceptible
to enemy attacks, leading to frequent node mobility and resulting in changes in the net-
work’s center of gravity. In such a highly dynamic and topologically variable battlefield
environment, the network may face issues like node failures, causing a decline in network
performance or even large-scale breakdowns. Therefore, it is necessary to design a topology
optimization method, which can dynamically adjust the network structure to improve
coverage, reduce latency, and enhance the network’s robustness and reliability.

Existing network topology optimization methods can be divided into three categories:
power control-based, clustering-based, and connected dominating set-based methods.

Most power control methods are based on direction, node degree, and proximity
graphs. The representative algorithm based on direction is cone-based topology control
(CBTC) [8], which ensures that there is at least one adjacent node within the effective area by
dynamically adjusting the transmission angle. The representative algorithm based on node
degree is the local mean algorithm (LMA) [9], which dynamically adjusts transmission
power to fall within a specified range by constraining the upper and lower limits of
node degree, achieving adaptive power control. Proximity graph-based methods abstract
the network as vertices and edges, using different graph constructions to implement
power control. Representative algorithms include the unit disk graph (UDG) [10], Gabriel
graph (GG) [11], relative neighborhood graph (RNG) [12], and Delaunay triangulation
graph (DTG) [13]. These algorithms use different constraints and rules to define vertex–
edge relationships to achieve power control. Current power control algorithms either
require precise node location information or involve large amounts of information exchange
between neighboring nodes and do not adequately consider the network’s robustness.

Clustering-based methods periodically elect some nodes to act as cluster heads, subdi-
viding the network into regions managed by respective cluster heads for data aggregation
and forwarding. BM et al. [14] proposed a topology optimization method for heteroge-
neous wireless sensor networks based on energy-saving clustering based on particle swarm
optimization is proposed, which effectively improves the life cycle through bionics methods.
This strategy also adopts a meticulously designed node active/sleep scheduling mechanism
to arrange work and rest cycles efficiently, reducing unnecessary energy consumption. A.
Ali et al. [15] proposed an optimization-based clustering algorithm for vehicular ad hoc
networks, the random operator of the algorithm and the proper maintenance of the balance
state between exploration and exploitation operations enable the proposed algorithm to
escape from local optimality and provide a global optimal solution. Although clustering-
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based methods can simplify network management in some cases, their heavy burden on
cluster head nodes, complex elections, and high maintenance costs limit their application
in dynamic and large-scale networks.

The connected dominating set (CDS) method ensures the global connectivity of the
entire network by selecting a node set so that each node is connected to at least one
dominating node. This can effectively reduce the number of transmission hops and delays
and improve the efficiency of data transmission. The CDS method can adapt to dynamically
changing network topology. For example, when nodes or links in the network change, the
network structure can be quickly adjusted by recalculating the dominating set to ensure the
stability and reliability of the network. Rizvi et al. [16] developed the energy-efficient CDS
(EECDS) algorithm, which leverages the CDS principle to establish a backbone transmission
channel, ensuring efficient communication between nodes. Feng He et al. [17] proposed a
centralized approximation algorithm for CDS reconstruction to solve the minimum fault-
tolerant CDS problem in a given disk graph with bidirectional links (DGB) and significantly
improved network performance. Fu D. et al. [18] proposed an algorithm based on a greedy
strategy to construct minimum connected dominating set (MCDS). The greedy algorithm
selects nodes step by step, so that each step can maximize the number of covered nodes
that are not currently covered and ensure that the selected node set is always connected.
Mohanty et al. [19] proposed a novel concept, the pseudo-dominant set, to assist in
constructing a CDS. The pseudo-dominant set does not require each node to be directly
connected to a dominating node like a traditional dominating set but allows some nodes to
be indirectly connected to the dominating node through other nodes, thereby reducing the
restrictions on selecting nodes. Wang et al. [20] proposed a method to construct a virtual
backbone network (VBN) based on the graph theory d-hop CDS (d-CDS), which can reduce
the excessive routing overhead while ensuring the connectivity of multi-hop links and
achieve a better balance between response time and maintenance cost.

Despite the maturity of MCDS construction algorithms in WSNs and MANETs, fre-
quent topology changes in tactical edge networks present challenges. Improving MCDS
algorithms for the dynamic nature of tactical edge networks is thus a key research direction
in topology optimization. Based on this, we propose a dynamic topology optimization
framework based on a virtual backbone network, as shown in Figure 2. For a given target
network monitoring area, environmental information of the monitoring area is inputted.
According to the current network coverage situation, the topology optimization of the
tactical edge network is divided into two different scenarios: large-scale failure topology
reconstruction and small-scale topology maintenance. The dynamic topology optimization
is carried out in these two phases.

The main research of this paper includes the following:
1. In the topology reconstruction phase, backbone nodes are first selected based

on the CDS algorithm to construct a virtual backbone network. Then, with the current
network coverage rate and the average distance from non-backbone nodes to backbone
nodes as optimization goals, and the current network algebraic connectivity as a constraint,
the positions of non-backbone nodes are iteratively optimized using an enhanced multi-
objective marine predator algorithm. This quickly improves network robustness while
further optimizing communication and coverage capabilities, ensuring rapid network
recovery and adaptive interconnection of critical nodes.

2. In the topology maintenance phase, backbone network topology is updated ac-
cording to the maximum similarity principle using a multi-CDS scheduling backbone
maintenance algorithm in the current time slot. Then, with the current network coverage
rate and node movement distance as optimization goals and the current network algebraic
connectivity as a constraint, the positions of non-backbone nodes are fine-tuned using an
enhanced multi-objective marine predator algorithm to further improve network coverage
while minimizing energy consumption, constructing the optimal network topology for the
current time slot.
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3. Applying this scheme to large-scale and small-scale network failures, simulation
experiments show that in three different scenarios, the network can achieve rapid inter-
connection, improve coverage, and construct optimal topologies whether facing large- or
small-scale failures.

Figure 2. Dynamic topology optimization solution for tactical edge networks.

2. System Model
2.1. Network Topology Model

Assuming that the nodes in the tactical edge network [21] are homogeneous, i.e.,
each node has the same communication radius, the topology of the tactical edge network
can be abstracted as an undirected connected graph, represented by G(V, E). In this
representation, the network nodes are denoted by the vertex set V = {v1, v2, v3, . . . , vn},
and the links are represented by the edge set E = {e1, e2, e3, . . . , em}. For ∀ei ∈ E, there
exists a corresponding (vp, vq) ∈ V with ei. Considering the high topological variability
of the tactical edge network, the network operation time is divided into several time slots.
Thus, the network topology at time tk is represented as G(Vtk , Etk ).

In this paper, the nodes in the tactical edge network are equipped with omnidirectional
antennas, meaning that any node within its communication radius can receive the signal.
In a real complex battlefield environment, the ability of nodes to communicate normally
depends on many factors, such as the remaining energy of the nodes and the current
combat environment. However, this paper focuses on the problem of network topology
construction and maintenance under high topological variability. To simplify the process of
establishing the network topology, we mainly consider the distance between nodes as the
only condition for establishing communication between two nodes. Therefore, let Rc be the
communication radius between nodes. If nodes vp and vq satisfy d(vi, vj) ≤ Rc, it means
that the two nodes can communicate with each other and nodes vp and vq are neighbor
nodes, i.e., vp ∈ Nq and vq ∈ Np, where Np and Nq represent the one-hop neighbor node
sets of nodes vp and vq, respectively. Based on this, this paper provides the following
relevant definitions:
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Definition 1. Node Degree D(vp): For any node vp, the total number of neighbor nodes within
one hop is called the degree of the node.

Definition 2. Edge Weight w(e<vp ,vq>): For any edge <vp, vq>, the sum of the degrees of the two
connected nodes vp and vq is taken as the negative value, which is the weight of the connecting edge.

Definition 3. Node Weight w(vp): For any node, the node weight is set based on its current node
degree and the degree of its neighbor nodes. The specific calculation is as follows:

w(vp) = ∑
vq∈Np

w(vq) ∗ w(e<vp ,vq>)

D(vp)
(1)

Definition 4. CDS D(vp): All CDS sets generated in the undirected graph.

Definition 5. Minimum CDS CDSk: The minimum CDS selected at the current time, where
<vp, vq> represents the node set in the CDS, i.e., the backbone node set, and vp represents the link
set in the CDS, i.e., the link set between backbone nodes.

Definition 6. CDS Weight w(CDSk): For any CDS, the sum of the weights of all dominating
nodes is the weight of the CDS, specifically calculated as follows:

w(CDSk) = ∑
vp∈CDSk

w(vp) (2)

Definition 7. Costtk represents the total update cost of the network at the current time. Considering
that the network nodes in this experiment are homogeneous, this paper assumes that updating each
node requires a certain communication cost. Therefore, the total update cost is determined by the
number of nodes updated during the final maintenance phase. This cost can be simplified as the
number of updated nodes, calculated as follows:

Costtk =
N

∑
i=1

C(vi) (3)

C(vi) =

{
1, if vi will be updated
0, if vi will not be updated

(4)

where N is the total number of network nodes, and C(vi) represents whether node vi will be updated.
If updated, C(vi) = 1; otherwise, C(vi) = 0.

2.2. Network Coverage Model

Figure 3 is a classic schematic diagram of network coverage model. Assuming the
tactical edge network monitoring area is a two-dimensional plane S = l1 × l2, the network
monitoring area is discretely divided into l1 × l2 monitoring point grids. The network mon-
itoring points can be defined as M = {m1, m2, . . . , mj, . . . , ml1×l2

}, where the coordinates
of monitoring point mj are

{
xj, yj

}
, i ∈ (1, l1× l2). The geometric center of each monitoring

point is the target location for coverage optimization.
Assuming there are n homogeneous sensor nodes, the set of nodes is Z = {z1, z2, . . . , zi,

. . . , zn}, where the coordinates of node zi are {xi, yi}, i ∈ (1, n). Each node has a sensing
radius Rs and a communication radius Rc, with Rc = 2Rs to ensure the connectivity of the
tactical edge network. The distance between node zi and monitoring point mj is defined
as follows:

d(zi, mj) =
√
(xi − xj)

2 + (yi − yj)
2 (5)
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The probability that monitoring point mj is sensed by node zi is modeled using a
Boolean sensing model. When the distance between monitoring point mj and node zi is
not greater than the sensing radius, the monitoring point grid is considered covered. The
specific formula is as follows:

pcov
(
zi, mj

)
=

{
1, i f d

(
zi, mj

)
≤ Rs

0, else
(6)

In the monitoring area, each monitoring point can be sensed by multiple nodes
simultaneously. The combined sensing probability Cp of all nodes for monitoring point mj
is defined as follows:

Cp
(
Z, mj

)
= 1−

n

∏
i=1

[
1− pcov

(
zi, mj

)]
(7)

From the paragraph, the total coverage rate Rcov of the area can be calculated as follows:

Rcov =

l1×l2
∑

j=1
Cp
(
Z, mj

)
l1 × l2

(8)

Figure 3. Schematic diagram of network coverage model.

2.3. Location Optimization Model

In practical battlefield scenarios, there is often a demand for multi-objective opti-
mization. To achieve rapid network recovery and further optimize the topology, after
constructing the backbone network, the next time slot positions of nodes can be adjusted.
Based on this, this paper proposes a non-backbone node position optimization strategy
using a multi-objective enhanced marine predator algorithm. Through mathematical mod-
eling, the problem is transformed into a constrained dual-objective optimization problem,
can be calculated as follows:

opt.



max ∑
vi∈V

∑
vj∈V

Reij [t]

max Rcov =

l1×l2
∑

j=1
Cp
(
Z, mj

)
l1 × l2

s.t.λ2(L) > 0

(9)
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where algebraic connectivity λ2(L) is chosen as the constraint, representing the second
smallest eigenvalue of the network Laplacian matrix. Algebraic connectivity measures the
connectivity and robustness of the network; λ2(L) ensures that the network is connected,
guaranteeing resilience against destruction.

Rei,j [t] = B log

(
1 +

p[t]η0

σ2Bδ(i, j)2

)
(10)

Equation (10) represents Shannon’s second law, B represents the bandwidth of the
communication channel, p[t] represents the transmit power at time t, η0 represents the
channel gain, σ2 represents the noise power spectral density, and δ(i, j)2 represents the
distance between nodes i and j. Shannon’s second law states that the capacity of a channel
between two nodes is inversely proportional to the distance between them. Based on this,
the average distance from non-backbone nodes to backbone nodes is used as a measure of
network communication capability. Thus, this multi-objective optimization problem can be
represented as follows:

opt.



min
N

∑
i=1

dt
CDS =

∑N
i=1 dvi→CDS

N

max Rcov =

l1×l2
∑

j=1
Cp
(
Z, mj

)
l1 × l2

s.t.λ2(L) > 0

(11)

During the network topology maintenance phase, when the overall performance of the
network is good, minor adjustments to the positions of network nodes under low energy
consumption are sufficient. Based on this, this paper proposes optimizing the network cov-
erage rate and node movement distance as objective functions. Similarly, through multiple
rounds of iteration using the multi-objective enhanced marine predator algorithm, the posi-
tions of non-backbone nodes in the network are optimized. The problem is mathematically
modeled as a constrained dual-objective optimization problem, as shown below:

opt.


min ∑

vp∈V

∥∥stk+1(vp)− stk (vp)
∥∥

max Rcov =

l1×l2
∑

j=1
Cp(Z,mj)

l1×l2

s.t. λ2(L) > 0

(12)

where st+1(vp) and stk(vp) represent the positions of node vp at time t + 1 and tk, respectively.

3. Virtual Backbone Network Based on CDS
3.1. Backbone Network Construction Phase

During the backbone network construction phase, this paper proposes a method
that combines minimum spanning tree (MST) and local routing information to form a
minimum CDS. By applying the MST algorithm, it is possible to select a set of nodes with
the minimum weight as the backbone nodes. To ensure the minimal number of backbone
nodes, this paper selects node degree as the key indicator for weighting selection.

From the pseudo-code of Algorithm 1, we can see that the algorithm consists of
three steps.
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Algorithm 1 MST-based CDS backbone network construction algorithm

1: Input: Network topology diagram for the current time slot G(V, E)
2: Output: The best one in the current time slot St

cds initialization
3: Initialization: Calculate the node degree, edge weight, and node weight of each node

in the network topology graph
4: for x = 1 to N do
5: Find U = arg max

[
w†(Nt

1(v)
)]

, {v ∈ VNB, u /∈ VNB | u ∈ U}
6: if The number of nodes in set U is 1 then
7: vq ← v′q
8: else
9: vq = arg max

[
w
(

Nt(vk)
)]

, vk ∈ U // Links with maximum node weight
10: end if
11: Vx

cds ← u, Ex
cds ←< vp, vq >

12: repeat
13: if D

(
vp
)
= D

(
vq
)
= 1 and < vp, vq > exist then

14: Deleting nodes vp, vq
15: end if
16: until Vx

cds = V
17: end for

1. Network Initialization and Construction of Adjacency Matrix: (a) Node Broadcast
Communication: Each node in the network communicates with other nodes by broadcast-
ing HELLO messages to collect information about neighboring nodes. This information
includes node degree, node weights, and other critical parameters essential for subsequent
network topology analysis and optimization. (b) Confirmation of Bidirectional Commu-
nication: Upon receiving HELLO messages from neighboring nodes, nodes reply with
maximum power to ensure reliable bidirectional communication, completing the network
initialization process. (c) Acquisition of Adjacency Matrix: Through periodic message
exchanges, each node eventually obtains detailed information about directly connected
neighboring nodes, thus constructing the adjacency matrix that represents the current
network topology. This matrix forms the basis for constructing the minimum spanning tree
(MST) and minimum CDS .

2. Construction of Minimum Spanning Tree for Generating CDS: (a) Setting Edge
Weights and Node Weights: After obtaining the adjacency matrix, the algorithm sets edge
weights w(e<vp ,vq>) based on the connections between nodes and their node degrees w(vp).
(b) Application of MST Algorithm: Choosing any node in the network as the starting point,
the MST algorithm traverses the entire network topology. During this process, the MST
algorithm prioritizes selecting edges with smaller weights to construct the tree, ensuring
that the sum of edge weights in the resulting minimum spanning tree is minimized while
covering all nodes. (c) Construction of CDS Set: Through the MST algorithm, a series of
minimum CDSs are obtained. Each CDS is a candidate for the backbone network, ensuring
network connectivity and coverage by including key nodes and connections.

3. Selection and Optimization of Backbone Network: (a) Calculation of CDS Weights:
For each CDS in St

cds, calculate the sum of weights of its dominating nodes to obtain the
weight of the CDS w(CDSk). (b) Selection of Optimal CDS: Among all generated CDSs,
the algorithm selects the CDS with the highest weight as the backbone network at the
current time.

Through the above steps, this paper effectively constructs a minimum CDS based
on minimum spanning tree and local routing information, thereby forming an efficient
and stable network backbone. This approach better adapts to the complex and dynamic
communication environments and requirements of tactical edge networks. The specific
algorithm flow is as follows:
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3.2. Backbone Network Maintenance Phase

During the backbone network construction phase, all potential CDSs have been iden-
tified and sorted based on their weights. In the simulation work of this paper, a series of
network topology snapshots are obtained by periodically sampling the runtime of the entire
network, enabling analysis of the continuously changing network structure. In practical
applications, especially in dynamic battlefield environments, algorithms need to adjust the
frequency of updating topology snapshots based on field conditions.

Figure 4 is a snapshot of the network topology at different times. At time tk, the
network topology snapshot is shown in Figure 4a. The dark-colored nodes 2, 4, 5, and 6
represent the virtual backbone network formed at tk. As time progresses, at time tk+1, the
network topology changes as shown in Figure 4b. The changes include the disconnection
between nodes 3 and 4, as well as between nodes 3 and 5. Additionally, a new connection
is established between nodes 7 and 9. The backbone nodes at time tk+1 are now nodes 2, 5,
and 7.

Figure 4. Network topology snapshots at (a) time tk, (b) time tk+1.

An effective backbone network maintenance strategy is crucial for ensuring stable
network operation. Most existing research focuses only on fault tolerance mechanisms
during the network establishment phase, while overlooking issues caused by dynamic node
changes during the maintenance phase. Therefore, in the context of tactical edge networks,
developing an efficient update scheme for CDSs is particularly critical. Addressing this
need, this paper introduces a novel multi-CDS scheduling algorithm for backbone network
maintenance. This algorithm flexibly selects alternative CDSs for node status updates when
the backbone network topology undergoes dynamic changes, while striving to minimize
costs during the update process. This approach effectively addresses various failure
scenarios that may occur in the backbone network. The specific steps of the algorithm are
as follows:

1. Periodic Topology Updates: As the network continues to run, each node periodically
broadcasts HELLO messages. Neighboring nodes receiving these messages respond with
their state information at maximum power, thereby achieving real-time updates of network
topology information. Additionally, the algorithm uses continuous topology snapshots
updated at fixed intervals td to ensure the accuracy and timeliness of network state.

2. Constructing MCDS Backbone Network: Firstly, the minimum spanning tree (MST)
algorithm traverses all nodes in the network to gradually form the MCDS set. Then, for
each generated CDS, the total weight w(CDSk) is calculated by summing the weights of all
nodes in the set. Finally, the CDS with the lowest total weight is selected as the backbone
network structure.

3. Dynamic Response to Network Topology Changes: When the network topology
changes, the existing backbone network may no longer fully cover the entire network. In
such cases, the algorithm applies the principle of maximum similarity to select suitable
CDSs from the remaining MCDSs, minimizing the number of nodes that need to be updated.
This approach swiftly restores network coverage and connectivity, as illustrated in Figure 5.
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Figure 5. Maximum similarity principle update mechanism.

4. Node Role Updating and Adjustment: Upon selecting the new CDS , the algorithm
adjusts the roles of nodes accordingly based on the composition of the new set. Nodes
that were originally not part of the backbone network are promoted to backbone nodes,
while those that have become ineffective or are no longer in critical positions are demoted
to ordinary nodes. This ensures the optimization of the backbone network structure.

5. Periodic Updates of MCDSs: To effectively respond to continuous dynamic changes
in the network, the algorithm periodically checks and adjusts the alternative CDSs (MCDSs)
according to a predefined schedule. Once the number of available MCDSs falls below a criti-
cal threshold of 2, the algorithm initiates the MCDS construction process again. This ensures
that even under significant changes in network conditions, the backbone network main-
tains its coverage and connectivity. When the network topology changes, the scheduling
process is re-executed based on Algorithm 2, which is the backbone network maintenance
algorithm based on multi-CDS scheduling, to adapt to the new network environment.

Algorithm 2 Backbone network maintenance algorithm based on multi-CDS scheduling

1: Input: MCDS collection, network topology G(Vt, Et), Update Cycle td
2: Output: Scheduling in tk time slot
3: Initialization: CDSt ← min{W(MCDS)}
4: while true do
5: if vp /∈ VCDStk

then
6: Scds ← Scds \ CDSi
7: CDStk ← arg max

(
Tcost(Scds, CDStk )

)
8: end if
9: if CDStk The current backbone network connection edge or node fails, vp, vq ∈ VCDStk

then
10: {CDSk} = arg{

(
vp, vq

)
∈ ECDSk}

11: Scds ← Scds \ CDSk
12: CDStk ← arg max

(
Tcost(Scds, CDStk )

)
13: end if
14: end while

4. Non-Backbone Node Optimization Strategy Based on MOEMPA

To further enhance various aspects of the current network topology in the present
time slot, such as network coverage, resilience, and communication capability, it can be
modeled as a constrained multi-objective optimization problem. In order to obtain an
approximate optimal solution to this multi-objective optimization problem within limited
computational time, this paper adopts the multi-objective enhanced marine predator
algorithm [22] (MOEMPA) to optimize the positions of non-backbone nodes in the virtual
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backbone network. MOEMPA modifies the fitness function, population update mechanism,
etc., based on EMPA, and introduces top predator selection strategies and an external
archive set (Archive) to store Pareto-optimal solutions. Through multiple iterations of
population optimization, MOEMPA ultimately obtains a Pareto solution set, enabling multi-
objective decision-making to construct an optimal topology structure that meets resilience
and communication requirements.

4.1. Introduction of External Archive Set

This study introduces an external archive set aimed at accumulating all explored
non-dominated Pareto optimal solution sets. The maximum capacity of this archive set is
fixed and typically set to half the size of the population. The archive set is responsible for
periodically collecting solutions from the current population and updating the archive by
comparing them with newly generated solutions. The update rules are as follows:

1. If a newly generated solution is dominated by any solution in the external archive
set, it is not added to the archive.

2. If a new solution dominates one or more solutions in the archive set, the inferior
solutions are removed from the archive, replaced by the new solution.

3. If a new solution is not dominated by any solution in the archive, it is included in
the archive.

According to the above update rules, each solution in the archive set consistently
dominates all other solutions in the multi-objective optimization problem. However, when
the archive capacity reaches its limit and a new solution meets the update criteria, without
action, excellent new solutions may be overlooked. Therefore, one solution strategy is to
randomly remove a solution from the archive, minimizing the impact on the distribution of
the solution set. The solution selected for removal should minimally affect the distribution
of the solution set. To evaluate the distribution of solutions in the archive set, this paper
uses the crowding distance

−→
d , calculated as the number of neighboring solutions within

this range:
−→
d =

−−→max−−−→min
Archive_size

(13)

where−−→max and
−−→
min are vectors storing the maximum and minimum values of each solution,

and Archive_size is the size of the archive.
Figure 6 illustrates the process of removing solutions from the archive set. In the con-

text of minimizing objectives, the small circles depicted in the figure represent individual
solutions within the archive. Each solution’s crowdedness in its respective area is evaluated
by calculating the number of neighboring solutions within a certain distance range (repre-
sented by the large circle) around each solution. In areas with high congestion, it means that
there are more solutions in that region, making these solutions more likely to be selected
for removal. Conversely, if the number of neighboring solutions is smaller, it indicates
that the region where the solution is located is relatively sparse, and such solutions should
be preserved. In the figure, the red circles represent the current non-dominated solutions
in the archive, while the blue circles represent newly generated solutions or neighboring
solutions that need to be evaluated.

Next, this study employs the number of neighboring solutions as a quantitative
measure to assess the crowdedness level of each solution in the solution set. Based on the
obtained crowdedness, all solutions are ranked, and a roulette wheel selection mechanism
determines the solutions to be eliminated. The probability of each solution being selected
is given by the following:

Pi =
Ni
C

(14)

where C is a constant greater than 1, and Ni represents the number of neighboring solutions
for the Pi solution in the archive. Pi denotes the probability of selecting the i solution.
Equation (14) implies that the higher the crowdedness of a solution, the greater its proba-
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bility of being selected for removal from the archive. Ultimately, the selected solution is
removed from the archive, while any new solution meeting the update criteria is added to
the archive.

Figure 6. Solution removal mechanism when the archive set is full.

4.2. Top Predator Selection Strategy

In the multi-objective marine predator algorithm, the top predator represents the
most experienced individual in the population, playing a pivotal role in leading other
individuals to find food, significantly influencing the convergence of the algorithm. In
single-objective optimization, individual fitness values can be directly compared, and the
individual with the highest fitness is selected as the top predator. However, in the context
of multi-objective optimization, due to the diversity of objective functions, solutions cannot
be directly compared. In such cases, the Pareto dominance concept is used to rank solutions.
As previously described, the archive preserves all non-dominated solutions found so far,
and the top predators are also among these non-dominated solutions. Therefore, the top
predator can be selected from the archive.

fi = Ni (15)

From Equation (15), it is evident that the updated fitness of each solution is determined
by the number of neighboring solutions. Applying this formula allows for the computation
of a new fitness value for each solution and selection of the one with the lowest fitness as
the top predator. Specifically, in the multi-objective enhanced marine predator algorithm
(MOEMPA), more than one top predator may be selected. The elite selection mechanism
tends to favor solutions in sparsely populated regions of the archive, which is highly
advantageous for improving the algorithm’s performance and optimizing the distribution
of solutions. After selecting the top predators, the construction of the Elite matrix in
MOEMPA is as follows:

Elite =



X1
1,1 X1

1,2 . . . X1
1,D

. . . . . . . . . X2
2,D

. . . . . . . . . . . .
Xk

k,1 Xk
k,2 . . . Xk

k,D
Xk

k+1,1 Xk
k+1,2 . . . Xk

k+1,D
. . . . . . . . . . . .

Xm
N,1 Xm

N,2 . . . Xm
N,D


N×D

(16)

where X1, X2, . . . , Xm, . . . , Xk represent the top predators selected using the top predator
selection strategy, where 1 < m < k, k ≤ Archive_size. The matrix provides the current best
prey locations for each predator.
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4.3. Algorithm Steps

Based on the MOEMPA-based optimization algorithm for non-backbone node posi-
tioning in tactical edge networks, here are the specific steps:

1. Parameter Setting: Input parameters include positions of non-backbone nodes,
monitoring area range, sensing radius, population size, number of solutions in the external
archive, and total number of iterations.

2. Objective Function Definition: Define the fitness function based on coverage rate in
the monitoring area of tactical edge networks. Initialize positions of randomly scattered
nodes and calculate initial area coverage based on a joint perception model. Set fitness
functions for different fault levels (small and large scales) as optimization objectives using
Equations (11) and (12).

3. Update External Archive: Update the archive with Pareto-optimal solutions. If the
archive exceeds its capacity, use a roulette wheel selection mechanism to remove solutions
and check if any individuals in the population are out of bounds.

4. Determine Initial Prey Matrix and Elite Predator Matrix: Calculate fitness values of
the prey matrix, record the best positions, and compute the elite predator matrix.

5. Update Prey Matrix: Before the algorithm starts, the population is initialized, and
different updating methods are applied during various iteration periods. In the early
iterations, prey undergo Brownian motion for global search. In the mid-iterations, prey
use Lévy flight, while predators employ Brownian motion. In the late iterations, predators
switch to Lévy flight strategy for local search. This approach aims to address issues related
to eddy formation and fish aggregating device (FAD) effects, which in the context of
intelligent optimization algorithms refers to a type of vortex effect.

6. Proceed to Next Iteration: Increment the iteration counter: Iter = Iter + 1.
7. Output Current Pareto Front: Output the current Pareto front and select the optimal

deployment plan for non-backbone nodes.

5. Simulation Analysis

This chapter focuses on simulation analysis of dynamic topology optimization in
tactical edge networks, particularly examining network failures caused by changes in
network topology strength. Simulations are conducted with a network coverage threshold
set at 80%, testing both large-scale and small-scale fault scenarios.

5.1. Experimental Setup

To better simulate the fault recovery capabilities of tactical edge networks in different
scenarios, this study sets a standard tactical edge network as the baseline model. Teams,
consisting of 20 homogeneous nodes each with a sensing radius of 100m, are tested in
network fault scenarios across three area sizes: 800 m × 800 m, 1000 m × 1000 m, and
1200 m × 1200 m. The testing involves 1, 2, and 3 teams, respectively, as detailed in Table 1.

Table 1. Scenario settings.

Number of Teams Area Size (m2) Number of Nodes Perception Radius (m)

1 800 × 800 20 100
2 1000 × 1000 40 100
3 1200 × 1200 60 100

The relevant parameter settings of the MOEMPA algorithm are shown in Table 2.
In our study, we selected 200 iterations for the MOEMPA algorithm based on several
considerations. Firstly, the choice of 200 iterations balances computational cost and pre-
cision. This number allows the MOEMPA algorithm to converge efficiently to a solution
while maintaining a manageable computational burden, ensuring that the results are both
accurate and cost-effective. Secondly, the decision is supported by empirical evidence
from previous experiments and studies. It has been demonstrated that 200 iterations are
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sufficient to achieve stable and high-quality results across various test scenarios, making it
a well-established choice. Finally, our experiments show that 200 iterations are typically
adequate for the algorithm to reach convergence. Beyond this number, additional iterations
do not significantly enhance the solution quality. Furthermore, limiting the iterations to
200 helps avoid overfitting to specific problem instances or training data, thereby enhancing
the algorithm’s ability to generalize to new and unseen scenarios.

Overall, the selection of 200 iterations for the MOEMPA algorithm is a well-founded
decision that optimizes performance and efficiency based on both theoretical and practi-
cal considerations.

Table 2. MOEMPA algorithm parameter settings.

Parameter Numeric

Population size 30
File size 20

Iteration number 200
Probability of eddy current influence FADs 0.2

Constant P 0.5

5.2. Large-Scale Failure Testing

If the current network coverage falls below 80%, indicating a need for topological
reconstruction, the process begins with selecting backbone nodes using the CDS algo-
rithm to establish a virtual backbone network. Subsequently, optimizing the positions of
non-backbone nodes is carried out using the multi-objective enhanced marine predator
algorithm (MOEMPA). The optimization aims to minimize the average distance from non-
backbone nodes to backbone nodes (avg-d), with current network algebraic connectivity as
a constraint. This iterative process aims to rapidly restore network functionality, enhancing
both network communication and coverage capabilities. The average network coverage is
represented by avg-cov.

(1) Scenario 1: 800 m × 800 m Monitoring Area
Specific parameters for this scenario include monitoring area size of 800 m × 800 m,

20 nodes, and a sensing radius of 100 m.
Figure 7a,d depict the initial coverage area map and node connectivity graph for this

scenario, showing a scattered distribution of network nodes and poor network connectivity.
Significant coverage holes and redundancy are observed in the central part of the monitor-
ing area, leading to a relatively low overall network coverage rate. Figure 7b illustrates the
use of the CDS algorithm to select 10 backbone nodes (highlighted in red) from an initial
set of 20 nodes to establish an efficient and effective backbone network.

Figure 7. Coverage area optimization diagram for large-scale failure Scenario 1. (a) Initial coverage
area, (b) CDS backbone network structure, (c) MOEMPA location optimization, (d) initial node
connectivity graph, (e) optimized node connectivity graph.

According to Table 3 and Figure 7c,e, after 200 rounds of MOEMPA iteration optimiza-
tion for non-backbone nodes, significant reductions in coverage redundancy and holes are
observed in the original monitoring area. The coverage rate notably improves from an
initial 56.11% to 88.52%, marking an increase of nearly 30%, which is significantly higher
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than the initial state. Furthermore, the average distance from non-backbone nodes to
backbone nodes decreases from 405.44 m to 383.33 m, indicating a marked improvement in
overall node connectivity compared to before optimization.

Table 3. Comparison of scene 1 before and after optimization.

Target Name Unoptimized Optimized

avg-cov 56.11% 82.23%
avg-d 405.44 m 383.33 m

(2) Scenario 2: 1000 m × 1000 m Monitoring Area
Specific parameters for this scenario are as follows: monitoring area size of 1000 m ×

1000 m, 40 nodes, and a sensing radius of 100 m.
According to Table 4 and Figure 8, it can be observed that in the event of a large-

scale network failure with an initial coverage rate of 72.64%, employing the CDS algorithm
selected 21 backbone nodes from an initial distribution of 40 nodes to establish the backbone
network. Following 200 rounds of MOEMPA algorithm optimization, non-CDS nodes
significantly reduced coverage redundancy and coverage holes at the bottom and right
sides of the monitoring area, increasing the coverage rate to 88.52%, which is significantly
higher than the initial state. Additionally, the average distance from non-CDS nodes to CDS
nodes decreased from 556.05 m to 491.76 m, a reduction of approximately 10%, thereby
enhancing the network’s resilience and communication capabilities to a certain extent.

Table 4. Comparison of scene 2 before and after optimization.

Target Name Unoptimized Optimized

avg-cov 72.64% 88.52%
avg-d 556.05 m 491.76 m

Figure 8. Coverage area optimization diagram for large-scale failure Scenario 2. (a) Initial coverage
area, (b) CDS backbone network structure, (c) MOEMPA location optimization, (d) initial node
connectivity graph, (e) optimized node connectivity graph.

(3) Scenario Three: 1200 m × 1200 m monitoring area
Specific parameters for this scenario are as follows: monitoring area size of

1200 m × 1200 m, 60 nodes, and a sensing radius of 100 m.
Figure 9a,d depict the initial coverage area map and node connectivity graph for this

scenario, showing a scattered distribution of network nodes and poor network connectivity.
Significant coverage holes and redundancy are observed in the central part of the monitor-
ing area, resulting in a relatively low overall network coverage rate. Figure 9b shows the
use of the CDS algorithm to select 21 backbone nodes (highlighted in red) from an initial
distribution of 60 nodes to establish an efficient and effective backbone network.

According to Table 5 and Figure 9c,e, after 200 rounds of MOEMPA iteration optimiza-
tion for non-backbone nodes, significant reductions in coverage redundancy and holes
are observed in the original monitoring area. The network coverage rate improves from
an initial 72.92% to 86.28%. Furthermore, the average distance from non-backbone nodes
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to backbone nodes decreases from 670.01 m to 615.00 m, indicating a noticeable improve-
ment in overall node connectivity compared to before optimization. This enhancement
significantly boosts the network’s resilience and communication capabilities.

Figure 9. Coverage area optimization diagram for large-scale failure Scenario 3. (a) Initial coverage
area, (b) CDS backbone network structure, (c) MOEMPA location optimization, (d) initial node
connectivity graph, (e) optimized node connectivity graph.

Table 5. Comparison of scene 3 before and after optimization.

Target Name Unoptimized Optimized

avg-cov 72.92% 86.28%
avg-d 670.01 m 615.00 m

5.3. Small-Scale Failure Testing

If the current network coverage rate is determined to be above 80%, the network enters
a topology maintenance phase. Firstly, using a multi-CDS scheduling algorithm based
on the maximum similarity principle, the backbone network topology is updated for the
current time slot. Subsequently, aiming to optimize the current network coverage rate and
node mobility distance with current network algebraic connectivity as a constraint, the posi-
tions of non-backbone nodes are fine-tuned using MOEMPA. This aims to further enhance
the network coverage rate while minimizing energy consumption, thereby constructing the
optimal topology structure for the current time slot.

Figure 10a–c represent the initial topology under Scenario 1, the topology after the
CDS backbone network update, and the topology optimized by MOEMPA, respectively.
Figure 10d–f show the corresponding topology under Scenario 2, and Figure 10g–i show
the corresponding topology under Scenario 3.

After optimizing the positions of newly added non-backbone nodes using the MOEMPA
algorithm, it was observed that node distribution became more uniform across three differ-
ent scenarios, with significant reductions in coverage holes and redundancy. According
to the data in Table 6, it is evident that in these three scenarios, the network coverage rate
increased from an initial 80.17% to 92.28%, from 82.52% to 91.23%, and again from 82.52% to
91.23%, achieving a significant improvement of approximately 10% in each case compared
to before optimization. Additionally, the average node movement distance remained at a
low level, further enhancing both the coverage efficiency and network resilience.

Table 6. Small-scale fault optimization results.

Scene Type Avg-d Unoptimized avg-cov Optimized avg-cov

scene 1 68.24 m 82.23% 89.78%
scene 2 104.86 m 88.52% 93.42%
scene 3 112.81 m 86.28% 94.12%

Further examination of the results shown in Figure 10 reveals that after updating the
virtual backbone network, the initial coverage areas became more rational, and the layout
of the backbone network was optimized. Moreover, leveraging the maximum similarity
mechanism minimized the cost of updating the backbone network. In these three different
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scenarios, after the backbone network update, 3, 4, and 11 original backbone nodes were
reassigned as non-backbone nodes, while 2, 2, and 6 original non-backbone nodes were
upgraded to backbone nodes. The results indicate a reduction in the total number of
backbone nodes of 1, 2, and 5, respectively, demonstrating effective reduction of network
update costs and resource expenditures while ensuring network connectivity.

Figure 10. Coverage optimization in three scenarios. (a) Initial topology in Scenario 1, (b) CDS
backbone network update in Scenario 1, (c) MOEMPA location optimization in Scenario 1, (d) initial
topology in Scenario 2, (e) CDS backbone network update in Scenario 2, (f) MOEMPA location
optimization in Scenario 2, (g) initial topology in Scenario 3, (h) CDS backbone network update in
Scenario 3, (i) MOEMPA location optimization in Scenario 3.

Furthermore, these changes not only highlight the effectiveness of the multi-CDS
scheduling algorithm in updating the backbone network but also showcase the strong
capability of the MOEMPA algorithm in maintaining network stability and adaptability.
Following the backbone network update, by dynamically optimizing and adjusting the
distribution of nodes in the network, the MOEMPA algorithm flexibly adjusts based on
actual network conditions, ensuring optimal network operation in the face of various
dynamic changes. This capability is particularly crucial for tactical edge networks that
require stable operation in complex and rapidly changing environments. Therefore, the
MOEMPA algorithm not only improves network coverage and resilience but also provides
robust support for long-term stable operation and resource optimization management of
the network.
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5.4. Comparative Algorithm Testing

To further validate the effectiveness of the MOEMPA algorithm for optimizing node
positions, experiments were conducted using different multi-objective optimization al-
gorithms: multi-objective particle swarm optimization (MOPSO) [23], multi-objective
whale optimization algorithm (MOWOA) [24], and multi-objective gray wolf optimizer
(MOGWO) [25]. These algorithms were compared and analyzed for node movement
problems in the experimental module. The parameters for each algorithm are detailed in
Table 7.

Table 7. Multi-objective algorithm parameter setting.

Parameter Numeric

Iterations 200
Population size 30

External archive size 30

Similarly, these multi-objective algorithms were applied to test Scenario 2 (1000 m
× 1000 m monitoring area) under network large-scale failure conditions. After multiple
rounds of experiments, the optimization results of each algorithm are presented in Table 8.
From Table 8, it can be observed that the node movement strategy based on the MOEMPA
algorithm yielded the best optimization results in terms of both average coverage rate and
average distance from non-CDS nodes to CDS nodes. Specifically, compared to MOPSO,
MOGWO, and MOWOA, MOEMPA improved the coverage rate by 14.50%, 11.54%, and
9.57%, respectively, and reduced the average distance to CDS nodes by 28.31 m, 57.59 m,
and 8.73 m, respectively.

Table 8. Comparison of algorithm optimization effects.

Algorithm Avg-cov Avg-d

Unoptimized 72.64% 556.05 m
MOEMPA 90.92% 491.76 m
MOPSO 76.42% 520.07 m

MOGWO 79.38% 549.35 m
MOWOA 81.35% 500.49 m

To comprehensively evaluate the performance and specific trends of the MOEMPA,
MOGWO, MOWOA, and MOPSO algorithms during the iterative process, this study
compared their convergence curves in terms of network coverage rate and average node
movement distance. Figure 11a illustrates that the convergence curves of average cover-
age rate for all four algorithms exhibit initial rapid improvement, followed by a gradual
slowdown and eventual stabilization. This reflects the algorithms’ strong global search
capability in the early stages, enabling them to quickly approach optimal solutions, while
demonstrating robust local search capability in later stages to achieve convergence. Im-
portantly, the MOEMPA algorithm proposed in this study outperforms the other three
algorithms in terms of performance. This advantage stems from the top predator selec-
tion strategy integrated into MOEMPA, which enhances convergence speed and solution
distribution quality, making the algorithm more effective in pinpointing optimal solutions.

Furthermore, Figure 11b displays the variation curves of average node movement
distance for the four algorithms during the optimization process. The results indicate that
throughout the entire iteration process, the MOEMPA algorithm consistently achieves the
best optimization in both network coverage rate and average node movement distance,
thereby validating the superiority of this algorithm across multiple aspects.
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Figure 11. Comparison of optimization results of various multi-objective algorithms. (a) Comparison
of coverage and iteration number, (b) node distance–iteration number comparison chart.

6. Conclusions

This study proposes a dynamic network topology optimization method based on
a virtual backbone network for tactical edge networks, addressing issues of network
vulnerability and low communication efficiency due to frequent node mobility during
operational phases. The method is divided into two stages: topology reconstruction and
topology maintenance. During the reconstruction stage, backbone nodes are selected using
CDS algorithms to establish a virtual backbone network within the designated monitoring
area. Subsequently, a multi-objective enhanced marine predator algorithm iteratively
optimizes the positions of non-backbone nodes. The optimization aims to maximize
current network coverage and minimize the average distance from non-backbone nodes
to backbone nodes, while adhering to current network connectivity constraints. In the
maintenance stage, a multi-CDS scheduling algorithm updates the backbone network
topology based on the principle of maximum similarity. Further optimization involves
fine-tuning the positions of non-backbone nodes using a multi-objective enhanced marine
predator algorithm, focusing on optimizing current network coverage and node movement
distances under connectivity constraints. Experimental results validate the effectiveness
of the proposed method in addressing both large-scale and small-scale network failure
scenarios. The approach enables rapid interconnection, enhances network coverage, and
constructs an optimal network topology.
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