
Citation: Lin, P.; Li, C.; Chen, S.;

Huangfu, J.; Yuan, W. Intelligent

Gesture Recognition Based on Screen

Reflectance Multi-Band Spectral

Features. Sensors 2024, 24, 5519.

https://doi.org/10.3390/s24175519

Academic Editor: Eui Chul Lee

Received: 12 July 2024

Revised: 22 August 2024

Accepted: 24 August 2024

Published: 26 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Intelligent Gesture Recognition Based on Screen Reflectance
Multi-Band Spectral Features
Peiying Lin 1,* , Chenrui Li 2, Sijie Chen 2, Jiangtao Huangfu 2 and Wei Yuan 1

1 School of Electrical and Information Engineering, Jiangsu University of Science and Technology,
Zhangjiagang 215600, China; yuanwei@just.edu.cn

2 Laboratory of Applied Research on Electromagnetics, Zhejiang University, Hangzhou 310027, China;
3210103050@zju.edu.cn (C.L.); 22331025@zju.edu.cn (S.C.); huangfujt@zju.edu.cn (J.H.)

* Correspondence: linpeiying@just.edu.cn

Abstract: Human–computer interaction (HCI) with screens through gestures is a pivotal method
amidst the digitalization trend. In this work, a gesture recognition method is proposed that combines
multi-band spectral features with spatial characteristics of screen-reflected light. Based on the method,
a red-green-blue (RGB) three-channel spectral gesture recognition system has been developed, com-
posed of a display screen integrated with narrowband spectral receivers as the hardware setup.
During system operation, emitted light from the screen is reflected by gestures and received by
the narrowband spectral receivers. These receivers at various locations are tasked with capturing
multiple narrowband spectra and converting them into light-intensity series. The availability of
multi-narrowband spectral data integrates multidimensional features from frequency and spatial
domains, enhancing classification capabilities. Based on the RGB three-channel spectral features,
this work formulates an RGB multi-channel convolutional neural network long short-term memory
(CNN-LSTM) gesture recognition model. It achieves accuracies of 99.93% in darkness and 99.89% in
illuminated conditions. This indicates the system’s capability for stable operation across different
lighting conditions and accurate interaction. The intelligent gesture recognition method can be widely
applied for interactive purposes on various screens such as computers and mobile phones, facilitating
more convenient and precise HCI.

Keywords: multi-band spectra; human–computer interaction; gesture recognition

1. Introduction

In contemporary society, digitization has emerged as a crucial trend, fundamentally
transforming social dynamics. The widespread development of digital technologies and the
growing presence of smart devices are seamlessly integrating into our daily lives [1]. This
transformation is facilitated by HCI, which is a discipline focused on designing, evaluating,
and implementing interactive computing systems for human use as well as studying the
fundamental phenomena [2]. Due to its close collaboration and interaction with users,
HCI has become a core area for enhancing the usability of digital devices [3]. Central to
visualizing information in this interaction is the display device, which plays a crucial role
in data communication and allows for intuitive user interactions [4].

Traditional methods of interaction with display devices rely on desktop setups equipped
with keyboards and mice [5]. With technological advancements, more flexible and conve-
nient methods have been adopted. Touch interaction is widely embraced due to its direct
method of intuitive control and data transmission [6], enabling the transfer of complex
information such as multi-touch [7,8] or multi-user collaboration [9]. Compared with tactile
modes, voice interaction eliminates the need for direct physical contact. For instance, in
driving scenarios, non-contact voice interaction proves more user-friendly [10], thereby
enhancing user satisfaction [11]. However, voice input prolongs interaction response
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time [12] and is constrained in environments with background noise [13]. Computer vision
enables diverse interactions involving facial [14] and bodily gestures [15], but its accuracy
depends on the resolution and frame rate of the camera [16]. According to the World Health
Organization (2024), over 466 million people worldwide suffer from severe hearing loss.
Gesture-based interaction offers a promising solution for enhancing communication for
these individuals [17]. Technologies such as computer vision [18–20], audio [21], and radar
detection [22,23] enable gesture-based screen interactions. Feature extraction combined
with detection [18–34] is commonly used in gesture recognition. These features include
frequency [21], motion [23], skin color [26], skeletal structure [27], and shape [28], as well as
spatio-temporal features [29–31] derived from deep networks. Additionally, depth informa-
tion [32,33] and optical flow [34] are frequently utilized to supplement image data, although
this demands more advanced equipment. By combining various features and employing
multi-stream techniques, it is possible to achieve more effective feature fusion [35].

The method of light-signal-based interaction offers an alternative non-contact solution.
For instance, in medical applications [36], touch-based interaction screens increase the risk
of surgical infections. Furthermore, visual and voice interactions require the collection of
biological information, which compromises privacy and security. Therefore, infrared laser
positioning can be employed as an alternative. Infrared spectra can also be specifically
applied in human signal measurement [37]. In addition to infrared technology, industry
and the research community have developed numerous visible-light positioning (VLP)
systems [38] and visible-light sensing (VLS) systems [39], which require commonly used
light emitting diodes (LED) as lighting sources and light sensors to form the systems [40].
Similarly, utilizing visible light for screen sensing involves using ambient light sensors to
capture light intensity information from external light sources at various angles relative to
the screen [41]. Combining light sensing with gesture interaction provides a convenient
and secure method for non-contact interaction [42,43].

This study introduces a gesture recognition approach that combines multi-band spec-
tral features with the spatial characteristics of screen-reflected light. In this approach,
display screens are used as light sources for illumination, and various gestures produce
unique patterns of reflected spectra in front of the screen. Concurrently, multiple nar-
rowband spectral receivers capture data across multi-band spectra. This combination of
spectral data is fused with spatial information, enabling the formation of comprehensive
multidimensional features essential for accurate gesture recognition. One of the key ad-
vantages of this screen interactive system is its independence from the additional light
sources, radar systems, or camera devices commonly used for similar purposes. Moreover,
the implementation of cost-effective narrowband spectral receivers enhances affordabil-
ity without compromising performance. Additionally, this approach addresses privacy
concerns by minimizing the collection of biometric information, ensuring a secure and
user-friendly interaction environment.

The remainder of the paper is structured as follows: Section 2 introduces a gesture
recognition method based on multi-band spectral features, implementing an RGB three-
channel narrowband spectral gesture recognition system. Section 3 outlines the data
collection process. Section 4 details the RGB multi-channel CNN-LSTM gesture recognition
model. Then, the experimental results are presented and discussed in Section 5. Finally,
Section 6 serves as the conclusion of this paper.

2. Principles and System
2.1. Principles

A gesture recognition method based on multi-band spectral features is proposed in this
work, which combines the spectral and spatial characteristics of screen light reflected from
gestures. The specific process is illustrated in Figure 1. The intelligent gesture recognition
system according to this method mainly consists of a light-emitting display screen and
a plurality of narrowband spectral receivers. The system works by orienting the target
gesture toward the screen, in which the screen serves the purpose of providing illumination
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on the gesture while displaying normally. The light information reflected by the gesture
is captured by multiple narrowband spectral receivers mounted on the screen. These
receivers are installed at different positions on the plane where the screen is located, and
the reflected light from the gestures generates different spectral distributions in various
spatial locations. Furthermore, these receivers capture narrowband spectra from different
bands and convert them into photonic signals to obtain light-intensity measurements.
As a result, spectral data containing various bands from different coordinates can be
received, which provides the possibility to train different characteristics in frequency
and spatial domains. Based on the measurements from multiple receivers and combined
with classification algorithms, different gestures can be effectively classified, significantly
improving classification efficiency and recognition accuracy.
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Figure 1. Flowchart of the gesture recognition method based on multi-band spectral features.

2.2. System

According to the method, an RGB three-channel narrowband spectral gesture recog-
nition system is realized as shown in Figure 2a, with three narrowband spectral receivers
installed at different coordinates of the screen plane. The light emitted from the screen is re-
flected by the gestures and then captured by receivers positioned at three coordinates on the
screen: bottom-right, bottom-left, and top-center. These receivers record narrowband spec-
tral data corresponding to the red, green, and blue channels, as in Figure 2b. Consequently,
the three-channel data incorporate both spectral and spatial information features.
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screen light reflected by gestures reaches the narrowband spectral receivers positioned at 
different spatial locations. After passing through the filter film, only light of specific wave-
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screen control terminal. The intensity information is visualized in real time on the screen. 

Figure 2. (a) RGB three-channel narrowband spectral gesture recognition system; (b) filtered RGB
three-channel narrowband spectra from the system.

The system configuration is set up as in Figure 3a, with a screen size of 17.2 inches.
The narrowband spectral receiver consists of a light sensor and a filter film. The light
sensor chip is OPT4001, with a measurement range of 1–918 lux and an accuracy of up to
112 millilux. The data sampling rate is set at 100 Hz in the experiments. The filter film is
placed in front of the light sensor to selectively receive specific wavelength light. Figure 4
illustrates the spectral filtering effect of the filter films measured by the spectrometer on
the screen light, with Figure 4a depicting the measured spectrum when the screen emits
white light. Figure 4b–d depict the corresponding RGB narrowband spectra after passing
through the filter films. The RGB spectral wavelengths received through the filter films
are 590–680 nm, 500–590 nm, and 425–500 nm, respectively. The filter effectively filters
out spectra outside the narrow band without affecting the shape and characteristics of the
target narrowband spectra, while also reducing the intensity of the entire spectrum. The
use of light-intensity sensors as spectral receivers not only enhances the sensitivity of light
detection but also provides convenience and cost reduction compared with spectrometers.
The spectral receiver outputs a time series of integrated light intensity corresponding to
each narrowband spectrum.
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Figure 3. (a) The photograph of the system configuration; (b) the data fluctuations of the light
intensity reflecting hand gesture variation.

During system operation, the display screen emits light normally. When a person’s
hand is placed within a distance range of 10–70 cm directly in front of the screen, the
screen light reflected by gestures reaches the narrowband spectral receivers positioned
at different spatial locations. After passing through the filter film, only light of specific
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wavelengths is allowed to be received by the light-intensity sensor. The receiver converts
narrowband spectral information into light-intensity time series, which are transmitted
to the screen control terminal. The intensity information is visualized in real time on the
screen. Variations in gestures cause changes in the reflected light intensity, which can be
observed as corresponding data fluctuations on the screen in Figure 3b, reflecting changes
in hand movements.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 18 
 

 

Variations in gestures cause changes in the reflected light intensity, which can be observed 
as corresponding data fluctuations on the screen in Figure 3b, reflecting changes in hand 
movements. 

 
Figure 4. Spectral filtering effects of the filter films on display light measured by the spectrometer: 
(a) The spectrum measured by the spectrometer when the screen emits white light; (b) the spectrum 
through the red channel narrowband filter; (c) the spectrum through the green channel narrowband 
filter; (d) the spectrum through the blue channel narrowband filter. 

3. Data Collection 
Section 2 of the system is designed for implementing gesture-based HCI, applied in 

eight gestures as depicted in Figure 5, each annotated with a distinct color. The term 
“Background” refers to the scenario where no gesture is present in front of the screen, 
serving as a baseline control. The process of data collection is conducted through the RGB 
three-channel spectral receivers of the system setup, with the datasets structured into two 
main groups, labeled Dataset 1 and Dataset 2. 

In Dataset 1, data collection involved performing eight gestures directly facing the 
screen in darkness, with the screen display being the only light source. Under identical 
display conditions, Figure 6 illustrates the light intensity data from RGB three-channel 
spectral receivers for the eight gestures and control group. In this dataset, variations in 
light intensity stem from changes in the distribution of screen-reflected light caused by 
the gestures. The lowest light intensity occurs when no gesture is present, which aligns 
with the operational principle of the system. Moreover, Figure 6 presents notable differ-
ences in data distribution across different channels receiving the same display content, 
indicating varying impacts of gestures on the light-intensity information received by each 

Figure 4. Spectral filtering effects of the filter films on display light measured by the spectrometer:
(a) The spectrum measured by the spectrometer when the screen emits white light; (b) the spectrum
through the red channel narrowband filter; (c) the spectrum through the green channel narrowband
filter; (d) the spectrum through the blue channel narrowband filter.

3. Data Collection

Section 2 of the system is designed for implementing gesture-based HCI, applied
in eight gestures as depicted in Figure 5, each annotated with a distinct color. The term
“Background” refers to the scenario where no gesture is present in front of the screen,
serving as a baseline control. The process of data collection is conducted through the RGB
three-channel spectral receivers of the system setup, with the datasets structured into two
main groups, labeled Dataset 1 and Dataset 2.

In Dataset 1, data collection involved performing eight gestures directly facing the
screen in darkness, with the screen display being the only light source. Under identical
display conditions, Figure 6 illustrates the light intensity data from RGB three-channel
spectral receivers for the eight gestures and control group. In this dataset, variations in
light intensity stem from changes in the distribution of screen-reflected light caused by the
gestures. The lowest light intensity occurs when no gesture is present, which aligns with
the operational principle of the system. Moreover, Figure 6 presents notable differences in
data distribution across different channels receiving the same display content, indicating
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varying impacts of gestures on the light-intensity information received by each channel.
These differences arise from spatial information and spectral wavelength variations across
the channels. The multi-channel data constitute multidimensional time-series features,
essential for accurate gesture recognition.
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Figure 6. The light intensity data from RGB three-channel spectral receivers under dark conditions for
the eight gestures and control group: (a) data from the red channel; (b) data from the green channel;
(c) data from the blue channel.

In Dataset 2, data corresponding to eight gestures were collected under ambient
light conditions. The purpose of this group of data collection is to test the influence of
ambient light on gesture recognition accuracy. The ambient light source is a commonly
used PWM modulated ceiling lamp, with an average light intensity of 65 lux measured
by narrowband spectral receivers. The light-intensity data for the eight gestures collected
from the RGB three channels, as well as the control group, are shown in Figure 7. Variations
in different gestures not only affect changes in screen-reflected light but also influence
the reception of ambient light by the narrowband spectral receivers. Consequently, the
changes in light intensity captured by the narrowband spectral receivers integrate the
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effects of both factors. The impact of gestures on ambient light comprises reflections and
obstruction of light caused by the gestures, with the proportion depending on spatial
positioning and spectral wavelength. For instance, in the green channel, the light intensity
data for the control group without gestures are lowest, indicating a significant effect of
gestures on the reflection of green light. Conversely, in the red channel, the data show
the opposite trend, with the light intensity for the control group without gestures being
highest, indicating a greater impact of gestures on obstructing red light. The blue channel
data exhibit a more balanced effect from both factors, resulting in less discernible features
visually. Therefore, in Dataset 2 as shown in Figure 7, the complex lighting conditions lead
to more pronounced differences in the distribution of data across different channels. Such
complex illumination environments necessitate the integration of spatial information and
multi-band narrowband spectra to capture multidimensional features effectively, thereby
enhancing gesture recognition accuracy.
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Figure 7. The light intensity data from RGB three-channel spectral receivers under ambient light
conditions for the eight gestures and control group: (a) data from the red channel; (b) data from the
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During the data collection process for both datasets, each gesture sample was captured
for 1 s, with each sample containing 100 samplings. The gesture data were sourced from
10 volunteers, comprising 5 men and 5 women. Variations in their hand sizes and skin tones
resulted in different effects on the reflected spectrum. During collection, each volunteer’s
hand was positioned 30 cm from the screen, with each gesture from each individual being
sampled 92 times, corresponding to 92 different images with various color tones displayed
on the screen. Each dataset consisted of 920 samples per gesture, totaling 920 × 8 data
points, as shown in Table 1. A randomly selected quarter of the dataset was designated as
the test set.

Table 1. Description of the datasets.

Dataset Light Source Volunteers Number of Gestures Samples

1 Screen 10 8 920 × 8
2 Screen + ambient light 10 8 920 × 8
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Normalization was applied to the collected data before analysis. This process trans-
formed the time series of each sample into a one-dimensional matrix, ensuring values
ranged between −1 and 1. The normalization formula is as follows:

x = −1 +
x − xmin

xmax − xmin
× 2 (1)

4. RGB Multi-Channel CNN-LSTM Gesture Recognition Model

This section presents a gesture recognition model that integrates RGB multi-channel 1-
dimensional convolutional neural network (1D-CNN) and LSTM architectures. The model
processes RGB three-channel light intensity time series as the input and generates gesture
classification predictions as the output, as depicted in Figure 8. Initially, RGB multi-channel
1D-CNN is employed to extract multidimensional features from the input time-series data.
Subsequently, these feature sequences are fed into LSTM for gesture classification. This
hybrid approach effectively harnesses the feature extraction capabilities of 1D-CNN and
the sequence modeling capabilities of LSTM. It synergizes with the multi-channel spectral
information acquisition capability of the system hardware in this work, enabling accurate
gesture-based HCI.
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4.1. RGB Three-Channel 1D-CNN Feature Extractor

CNN can serve as a feature extractor [44], specifically, employing 1D-CNN for the anal-
ysis of time-series data from sensors. Accordingly, two layers of 1-dimensional convolution
(Conv1D) are employed to extract multidimensional features from RGB three-channel data.
Figure 9 illustrates the process of extracting time-series features. Each sample input to the
gesture recognition model consists of 100 data points sampled over 1 s. Filters convolve
with the time series to extract features. Each Conv1D layer incorporates 16 filters with a
window size of 5, sliding down the data with a default stride of 1. The input data comprise
RGB three channels, forming a 100 × 3 matrix that corresponds to the three channels in
the Conv1D layers. Each channel shares the same structure but employs different filter
combinations based on the data characteristics, thus enhancing the representation of the
input time-series features. Finally, following a 1-dimensional max pooling (MaxPooling1D)
layer with a size of 2, the features are merged across multiple channels as shown in Figure 8,
resulting in each sample being represented as a multidimensional feature sequence of size
46 × 48 matrix.
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4.2. LSTM Network

LSTM networks [45], a specialized category of recurrent neural networks (RNNs),
are proficient in identifying and forecasting both short-term and long-term dependencies
within time-series data [46]. Information is transmitted among different cells of the hidden
layer through several controllable gates [47], as depicted in Figure 10. The symbol c
represents the memory cell state. The network contains input gate it, output gate ot, and
forget gate ft. The input gate it determines the contributions of the input data at time step
t for updating the memory cell, while the forget gate ft determines how much of the last
moment’s cell ct−1 is retained for the current state ct. The output gate ot controls how
much information is output for cell status. Finally,

∼
c t represents the next state. The LSTM

network updates its information through the following Equations (2)–(9):

it = σi(Wi·[ht−1, x t]+bi) (2)

ot = σo(Wo·[ht−1, x t]+bo) (3)

ft = σf

(
W f ·[ht−1, x t

]
+b f

)
(4)
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∼
c t = tanh(Wc·[ht−1, x t]+bc) (5)

ct = ft ⊙ ct−1 + it ⊙
∼
c t (6)

ht = ot ⊙ tanh(ct) (7)

sigmoid(x) =
1

1 + e−x (8)

tanh(x) =
ex − e−x

ex + e−x (9)

where Wi, Wo, W f , and Wc represent the input weights; bi, bo, b f , and bc represent the
bias weights; ⊙ denotes element-wise product; σ represents the sigmoid function as
Equation (8), and the hyperbolic tangent function is illustrated in Equation (9); and ht
represents the output. The classifier consists of two layers of LSTM, one dropout layer and
one fully connected (FC) layer, and finally, uses softmax activation to output gesture labels.
Training is conducted using the Adam optimizer with a learning rate of 0.001, a batch size
of 27, and 128 nodes in the hidden layers. The model was developed and trained on the
Anaconda3 platform, utilizing an NVIDIA GeForce RTX 3070 GPU.
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4.3. Evaluation

In this work, macro averaging [48] is employed to evaluate the performance metrics of
the multi-class classification model, including accuracy, precision, recall, and F-score [49].
These metrics are expressed by the following Formulas (10)–(13), where TP = true positives,
FP = false positives, FN = false negatives, and TN = true negatives. Accuracy is the most
used empirical measure, which is the ratio of the number of correct predictions to the total
number of predictions.

Accuracy =
TP + TN

TP + FP + FN + TN
(10)

Precision is the ratio of the correct positive predictions to the total number of predic-
tions as positives.

Precision =
TP

TP + FP
(11)

Recall is the ratio of the correct positive predictions to the total number of positive
instances, also known as sensitivity.

Recall =
TP

TP + FN
= Sensitivity (12)
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F-score is the harmonic mean of the precision and recall, evenly balanced when β = 1.
Higher values of the F-score indicate a better balance between precision and recall.

F-score =

(
β2 + 1

)
∗ Precision × Recall

β2 ∗ Precision + Recall
(13)

5. Experimental Results and Discussion

The experiments on gesture recognition are divided into two steps, labeled as Exper-
iment I and Experiment II, applied separately to Dataset 1 and Dataset 2. Each dataset
comprises 5520 samples for training and 1840 samples for testing. Experiment I eval-
uates the performance of the gesture recognition system under dark conditions using
only screen-reflected spectra. Experiment II assesses the performance in the presence
of ambient light sources, considering the combined effects of screen-reflected light and
external illumination.

5.1. Experimental I Results

Figure 11 presents the confusion matrix results for Experiment I evaluated on Dataset
1. Figure 11a depicts the confusion matrix for RGB three-channel gesture classification,
indicating an accuracy of 99.93%, with accuracies exceeding 99% for all eight gestures.
Detailed performance metrics are listed in Table 2, where the precision, recall, and F1-score
of this classification model all achieve 99.73%. To demonstrate the efficacy of multi-band
spectral features in enhancing gesture recognition, the classification results of Dataset 1
are compared between the RGB three-channel and single-channel. The single-channel
classification employs data from either the red, green, or blue channel, based on the single-
channel CNN-LSTM gesture recognition model. Figure 11b–d show the confusion matrices
for the red, green, and blue channels, respectively, with accuracies of 96.45%, 95.82%,
and 98.07%. Results from Table 2 indicate inferior metrics for precision, recall, and F1-
score in the single-channel classification, highlighting the superior performance of the
multi-channel classification model across all metrics compared with the single-channel
classification models.

For a clearer comparison, Figure 12 displays the recall results for each class across the
different classification models. Recall assesses the classifier’s ability to correctly identify all
positive instances [49]. Analysis of the curves in Figure 12 reveals varying effectiveness of
different channels in recognizing each gesture. For example, the classification model trained
on the red channel performs poorly for gesture G due to similarities in light intensity with
gesture B, as observed in the sampling data of Figure 6, resulting in misclassification of G.
Similarly, the green channel shows inadequate recognition of gesture B. In the blue channel,
gestures C and D exhibit frequent confusion while demonstrating robust performance for
other gestures. The disparate recognition performances across single channels highlight
distinct spectral characteristics. Screen-reflected light for the same gesture exhibits spectral
variation across different coordinates and is captured by diverse narrowband receivers,
further differentiating the data from each channel. Additionally, features of the single
channels are limited, leading to notably poorer recognition of specific gestures. In contrast,
the multi-channel classification model mitigates these challenges by combining RGB three-
channel spectral data from different spatial coordinates, thereby improving the accuracy
of gesture recognition. In conclusion, the integration of multi-band spectral features with
spatial information markedly enhances the accuracy of gesture recognition.
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Table 2. Evaluation metrics of the classification models in experiments.

Experiment Channel Accuracy Precision Recall F1-Score

I

RGB three-
channel 99.93% 99.73% 99.73% 99.73%

Red channel 96.45% 89.66% 85.82% 83.59%
Green

channel 95.82% 88.94% 83.26% 81.43%

Blue channel 98.07% 93.15% 92.28% 91.98%

II

RGB three-
channel 99.89% 99.57% 99.57% 99.57%

Red channel 94.16% 78.53% 76.63% 74.42%
Green

channel 96.56% 85.94% 86.25% 85.32%

Blue channel 89.29% 63.62% 57.17% 54.45%



Sensors 2024, 24, 5519 13 of 18

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

performance for other gestures. The disparate recognition performances across single 
channels highlight distinct spectral characteristics. Screen-reflected light for the same ges-
ture exhibits spectral variation across different coordinates and is captured by diverse nar-
rowband receivers, further differentiating the data from each channel. Additionally, fea-
tures of the single channels are limited, leading to notably poorer recognition of specific 
gestures. In contrast, the multi-channel classification model mitigates these challenges by 
combining RGB three-channel spectral data from different spatial coordinates, thereby 
improving the accuracy of gesture recognition. In conclusion, the integration of multi-
band spectral features with spatial information markedly enhances the accuracy of ges-
ture recognition. 

 
Figure 12. The recall results for each class across different classification models in Experiment I. 

5.2. Experimental II Results 
Figure 13 illustrates the confusion matrix results of Experiment II evaluated on Da-

taset 2. Metrics for all classification models are listed in Table 2. The confusion matrix for 
the RGB three-channel classification model is shown in Figure 13a. Despite the more com-
plex composition of light sources in Experiment II, the classification results remain highly 
accurate, with an accuracy of 99.89%. The model achieves precision, recall, and F1-score 
metrics of 99.57%, indicating that the proposed gesture recognition method and system 
can operate effectively even in the presence of external light sources. 

  

Figure 12. The recall results for each class across different classification models in Experiment I.

5.2. Experimental II Results

Figure 13 illustrates the confusion matrix results of Experiment II evaluated on Dataset
2. Metrics for all classification models are listed in Table 2. The confusion matrix for
the RGB three-channel classification model is shown in Figure 13a. Despite the more
complex composition of light sources in Experiment II, the classification results remain
highly accurate, with an accuracy of 99.89%. The model achieves precision, recall, and
F1-score metrics of 99.57%, indicating that the proposed gesture recognition method and
system can operate effectively even in the presence of external light sources.

Additionally, this step of the experiment also evaluates the classification of single-
channel data. Figure 13b–d depict the confusion matrices for the red, green, and blue
channels, respectively, with accuracies of 94.16%, 96.56%, and 89.29%. Results from Table 2
demonstrate lower performance metrics for the single-channel classification, underscoring
a substantial disparity when compared with the multi-channel classification model. Recall
results for each class are compared in Figure 14, revealing that the red channel model
performs poorly in recognizing gesture E, the green channel struggles with gesture C, and
the overall classification performance in the blue channel is inadequate. Based on the
analysis of light intensity data in Figure 7, in the presence of ambient light, narrowband
spectral receivers integrate light information affected by gesture interaction with both screen
light and ambient light. Different spatial positions and spectral wavelengths influence
single-channel performance differently: the green channel is mainly influenced by reflected
light, the red channel by shadows of ambient light caused by gestures, and the blue
channel by varying light intensity due to both reflected light and shadows from gestures.
Consequently, the characteristics captured by the blue channel are not sufficiently distinct,
resulting in poor classification performance. In such complex lighting environments, the
integration of multi-band spectral data from multiple spatial positions becomes crucial.
Even in cases where individual single-channel classifications perform poorly, such as
gesture C, with recall values of 87.39%, 26.52%, and 24.35% in the red, green, and blue
channels, respectively, the combination of spatial and spectral features with a multi-channel
gesture recognition model effectively raises the recall of gesture C to 99.13%. This synergistic
effect demonstrates how the combined utilization of multiple channels yields superior
performance compared with each channel individually.
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5.3. Discussion

Based on the results above, we summarize the experimental results and discuss future
directions for improvements.

The experiments validated the proposed gesture recognition method that integrates
multi-band spectral data with spatial information. Experiment I, conducted in darkness,
demonstrated high accuracy of 99.93% using only screen-reflected spectra for gesture
recognition. In Experiment II, which introduced ambient light sources in complex lighting
environments, single-channel recognition performed poorly. In contrast, the proposed
multi-band spectral gesture recognition model maintained effective performance, signifi-
cantly enhancing recognition accuracy to 99.89% compared with the single-channel models.
The system is well-suited for indoor applications.

We compared the experimental results with other recent non-contact screen interaction
systems that employ gesture recognition, as listed in Table 3. In similar research, computer
vision [19,20] is commonly used, with performance dependent on image quality and camera
specifications. Passive sound sensing [21] is another convenient gesture interaction method
but, like computer vision, it faces privacy and security concerns. Cheng et al. [23] developed
a radar-based system with high recognition accuracy, though it incurs significant equipment
costs. In the design by researchers Liao et al. [42], a single light sensor was installed on the
screen, necessitating coordination with the display content and leaving room for further
system improvements. Our proposed system offers advantages, including lower cost and
easier portability of the narrowband spectral receivers. It addresses privacy and security
concerns while achieving a relatively high level of recognition accuracy. However, the
limitation lies in the restricted range of recognizable gestures and scenarios. We propose
the following directions for improvements.

Table 3. Comparison with other recent non-contact screen interaction systems based on
gesture recognition.

System Equipment Accuracy Number of
Gestures Algorithm

Zahra et al. [19] Camera 93.35% 6 Skin detection and genetic algorithm

Benitez-Garcia et al. [20] Camera 85.10% 13 Temporal segment networks (TSN),
temporal shift modules (TSM)

Luo et al. [21] Microphone 93.20% 7 Feature extraction and support vector
machine (SVM)

Cheng et al. [23] Millimeter wave radar and
a thermal imager 100.00% 5 Feature extraction and gated recurrent

unit (GRU)

Liao et al. [42] Ambient light sensor 96.10% 9 Feature extraction and k-nearest
neighbors (KNN)

This work Narrowband spectral
receivers 99.93% 8 RGB multi-channel CNN-LSTM

(1) The gesture categories and spectral ranges in this work are limited. In future research,
expanding the range of gesture classifications could enable more complex human–
machine interactions, potentially incorporating dynamic movements. For example,
integrating with a sign language database would greatly enhance the system’s practi-
cality for individuals with hearing and speech impairments. To achieve this, detailed
plans for data collection and window segmentation will be essential. Additionally,
this work focused solely on collecting spectral data within the visible light range.
Future extensions could involve expanding to wider spectral ranges to fully leverage
the data characteristics across different spectra.

(2) This work established an RGB three-channel narrowband spectral gesture recognition
system. Future efforts will focus on optimizing the reception system to advance the
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accuracy and applicability of the proposed method in diverse real-world scenarios.
To enhance accuracy in complex interactions, deploying more narrowband receivers
at multiple locations to establish a reception matrix would prove beneficial.

6. Conclusions

The intelligent gesture recognition method proposed in this paper leverages multi-
band spectral features that integrate frequency domain and spatial domain information
to enhance accuracy. Based on this method, an RGB three-channel narrowband spectral
gesture recognition system is developed, incorporating a screen and multiple narrowband
spectral receivers as essential hardware components. Integrated with the RGB multi-
channel CNN-LSTM classification model, the system accurately recognizes eight types of
gestures and enables interaction with display screens. It processes multi-channel time series
data from narrowband spectral receivers, achieving accuracies of 99.93% in dark conditions
and 99.89% in illuminated conditions. The collaborative effect of the multi-channel features
enhances performance, significantly improving recognition accuracy compared with single-
channel models. This gesture recognition method offers straightforward implementation,
ensuring privacy and security and facilitating its widespread application in various screen-
based human–machine interactions.
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