
Citation: Zhang, B.; Li, J.; Tang, H.;

Liu, X. Smart Ship Draft Reading by

Dual-Flow Deep Learning

Architecture and Multispectral

Information. Sensors 2024, 24, 5580.

https://doi.org/10.3390/s24175580

Academic Editor: Eui Chul Lee

Received: 26 June 2024

Revised: 14 August 2024

Accepted: 26 August 2024

Published: 28 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Smart Ship Draft Reading by Dual-Flow Deep Learning
Architecture and Multispectral Information
Bo Zhang 1, Jiangyun Li 2,3,*, Haicheng Tang 2,3 and Xi Liu 2,3

1 China Coal Research Institute Corporation, Beijing 100013, China; zb_ccric@163.com
2 School of Automation and Electrical Engineering, University of Science and Technology Beijing,

Beijing 100083, China; thc576495032@163.com (H.T.); m202210556@xs.ustb.edu.cn (X.L.)
3 Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education,

Beijing 100083, China
* Correspondence: leejy@ustb.edu.cn

Abstract: In maritime transportation, a ship’s draft survey serves as a primary method for weighing
bulk cargo. The accuracy of the ship’s draft reading determines the fairness of bulk cargo transactions.
Human visual-based draft reading methods face issues such as safety concerns, high labor costs,
and subjective interpretation. Therefore, some image processing methods are utilized to achieve
automatic draft reading. However, due to the limitations in the spectral characteristics of RGB images,
existing image processing methods are susceptible to water surface environmental interference, such
as reflections. To solve this issue, we obtained and annotated 524 multispectral images of a ship’s draft
as the research dataset, marking the first application of integrating NIR information and RGB images
for automatic draft reading tasks. Additionally, a dual-branch backbone named BIF is proposed to
extract and combine spectral information from RGB and NIR images. The backbone network can be
combined with the existing segmentation head and detection head to perform waterline segmentation
and draft detection. By replacing the original ResNet-50 backbone of YOLOv8, we reached a mAP
of 99.2% in the draft detection task. Similarly, combining UPerNet with our dual-branch backbone,
the mIoU of the waterline segmentation task was improved from 98.9% to 99.3%. The inaccuracy
of the draft reading is less than ±0.01 m, confirming the efficacy of our method for automatic draft
reading tasks.

Keywords: ship draft reading; dual-flow architecture; multispectral image; computer vision

1. Introduction

In the era of globalization, international trade is on the rise, with maritime trans-
portation emerging as a primary means for the import and export of goods. For instance,
the global trade volume of dry bulk shipping reached 5.508 billion metric tons in 2023.
To weigh low-value or difficult-to-weigh solid bulk cargo, a ship’s draft reading is a con-
venient and popular method that is based on Archimedes’ principle. It generally requires
precise reading due to its direct impact on economic benefits. As an example, a 1 cm error
by manually observing the draft line of a 50,000-ton bulk carrier can result in an 80-ton error,
valued at USD 40,000 at USD 500/ton. Thus, improving the accuracy of ship draft reading
is crucial for minimizing delivery errors in cargo transportation, hence safeguarding the
interests of both buyers and sellers [1–3].

Traditionally, ship draft is mainly measured by manual observation [4]. It typically
involves the utilization of yachts, stanchions, and ladders to observe the ship’s six draft
marks, aiming to achieve an observation angle as parallel to the water surface as possible [5].
While manual visual observations can yield high precision under static water conditions,
they are susceptible to various factors such as parallax errors, limited visibility of draft
marks, and diverse weather conditions. These factors often result in significant discrepan-
cies between the actual ship draft and the observed draft [6]. To mitigate the challenges
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associated with manual observation, sensor-based automated draft reading approaches
have been proposed [7–9]. By utilizing customized sensors to collect pressure and distance
data of the ship, they could measure a ship’s draft in an indirect manner. However, these
sensors may also be affected by ambient noise from the marine environment and inherent
sensor noise. Moreover, sensor-based methods often entail high costs and challenging
installations, making them inapplicable to practical implementation.

On the other hand, image processing methods using advanced technologies offer a new
direction for ship draft reading. They enable direct observation of the ship’s draft [10,11] and
are more suitable for practical applications due to their low cost, simple operation, and strong
reproducibility. Early research in this field employed machine vision techniques to determine
the values of draft marks intersecting with the waterline [12]. Typically, the acquired images
are initially cropped to attain the target area while eliminating environmental interference.
Subsequently, traditional image processing methods are applied to extract features from
the cropped draft image, thus identifying the waterline’s position. Finally, postprocessing
techniques such as character recognition and draft calibration are employed to determine the
intersection position of the waterline and the draft marks, facilitating further measurements
of a vessel’s draft. For image processing methods, Tsujii et al. [13] detected draft marks
with morphological operations and located the position of the waterline with Canny edge
detection. Ran et al. [14] adopt the Canny edge detection algorithm to extract the waterline
containing the contours from the image, then utilize the Hough transform to detect the
waterline. However, these image processing methods pose challenges in adapting to diverse
and complex scenarios, often requiring postprocessing efforts tailored for different situations.
In addition, their reading accuracy often fails to meet practical application standards.

The emergence of deep learning (DL)-based image processing techniques has allevi-
ated the aforementioned challenges. By integrating DL algorithms with RGB ship draft
images, significant strides have been made in draft reading, presenting superior perfor-
mance in terms of accuracy and efficiency [15]. For instance, Wang et al. [16] use mask
R-CNN to segment the draft markers and water from the image, while UNet and ResNet
are adopted for waterline detection and character recognition respectively. This visual
information collectively contributes to precise draft readings. Li et al. [17] propose U2-NetP,
incorporating coordinate attention for semantic segmentation and achieving 96.47% accu-
racy for waterline segmentation. In addition, their method is combined with a lightweight
YOLO-v5n network architecture to detect the ship draft characters and reaches 98% of
mAP_0.5. Qu et al. [18] propose a multitask learning network named MTL-VDR for draft
recognition and waterline segmentation, enhancing both reading efficiency and accuracy.
Despite these advancements, the current DL-based algorithms coupled with RGB ship
draft image collection sensors still face challenges in real-world implementation. As shown
in Figure 1, the water surface reflections and character erosion problems would confuse
the model with additional or unclear characters, leading to an adverse influence on ship
draft reading performance. Besides, RGB sensors are easily affected by environmental and
illumination variations, complicating model training with diverse image inputs.

Multispectral images contain discriminating spectral information crucial for object recog-
nition, effectively supplementing the spectral data absent in RGB images [19]. Consequently,
in various domains, the integration of multispectral images with RGB data has been re-
searched to achieve a more comprehensive understanding of target objects. For instances,
Barrero et al. [20] combine the texture information from the RGB image with the reflectance
information given by a multispectral image to obtain fused RGB-MS images with better
weed identification features. Zhang et al. [21] propose a novel feature fusion approach that
exploits the complementary and consistent balance of multispectral features by adding a
dedicated module into the network architecture, iteratively fusing and refining each spectral
feature. Soroush et al. [22] integrate each RGB channel with the NIR channel based on visual
saliency mapping, demonstrating improved classification results with the fused NIR/RGB
data when applied to deep convolutional neural networks. Furthermore, some researchers
leverage the spectral reflectance characteristics of multispectral images in tasks such as water
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feature extraction and remote sensing segmentation, achieving promising outcomes [23–25].
The notable success of previous studies underscores the value of multispectral images (MSI)
as complements to RGB data in model input, enhancing the performance of DL-based image
recognition algorithms across diverse tasks. However, little research has been conducted
focusing on the application of MSI in ship draft reading tasks.

Figure 1. (a) Normal draft image without the issues of surface reflection or character erosion. The
reflection of the part selected by the red box in (b) is very obvious, which may confuse the reflection
during target detection and affect the accuracy of water segmentation. The characters in (c) have
serious corrosion, which affects the recognition accuracy of target detection. The characters in the red
box in (d) are submerged, but the water body is relatively clear, so they are still visible in the image
and are recognized by the algorithm.

Therefore, to effectively distinguish water surfaces and ship bodies while minimizing
the impact of optical environmental factors such as water surface reflections, we propose a
framework to integrate NIR and RGB information in draft reading tasks in this study. Firstly,
we establish a dual-branch draft reading backbone, namely Band Information Fusion (BIF),
to combine the strengths of both types of images. Specifically, it integrates features from
both RGB and NIR images by sending them into the two branches of model respectively.
Besides, to integrate multiple branches of information, we also design a cross-fusion
module (CFM) to unite the parallel MSI-RGB outputs of rich texture details and semantic
features. Then, the final fusion feature is obtained to be fed into the multitasking decoder
to output the mask of the water body and the character recognition results. Finally, we
utilize the Hough transform to fit the waterline and obtain the coordinates of the locations
of the waterline, which are combined with the character recognition results to calculate the
draft readings using the perspective correction formula. Our main contributions could be
summarized as follows:

• This paper innovatively combines NIR and RGB images for automatic draft reading,
leveraging their complementary spectral information to mitigate the impact of water
surface conditions in draft reading tasks.

• A dual-branch backbone BIF is introduced to extract pairs of information from RGB
and NIR images, serving multiple downstream tasks such as waterline segmentation
and character recognition.

• Compared with previous research, our method achieved the best results in both water-
line segmentation and draft detection tasks, with a mAP of 99.2% and mIoU of 99.3%,
respectively. Additionally, our draft reading error is less than 0.01m compared with
the ground truth, achieving the highest accuracy among all the evaluation methods.



Sensors 2024, 24, 5580 4 of 14

2. Materials and Methods
2.1. Materials

In this work, the GEOYOO MS400 series multispectral camera (GEOYOO, Changchun,
China) was selected as the imaging acquisition device for images (see Figure 2). This type
of camera is cost-effective and could synchronously acquire spectral images across multiple
wavelengths, including blue band (450 nm), green band (555 nm), red band (660 nm), red
edge band (720 nm), and NIR band (840 nm). The spectral information of the MS400
series multispectral camera is displayed in Table 1. The device suite is also equipped
with an automatic gray board capture function, facilitating the acquisition of more precise
reflectance data when the REF-JPG format is chosen for image storage, thereby guaranteeing
a higher level of image quality. The five band images captured by the multispectral camera
are illustrated in Figure 3.

Figure 2. MS400 series multi-spectral camera.

Red (660nm)Green (555nm)

NIR (840nm)

Blue (450nm)

Red Edge (720nm) RGB

Figure 3. Five band images (Red, Green, Blue, Red-Edge, NIR) and RGB image obtained by cameras.

Table 1. Spectral information of the multispectral camera.

Band No. Name Center Wavelength Bandwidth

1 Blue 450 nm 35 nm
2 Green 555 nm 25 nm
3 Red 660 nm 22.5 nm
4 Red Edge 720 nm 10 nm
5 NIR 840 nm 30 nm

The sensitivity of water reflectance varies among different spectral bands, resulting in
its color manifestation as deep black when using NIR band (840 nm) information. Mean-
while, metallic surfaces exhibit increased luminescence within the 500 nm to 1000 nm
spectral range, enhancing the contrast between vessels and the aquatic environment in cap-
tured images. As the wavelength increases, the reflectivity of water decreases, indicating
that the difference between water and other objects in multispectral images becomes more
discriminating. Consequently, we chose the highest wavelength (840 nm) supported by the
camera along with RGB information for dataset construction.
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Based on the above camera system, we composed a multispectral dataset for ship draft
reading. The construction of this dataset follows a systematic process as shown in Figure 4.
Firstly, we collected images from the Huanghua Port, which is operated by China Coal
Research Institute Corporation. Each captured image consists of both RGB data and NIR
information (at 840 nm wavelength). The resolutions of RGB images and NIR image are
3280 × 2464 and 1280 × 1080, respectively. For image details about the ships in our dataset,
the ship color schemes mainly consist of orange and black and orange and blue ships with
white characters, as well as white ships with black characters. Besides, all ship images in
our dataset adopt national standards for draft levels (such as 2, 4, 6, 8, xxM). It is notable
that with all the images captured in calm wind and wave environments, particular scenarios
(e.g., wave ripples and larger waves causing longitudinal and transverse deviation of the
ships) are not included in our dataset.

Data 

Annotation

Data 

Collection

Train/Test 

Partition

Alignment of 

RGB & NIR

Data 

Cleaning

Figure 4. The overall process of dataset construction.

To ensure data quality, we cleaned the images to eliminate any undesirable factors
such as tilt, occlusion, or blur that may have resulted from handheld shooting. Eventually,
we obtained a dataset comprising 524 images. Some examples of the processed images
are displayed in Figure 5. To ensure alignment with the annotation data across all bands
within the true RGB images, the NIR images are first rescaled as four-layer images to match
the resolution of RGB images. Subsequently, for dataset annotation, we employed the
LabelMe tool for mask annotation of aquatic areas in the RGB—NIR images and utilized
the MakeSense tool for detecting and annotating frames of ship draft characters in the RGB
images. Furthermore, to facilitate model training and validation, we randomly partitioned
the dataset into training and validation subsets following an 8:2 ratio.

Figure 5. Some examples from our dataset: (a): Original images of the ship. (b): NIR images (840 nm)
of the ship. (c): Visualized object detection labels. (d): Visualized segmentation labels.
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2.2. Methodology

The ship draft reading framework proposed in this paper is depicted in Figure 6. Given
the multispectral image inputs, we first utilize the proposed Band Information Fusion
backbone network combined with the existing heads to obtain the waterline segmentation
and character detection results (see Section 2.2.1). Then, the waterline segmentation result
is employed to obtain the fitted waterline (see Section 2.2.2). Finally, the ship draft reading
is accomplished by performing perspective correction on the waterline and character
detection results (see Section 2.2.3).

RGB

NIR

Character 

Detection

Multi-spectral input

Perspective 

Correction

Waterline 

Segmentation

Waterline 

Fitting
Draft 

Reading

Figure 6. The overall process of draft reading.

2.2.1. Band Information Fusion Framework

The water and ship could be clearly discriminated utilizing multispectral image
information, while RGB image provides more color information for character recognition.
To leverage the benefits of both NIR and RGB data simultaneously and achieve improved
detection and segmentation accuracy, this paper introduces a novel Band Information
Fusion (BIF) backbone for data fusion. This backbone could be integrated with existing
segmentation and detection heads to perform waterline extraction and character recognition
respectively. As illustrated in Figure 7, the RGB image and NIR information are processed
independently by two branches of the model. Following multimodal feature alignment
and fusion, semantic features are captured at multiple spatial levels. These features are sent
into the segmentation head and the detection head to generate the waterline masks and
detection frames of the draft characters.

Seg Head

Ocr Head

RGB

Band

Fusion branch

Dual-branch Backbone Multi-task Decoder

RGB branch

NIR branch

Predictionseg

Predictionocr

Lossseg

Lossocr

Ground truthocr

Ground truthseg

Featureout

NIR

...

Figure 7. Overview framework of the image-processing-based automated draft reading methods.

The overall architecture of the proposed Band Information Fusion backbone is illus-
trated in Figure 8. In terms of data input, two modalities are fed into the model in parallel,
and the intrinsic knowledge is explored through two branches respectively. The two-branch
backbone could be divided into four stages, with a stem layer inserted at the beginning of
the first stage. In addition, a cross-fusion module (CFM) is designed to unite the parallel
NIR-RGB outputs containing rich texture details and semantic features, acting as a bridge to
merge the complementary information from the two modalities. Finally, all the multi-level
fusion features are obtained and subsequently fed into the multitasking decoder.
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Stem

Stem CMP-W

CMP-S

CFM-S

Xf

Yf

RGB

NIR

Stage 1

CMP-S

CMP-W

Stage 2

CFM-S

Xf

Yf
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Fusion branch
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1

1 2

2
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. . .

× L2

× H1 × H2

× L1

CMP-S

CMP-W

Stage 3

Xf

Yf
3

3

× L3

× H3

CMP-S

CMP-W

Stage 4

Xf

Yf
4

4

× L4

× H4

CFM-DCFM-D

Figure 8. Overview of our BIF backbone. The specific architecture of our novel Band Information
Fusion backbone, where Ln and Hn represent the number of layers of modules stacked.

Overview of branch structure: In this work, we use the modified ResNet [26] as the
dual-branch basic structure. Given an input with a size of H

N × W
N (where N represents the

image channel), the resolution is diminished to H
4 × W

4 following the stem layer, as shown
in Figure 8. It includes a combination of convolution, Batch Normalization, Rectified Linear
Unit, and max pool. Subsequently, the features are processed through four stages, resulting
in Y1

f (X1
f ), Y2

f (X2
f ), Y3

f (X3
f ) and Y4

f (X4
f ) features. The resolutions of these four features

are halved in sequence, specifically 1
4 , 1

8 , 1
16 , and 1

32 , and the channels increase in order of
C, 2C, 4C, and 8C. Figure 9 illustrates the basic Cross-Modality process spectral (CMP-S)
and Cross-Modality process window (CMP-W) blocks of the ResNet-18 and ResNet-50 at
each stage. The structure of the basic module is composed of stacked convolutions, BN and
RELU, where the input feature is added to the main branch output feature via a shortcut
and then passed through a ReLU activation function to enhance the model’s nonlinearity.
At the beginning of each stage, the residual connection includes an embedding convolution
and BN to downsample the features. The incorporation of bottleneck architectures and
residual connections facilitates the training process. Moreover, to handle the different
complexity of two-branch features, the number of basic modules stacked in each stage are
L1, L2, L3 and L4 and H1, H2, H3 and H4, respectively, where the number of blocks in the
RGB branch is twice that of the NIR branch.

Element-wise 
Addition

Residual 
connection

Downsampling

B
N

 +
 R

eL
U

Conv 1×1

C
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v 
3×

3

B
N

R
eL

U

C
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v 
1×

1

B
N

 +
 R

eL
U

C
on

v 
1×

1

BN

ResNet Block

CMP 
Block

+ +

Figure 9. The architecture of Cross-Modality Process basic module.

Cross-fusion module: CFM is specially designed to encode detailed features and unite
the parallel NIR-RGB outputs. In consideration of the differences among characteristic
output of the stages and model parameters, we designed two forms of CFM for shallow and
deep fusion separately, namely Cross-Fusion Module Shallow (CFM-S) and Cross-Fusion
Module Deep (CFM-D).

For CFM-S, as a design of minimal complexity, it is implemented in shallow features
without great burden. Furthermore, it could adaptively fuse the two-branch inputs while
transmitting detailed features between RGB and NIR pairs, enabling the preservation of
the local information to the greatest extent. As shown in Figure 10a, initially, the input
features from the dual branches are processed through a 1 × 1 convolution, respectively.
After that, the concat operation combines these two features and forwards them to the next
convolution for facilitating interaction among the NIR-RGB pairs. Then, the features are
subjected to a 1× 1 convolution and a sigmoid function to normalize the pixel values within
the range of 0 to 1, which are then multiplied pixel by pixel with the previous features to
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perform pixel-level reweighting operations. Finally, we employed residual connection to
add previous features, aiming to accelerate model optimization and reduce the learning
complexity of feature weight maps.

MCA

MCA

Xf

Yf

CFM-D

Conv 

+

+

n

n

Kx Qy

Vx

Softmax

Reshape

×

× +
Xout

MCA

Xf
n

Yf
n

C

(b) (c) 

+

C

×

Element-wise 
Addition

Element-wise 
Multipication
Element-wise

Concat

  ConcatConv 1×1

Conv 1×1

Conv 1×1 Conv 1×1

Conv 1×1

Sigmoid

Sigmoid

Conv 1×1Concat

Xf

Yf

n

n

+

+

+

CFM-S

(a) 

Conv 1×1

Figure 10. (a) The illustration of CFM-S in BIF. (b) The illustration of CFM-D in BIF. (c) The detailed
structure of MCA module.

For CFM-D, it is a feature fusion module based on an attention mechanism, capable of
selecting beneficial information from the spectral and spatial dimensions to supplement
each branch. It is worth noting that the use of a high-parameter Multihead Cross-Attention
(MCA) module in the deep 3rd and 4th stages will not introduce excessive computational
cost due to the multiple downsampling procedures. As depicted in Figure 10b, CFM-D
receives dual-branch features and employs the pairs of features as the query input for
the two parallel MCA modules in a cross-attention manner. MCA could learn feature
mapping relevance and calculate spatial correlation for pairs of inputs. Given the inputs
Xn

f , Yn
f ∈ RHW×C with stage n, height H, width W, and the number of channel dimensions

C, where f stands for fusion, the MCA is expressed as

Qy = Yn
f wq

y, Kx = Xn
f wk

x, Vx = Xn
f wv

x, (1)

Mout = softmax(
QyKT

x√
dk

), Xout = Vx Mout, (2)

where Xout is the fused results, wq
y , wk

x , wv
x correspond to the learnable weights of the query

Q, key K, and value V. The activation function softmax can normalize the correlation
weights. dk indicates the dimension of Kx that is used to scale the matrix, and (·)T is
the matrix transpose. In addition, Mout ∈ RHW×HW denotes the mappings between the
pairwise NIR-RGB inputs over multiple bands information. Afterwards, the fused dual-
branch embedding is ultimately obtained through simple concatenation and convolution.

2.2.2. Waterline Fitting

After obtaining the water body mask and the character recognition results, we use
the Hough transform method to extract the contour of the water mask and fit the curve
with the contour of the boundary between water and ship. Specifically, each pixel in the
image is transformed into a parametric coordinate system. The intersection of multiple
straight lines in this system corresponds to a straight line in the image space, namely the
boundary line of the water body we are looking for. Aiming to avoid inaccurate readings
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resulting from the sea level fluctuations caused by wind and waves, we take the average
y-axis coordinates of all pixels on the waterline as the position coordinates of the waterline.

2.2.3. Perspective Correction and Reading

After detecting the draft characters and extracting the coordinates of the waterline
position, the draft reading can be calculated according to the reading formula. It is notable
that the perspective problem occurs since the shooting angle is not always aligned with the
ship. To solve this problem, we need to adopt the ratio of the vertical distance (r) between
each character as the correction factor. Taking Figure 11 as an example, considering all the
calculation steps, 5 positions and 3 vertical distances are needed to be determined first.
The first position (p0) is the position coordinates of the waterline. The other four positions
include the positions of three consecutive characters from bottom to top (p1, p2, p3) and the
position of the character with the letter “M” that is the closest to the waterline (v1). Then,
three distances are calculated as follows in Equation (3):

d0 = p1 − p0, d1 = p2 − p1, d2 = p3 − p2 (3)

where d1 and d2 denote the complete character spacing of two pairs of characters, so the
perspective coefficient is r = d1/d2.

Figure 11. Illustration of draft calculation. Firstly, the ratio of the vertical distance (r) between each
character is computed as the correction factor for the perspective problem. Secondly, we determine
the integer digit of the readings based on the classification result (v1) of the character with “M”.
In the following step, we calculate the decimal place of the readings via the vertical position of the
waterline, the distance of the character closest to the waterline (v0), and its numerical category. In the
end, the final readings are further obtained by calculating readings with the correction factor.

In the end, the specific readings are determined by the classification results of the
character detection v0 and v1. Here, v0 is the classification result of the character closest to
the waterline, and v1 is the classification result of the character with “M” that is the closest
to the waterline. Since the real distance between the two characters is 0.2 m, the formula
for the final reading result v is given in Equation (4):

v = v1 − 1 +
(

v0 − r∗d0
d1

∗ 0.2
)

(4)
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3. Results
3.1. Evaluation Metrics

To evaluate the effectiveness of our draft reading results comprehensively, we evaluate
our method in dimensions of detection, segmentation, and ship draft readings using the
following evaluation metrics: mean Average Precision (mAP), mean Intersection over Union
(mIoU), and Mean Absolute Error (MAE).

mAP is a crucial metric used to measure the performance of object detection algorithms,
obtained by averaging the AP of detection boxes across all categories. The equation defining
mAP is formulated as follows:

mAP =
1
n

n

∑
i=1

1
c

c

∑
k=1

PkRk (5)

where Rk is the proportion of the correctly detected boxes number to the ground truth
boxes number. Pk is the ratio of the correctly detected box numbers to the total detected box
numbers. c is the number of categories detected. n is the total number of object categories.

mIoU is a commonly used segmentation metric for measuring the degree of overlap
between the region predicted by the model and the truth labels. It is the intersection of
the predicted area and the actual area divided by the union of these two areas, with the
results obtained for all categories being averaged. The calculation formula is illustrated in
Equation (6)

mIoU =
1
n

n

∑
i=1

TP
FN + FP + TP (6)

where TP is the number of positive classes predicted to be positive, and FP is the number
of negative classes predicted to be positive. FN is the number of positive classes predicted
to be negative.

Finally, MAE (Mean Absolute Error) is used to measure the difference between the
draft line obtained by manual readings and our automatic methods. The manual reading
means the average result of multiple careful readings of the waterline position on the
images by experts. This comparison directly reflects the actual feasibility of our proposed
automatic methods.

3.2. Experimental Setup

In this study, all experiments are conducted on a platform with the Ubuntu 20.04
operating system, NVIDA RTX2080T with 12 GB RAM (NVIDIA, Santa Clara, CA, USA),
and Intel Core i5-13600k with 32 GB RAM (Intel, Santa Clara, CA, USA). The software
platform is Pytorch 1.12.1 based on Python 3.8.0.

We validated the effectiveness of our method based on two detection methods (YOLOv5
and YOLOv8) and two segmentation methods (DeepLabv3+ [27] and UPerNet [28]) by re-
placing the original backbone (ResNet-50) with our proposed multiscale two-branch back-
bone. The hyperparameter settings used for training are shown in Table 2, including epoch,
batch size, learning rate, and optimizer.

Table 2. The training parameters of each network.

Model Epoch Batch Size Learning Rate Optimizer

Our YOLOv5 100 8 0.001 ADAM
Our YOLOv8 100 8 0.1 ADAM

Our DeepLabv3+ 100 8 0.005 SGD
Our UPerNet 100 8 0.02 SGD
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3.3. Algorithm Results

In this section, we verify the effectiveness of the proposed backbone on detection,
segmentation, and manual reading comparison. The validation sets contain a total number
of 105 images. Based on the constructed datasets, we compared our backbone performance
with the original ResNet-50 backbone in four segmentation and detection methods. When
choosing ResNet-50 as the backbone, the utilization of four band images (RGB+NIR) repre-
sents concating RGB and NIR information as a four-channel input. We also compare the
draft reading results of three segmentation+detection methods with the manual readings.
All the experiment results demonstrate that by introducing multispectral data and design-
ing an effective feature fusion network to fully utilize RGB and NIR information, ship draft
reading performance can be effectively improved.

Analysis of character detection results: Table 3 shows the comparison of detection
performance between YOLOv5, YOLOv8, and ours. The mAP achieved by YOLOv5 with
ResNet-50 backbone using RGB image input is 94.1%. When replacing inputs with the RGB
and NIR image integration, the mAP score increases to 95.0%, with an improvement of 0.9%.
It is evident that the utilization of multispectral information significantly enhances the
results. With further replacement with our backbone, the YOLOv5 model attains a notable
mAP value of 95.9%, presenting a substantial improvement in detection performance.
For YOLOv8 based methods, better results could be achieved with basic settings (using
ResNet-50 backbone and RGB image input). Similarly, the additional utilization of NIR
data and our backbone lead to superior performance, respectively. And the optimal result
is obtained on the setting of YOLOv8 with our backbone using RGB+NIR input data,
with mAP improving up to 99.2%. These results by different methods and input sources
prove the effectiveness of utilizing multispectral information with our architecture design
in the detection task.

Table 3. Experiments of different methods in character detection task.

Backbone Input Type Model mAP (%)

ResNet-50 RGB YOLOv5 94.1
ResNet-50 RGB YOLOv8 96.7
ResNet-50 RGB + NIR YOLOv5 95.0
ResNet-50 RGB + NIR YOLOv8 97.9

Ours RGB + NIR YOLOv5 95.9
Ours RGB + NIR YOLOv8 99.2

Analysis on waterline segmentation results: The segmentation results of DeepLabv3+,
UPerNet, and ours are presented in Table 4. A mIoU score of 98.0% is achieved using the
DeepLabv3+ model with RGB image input and ResNet-50 backbone. Upon transitioning
to using RGB+NIR images as input, the mIoU score increased to 98.3%, proving that the
integration of NIR information could bring additional improvement in the segmentation
task. When replacing ResNet-50 with our backbone, the mIoU score further rises to 99.0%,
with an enhancement of 0.7%. The implementation of our backbone effectively boosts the
segmentation results. A similar experiment conducted with the UPerNet model also shows
that the use of RGB+NIR inputs outperforms the use of pure RGB images. In comparison
with ResNet-50, the employment of our backbone results in a marked increase for the
segmentation task, reaching mIoU of 99.3%. In conclusion, combining RGB+NIR inputs
and BIF backbone also takes effect in the segmentation of the waterline.

Analysis on draft reading results: For reading performance compared with the man-
ual reading approach, waterline images in validation sets are classified into four types,
including waterlines that suffer from different degrees of environmental issues, namely
normal, water with reflections, submerged characters, and rusted characters. The uti-
lized segmentation+detection models for draft reading performance comparison contain
original YOLOv5 + DeepLabv3+, original YOLOv5 + UPerNet, and our backbone-based
YOLOv8 + UPerNet. The results are shown in Table 5. We set the manual readings as



Sensors 2024, 24, 5580 12 of 14

the baseline and MAE as the validation indicator. For normal waterline images, the MAE
is 0.021 m using YOLOv5 with DeepLabv3+ and 0.013 m using YOLOv8 combined with
UPerNet. The minimum MAE obtained using our backbone method is 0.007 m. For images
with water reflections, our method has an error of only 0.003 m. Compared with the original
backbone, it reduces the MAE by at least 0.01 m, indicating that our proposed backbone
effectively filters reflections to obtain more accurate readings. For waterline images with
submerged characters, an error of 0.051 m is exhibited when employing the YOLOv5 +
DeepLabv3+, whereas utilizing YOLOv8 + UPerNet reduces the MAE to 0.031 m. A sig-
nificant enhancement in MAE is achieved by substituting the ResNet backbone with our
backbone, resulting in the lowest MAE of 0.005 m. For the images with rusted characters,
our method also has a minimum MAE of only 0.002 m. It can be seen that the combination
of multispectral information and special design BIF backbone further narrows down the
reading errors in comparison with the methods using only RGB data in all four types of
waterline images. A statistical comparison is also presented in Figure 12. For different kinds
of images, the distribution of each method can be seen from this figure. The MAE results
of our methods are the lowest among the three algorithms. Additionally, considering all
results, our method achieves the smallest variance, seen from the size of the box, proving
its superiority over other methods.

Table 4. Experiments of different methods in waterline segmentation task.

Backbone Input Type Model mIoU (%)

ResNet-50 RGB DeepLabv3+ 98.0
ResNet-50 RGB UPerNet 98.4
ResNet-50 RGB + NIR DeepLabv3+ 98.3
ResNet-50 RGB + NIR UPerNet 98.9

Ours RGB + NIR DeepLabv3+ 99.0
Ours RGB + NIR UPerNet 99.3

Figure 12. Box plot analysis of different methods in the draft reading task.
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Table 5. Comparison of draft reading by different methods using the MAE metric.

Image Type

ResNet Ours

YOLOv5 +
DeepLabv3+

YOLOv8 +
UPerNet

YOLOv8 +
UPerNet

Normal (11 images) 0.021 m 0.013 m 0.007 m
Water with reflection (57 images) 0.023 m 0.014 m 0.003 m

Submerged characters (16 images) 0.051 m 0.031 m 0.005 m
Rusted/erosive characters (21 images) 0.034 m 0.018 m 0.002 m

4. Conclusions

In this paper, we innovatively introduce multispectral images as data input in character
detection and waterline segmentation algorithms for the ship draft reading task, in addition
to a specially designed fusion backbone, further improving the model performance and
robustness in special environments. First, we capture NIR and RGB images in the field by
MS400 and construct a multispectral dataset. To leverage the advantages of NIR and RGB
images, we design a dual-branch backbone (BIF) to merge the features extracted from both
types of images. Coupled with segmentation and detection heads, the features extracted by
the proposed backbone network could simultaneously handle waterline segmentation and
character detection tasks. On our self-constructed multispectral draft image dataset, our
method achieves 99.2% mAP for waterline segmentation and 99.3% mIoU for draft detection
tasks. Finally, in the draft reading task, our MAE is less than 0.01 m in all four types of
waterline images, achieving superior results that are the closest to human observation
compared with other methods.
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