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Abstract: Assessing the olfactory preferences of consumers is an important aspect of fragrance product
development and marketing. With the advancement of wearable device technologies, physiological
signals hold great potential for evaluating olfactory preferences. However, there is currently a lack
of relevant studies and specific explanatory procedures for preference assessment methods that are
based on physiological signals. In response to this gap, a synchronous data acquisition system was
established using the ErgoLAB multi-channel physiology instrument and olfactory experience tester.
Thirty-three participants were recruited for the olfactory preference experiments, and three types of
autonomic response data (skin conductance, respiration, and heart rate) were collected. The results of
both individual and overall analyses indicated that olfactory preferences can lead to changes in skin
conductance (SC), respiration (RESP), and heart rate (HR). The trends of change in both RESP and HR
showed significant differences (with the HR being more easily distinguishable), while the SC did not
exhibit significant differences across different olfactory perception preferences. Additionally, gender
differences did not result in significant variations. Therefore, HR is more suitable for evaluating
olfactory perception preferences, followed by RESP, while SC shows the least effect. Moreover, a
logistic regression model with a high accuracy (84.1%) in predicting olfactory perception preferences
was developed using the changes in the RESP and HR features. This study has significant implications
for advancing the assessment of consumer olfactory preferences.

Keywords: fragrance products; olfactory preferences; wearable devices; physiological signals; preference
evaluation

1. Introduction

Fragrance products serve various purposes, such as enhancing mood, creating am-
biance, and boosting personal charm. The evaluation of consumer olfactory preferences is
an important process for the development and marketing of fragrance products. Olfactory
preferences are influenced by various factors, including personal experiences, physio-
logical characteristics, and emotional states [1]. Thus, the establishment of preferences
goes beyond cognitive–logical processes [2]. With the deepening of consumer behavior
research, traditional surveys and analysis methods are gradually becoming insufficient for
a comprehensive understanding of complex consumer psychology.

Evaluation methods for olfactory preferences can be classified into subjective and
objective evaluation methods. A subjective evaluation method is to collect subjective
feedback on the product during the user’s use process [3]. In subjective evaluation methods,
scales are often used to evaluate olfactory perception. Sorokowska et al. [4], Farahani
et al. [5], and Klyuchnikova et al. [6] used a Likert scale to evaluate the pleasantness of
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odors. In an olfactory recognition test, Fjaeldstad et al. [7] and Lesur et al. [8] applied a
visual analog scale to assess the intensity and pleasantness of odors. APNEA [9] adopted the
Likert scale to investigate the impact of olfactory stimuli on dream perception. Mu et al. [10]
developed an 11-point classification scale to evaluate olfactory perception. Zhou et al. [11]
used the vividness questionnaire of olfactory image. However, the results of subjective
evaluation are unreliable and inaccurate due to the lack of both support from objective data
and professional olfactory training among the participants. Objective evaluation methods
rely on measuring objective indicators, such as behavioral data [12,13], activity of brain
cells and neurons [14–16], and hormone levels [17]. Objective evaluation methods can
accurately reflect olfactory perception. However, some objective evaluation methods are
difficult to apply and require a lot of time and economic expenditure (such as measuring
the activity of brain cells and neurons).

As a spontaneous response of the human body, physiological signals are not easily
influenced by the subjective consciousness of the subject, thus possessing superb objectivity,
accuracy, and validity [18–20]. Physiological data is often used to assess physiological
and psychological states [21]. Specifically, the human body reflects psychological and
physiological conditions through physiological signals when stimulated [22,23]. There-
fore, physiological signals can be used as indicators to assess olfactory preferences. In
studies related to olfactory stimuli, heart rate data have been used to explore individual
preferences for odors [24,25]. Ohira et al. [26] used skin conductance signals to assess the
preferences of fragrance consumers. Besides electrocardiogram and skin conductance data,
respiratory-related physiological signals are also commonly used to assess the emotional
aspect of odor preferences [27,28]. Although some studies have begun to explore the use
of physiological signals to assess the olfactory preferences of fragrance consumers, these
studies are still in the exploratory stage and lack relevant explanations and applications.
In addition, a single physiological signal cannot fully capture the complexity of olfactory
preferences [29]. Therefore, it is necessary to combine multiple physiological signals to
assess olfactory preferences.

Based on the knowledge gap mentioned above, this study aims to investigate the
autonomic responses (skin conductance, respiration, and heart rate) of fragrance consumers
when they exhibit olfactory preferences and explore an effective method for evaluating
olfactory preferences through a quantitative analysis of autonomic response changes.
We collected these physiological signals from the consumers through biosensors and
investigated the changes in the physiological signals of the fragrance consumers when they
exhibited olfactory preferences. Then, the differences in the physiological signal changes
caused by the different olfactory preferences were explored. Furthermore, the influence
of gender differences on the results was investigated. Finally, an olfactory preference
prediction model was established based on distinguishable physiological signals.

2. Materials and Methods
2.1. Participants

This study recruited 33 consumers (15 males and 18 females). All participants were
between 21 and 32 years of age (M = 26.7 years; SD = 2.6 years). All participants did not
have neurological disorders or rhinitis and did not consume strongly scented food before
the experiment. Individuals who met all requirements were selected as participants (as
is shown in Table 1). The experimental content and procedures of this experiment were
approved by the Ethics Committee of Chongqing University of Arts and Sciences (approval
no. CQWL202401). Participants’ data were processed following the Declaration of Helsinki.
After obtaining the consent of the participant, an informed consent form was signed by the
participant to inform them of the experiment content and the tasks to be completed during
the experiment.
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Table 1. Participant Screening Form. Functional issues were selected, and other privacy issues were
not given. Individuals that satisfied all screening questions were selected as participants.

Test Project Agree Disagree

I don’t have any neurological diseases.
I don’t have rhinitis.
I can accurately perceive smells.
I am able to clearly express what I want.
I often use fragrance products in my daily
life (more than twice a week).
I’m not allergic to any smell.

2.2. Equipment and Procedure

In this study, peppermint, jasmine, sweet orange, and lavender essential oils were uti-
lized as odor sources (Refined Aroma, Shanghai, China, so their standardization is ensured,
and they are non-toxic and harmless to humans). The concentration of these essential oils
is 5%. These scents are extensively utilized in both experiments and daily life [30–32]. The
generation of odors was achieved through olfactory experience tester [33,34] (Interactive
Technology, Chongqing, China). The ErgoLAB signal acquisition module was used to collect
and record the physiological signals of participants [35,36] (KingFar International Inc., Bei-
jing, China). The program for the experimental process was written through the ErgoLAB
human–computer interaction platform [37] (KingFar International Inc., Beijing, China).

The physiological signal data acquisition equipment is as follows:

(1) ErgoLAB EDA wireless skin conductance sensor (sampling rate: 64 Hz, acquisition
range: 0–30 µS). The two electrodes of the EDA sensor are fixed at the fingertips of
the index finger and middle finger (as shown in Figure 1a).

(2) ErgoLAB RESP wireless respiratory sensor (sampling rate: 64 Hz; acquisition range:
0–140 rpm). The belt of the RESP sensor is fixed between the chest and abdomen of
the subject (as shown in Figure 1b).

(3) ErgoLAB PPG wireless blood volume pulse sensor (sampling rate: 64 Hz; acquisition
range: 0–240 bpm). The ear clip electrodes of the PPG sensor are fixed on the earlobe
(as shown in Figure 1c).

Sensors 2024, 24, x FOR PEER REVIEW 3 of 15 
 

 

by the participant to inform them of the experiment content and the tasks to be completed 
during the experiment. 

Table 1. Participant Screening Form. Functional issues were selected, and other privacy issues were 
not given. Individuals that satisfied all screening questions were selected as participants. 

Test Project Agree Disagree 
I don’t have any neurological diseases.   
I don’t have rhinitis.   
I can accurately perceive smells.   
I am able to clearly express what I want.   
I often use fragrance products in my daily life (more than twice 
a week). 

  

I’m not allergic to any smell.   

2.2. Equipment and Procedure 
In this study, peppermint, jasmine, sweet orange, and lavender essential oils were 

utilized as odor sources (Refined Aroma, Shanghai, China, so their standardization is en-
sured, and they are non-toxic and harmless to humans). The concentration of these essen-
tial oils is 5%. These scents are extensively utilized in both experiments and daily life [30–
32]. The generation of odors was achieved through olfactory experience tester [33,34] (In-
teractive Technology, Chongqing, China). The ErgoLAB signal acquisition module was 
used to collect and record the physiological signals of participants [35,36] (KingFar Inter-
national Inc., Beijing, China). The program for the experimental process was written 
through the ErgoLAB human–computer interaction platform [37] (KingFar International 
Inc., Beijing, China). 

The physiological signal data acquisition equipment is as follows: 
(1) ErgoLAB EDA wireless skin conductance sensor (sampling rate: 64 Hz, acquisition 

range: 0–30 µS). The two electrodes of the EDA sensor are fixed at the fingertips of 
the index finger and middle finger (as shown in Figure 1a). 

(2) ErgoLAB RESP wireless respiratory sensor (sampling rate: 64 Hz; acquisition range: 
0–140 rpm). The belt of the RESP sensor is fixed between the chest and abdomen of 
the subject (as shown in Figure 1b). 

(3) ErgoLAB PPG wireless blood volume pulse sensor (sampling rate: 64 Hz; acquisition 
range: 0–240 bpm). The ear clip electrodes of the PPG sensor are fixed on the earlobe 
(as shown in Figure 1c). 

 
Figure 1. Wearing diagram of physiological signal sensors. (a) Wearing diagram of EDA sensor; (b) 
Wearing diagram of RESP sensor; (c) Wearing diagram of PPG sensor. User manual of multi-channel 
physiological instrument was referenced to create (a–c). 

The ErgoLAB human–computer interaction platform was connected to the signal ac-
quisition module and the olfactory experience tester to form a synchronous data 

Figure 1. Wearing diagram of physiological signal sensors. (a) Wearing diagram of EDA sensor;
(b) Wearing diagram of RESP sensor; (c) Wearing diagram of PPG sensor. User manual of multi-
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The ErgoLAB human–computer interaction platform was connected to the signal
acquisition module and the olfactory experience tester to form a synchronous data ac-
quisition system (as shown in Figure 2a). As the experimental process progresses, the
ErgoLAB-controlled olfactory experience tester releases experimental gases. The physi-
ological signals at both the start and end of each experimental phase were marked. The
time period between the start and end markers of a stage was used as the time window for
dividing the signal.
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Figure 2. Experimental environment and process. (a) Experimental environment. (b) Experimental
flowchart.

Each participant was required to complete four sets of experiments (peppermint,
jasmine, sweet orange, and lavender), which were conducted in a random order. These
experiments do not interfere with each other. A total of 132 samples were generated from
thirty-three participants (as shown in Figure 2b). Each experiment was divided into four
stages: the preparation stage, calm stage, stimulation stage, and subjective evaluation stage
(as shown in Figure 3). During the preparation stage, participants were fitted with an
odor mask and a physiological signal acquisition module, both of which were securely
placed to avoid interfering with the participant’s movements. The experiment assistant
then helped the participant adjust to a comfortable and sustainable posture. Once the
participant was ready, physiological signals were recorded for 95 s. The first 35 s represent
the calm stage, during which the participant’s physiological signals are maintained within
a normal range. The physiological signals during the calm stage were used as a baseline,
and each participant’s physiological signals were only compared to their own baseline,
eliminating the impact of individual differences. From the calm stage, participants were
asked to remain still and not speak, to ensure that the signal changes during the stimulation
stage were caused by the fragrance. From 35 s to 45 s, an odor was released, allowing
the participant to experience experimental odors. Finally, from 45 s to 95 s, the subjective
evaluation of the participant was collected. This evaluation had two indicators: “like” and
“disgust”, from which participants needed to choose according to their own experiences. In
addition, physiological data of all subjects were collected from 9:00 am to 11:00 am on the
test day.
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The experimental environment was chosen to be a well-ventilated laboratory with
good lighting. During the experiment, the participants were instructed to remain still and
silent. After completing one set of experiments, there was a 3 min break, during which the
experimenter performed a series of tasks, such as changing the mask and purging the odor
channel, to ensure that any residual odor from the previous set did not affect the next set.
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Additionally, the correctness of the device connection and the accuracy of the physiological
data were verified before initiating a new experiment.

2.3. Data Processing and Analysiss
2.3.1. Indicator Extraction

The raw signal recordings from physiological sensors are susceptible to noise, artifacts,
measurement gaps, and biases. Therefore, preprocessing the raw data to filter noise and
remove artifacts is crucial for obtaining stable and reliable physiological signals. For the
skin electrical signal, a sliding mean was used to smooth and denoise the signal, and it
was filtered using a 5 Hz high-pass filter. Finally, SC was extracted from the time-domain
analysis (as shown in Figure 4). For the respiratory signal, the moderate wavelet denoising
technique was used, and a low-pass filter with a cutoff frequency of 20 Hz was used for
the filtering. Finally, RESP was extracted from the time-domain analysis (as is shown in
Figure 5). For the blood volume pulse signal, moderate wavelet denoising was applied,
followed by filtering the signal with a 50 Hz band-stop filter, and finally extracting HR
from time-domain analysis (as shown in Figure 6).
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The signal was segmented according to the four stages designed in the experiment.
The mean value of the physiological signal in each stage represents the signal value for that
stage. The signal value calculation process for SC_Mean is as follows:

SC_Mean =
∑n

1 SC
n

(1)

where SC_Mean indicates the average value of skin conductivity at a certain stage. SC
represents the skin conductivity of sampling point at a certain stage. Value of n indicates
the number of sampling points. AVRESP is calculated as follows:

AVRESP =
∑n

1 RESP
n

(2)



Sensors 2024, 24, 5604 6 of 14

where AVRESP indicates the average value of respiratory rate at a certain stage. RESP
represents the respiratory rate of sampling point at a certain stage. Value of n indicates the
number of sampling points. HR_Mean is calculated as follows:

HR_Mean =
∑n

1 HR
n

(3)

where HR_Mean indicates the average value of heart rate at a certain stage. HR represents
the heart rate of sampling point at a certain stage. Value of n indicates the number of
sampling points.

2.3.2. Extraction of Physiological Signal Differences

The signal value difference between the calm and stimulating stages is used as the
signal change value. The signal value difference for SC_Mean is calculated as follows:

SC_Mean′ = SC_Meanss − SC_Meancs (4)

where SC_Mean’ indicates the change value in skin conductance. SC_Meanss represents
the average of skin conductance during the stimulation stage. SC_Meancs indicates the
average of skin conductance during the calm stage. The signal value difference for AVRESP
is calculated as follows:

AVRESP′ = AVRESPss − AVRESPcs (5)

where AVRESP’ indicates the change value in respiratory rate. AVRESPss represents the
average of respiratory rate during the stimulation stage. AVRESPcs indicates the average
of respiratory rate during the calm stage. The signal value difference for HR_Mean is
calculated as follows:

HR_Mean′ = HR_Meanss − HR_Meancs (6)

where HR_Mean’ indicates the change in value of heart rate. HR_Meanss represents the
average of heart rate during the stimulation stage. HR_Meancs indicates the average of
heart rate during the calm stage.

2.3.3. Preference Comparative Analysis

The focus of the preference comparative analysis was on the physiological signal
trends and differences during the “stimulation stage”, when the human body exhibited
olfactory likes and disgusts. Preference comparative analysis is divided into overall analysis
and individual analysis.

In the overall analysis, the total sample was divided into two categories based on
preferences: “like” and “disgust”. The signal change values of individuals in each category
were calculated separately. The arithmetic mean of the signal change values for the two
categories was computed. The positive and negative signs of the arithmetic mean were
interpreted as the average change trend in preferences. The signal change values and aver-
age change trends of the two categories were then analyzed to determine the physiological
signal change trends when participants exhibited different olfactory perception preferences
(like and disgust). A paired sample t-test was performed to assess the significance of the
change trends, with p < 0.05 considered significant.

In the individual analyses, the signal change values for different preferences were
extracted for each participant. Participants had to have paired preferences; if a participant
only had a signal change value in the “like” state, only the first signal change value in the
“disgust” state was extracted. If a participant was exclusively in the same preference state,
they were skipped. The signal change values under the two preference states were then
compared and analyzed to determine the physiological signal differences when participants
exhibit different olfactory perception preferences. A paired sample t-test was conducted
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to evaluate the significance of the signal differences between preferences, with p < 0.05
regarded as significant.

2.3.4. Comparative Analysis of Male and Female

There are differences in autonomic responses between different genders when faced
with stimuli [38], which may lead to different physiological signals during olfactory per-
ception preferences. Therefore, comparative analysis between genders is crucial. The total
sample was divided into two small samples based on gender (male or female). The average
signal change values of the two small samples were calculated separately. The average
signal change values of the two small samples were analyzed to determine the differences
in physiological signal changes between males and females when olfactory perception pref-
erences occurred. Independent sample t-tests were performed to determine the significance
of differences between different genders, with p < 0.05 considered significant.

2.3.5. Prediction of Olfactory Perception Preference

A logistic regression prediction model was established to verify the effectiveness of
predicting olfactory perception preferences based on physiological signal changes. In the
prediction model, SC_Mean’, AVRESP’, and HR_Mean’ were used as independent variables,
and predicted preferences (“like”, “disgust”) were used as dependent variables. The area
under the characteristic curve was also statistically analyzed.

3. Results
3.1. Comparative Analysis Results of Preferences

A total of 132 samples were divided into two types of small samples (“like”: 66 samples,
“disgust”: 66 samples). In the overall analysis, the average trend in skin conductance
decreases when the olfactory perception is “like” (t = 1.997, p < 0.05; 55 samples have an
SC_Mean’ of less than zero; the arithmetic mean of the SC_Mean’ for this sample is −0.213;
as shown in Table 2 and Figure 7a). The average trend in respiration decreases when the
olfactory perception is “like” (t = 1.997, p < 0.05; 50 samples have an AVRESP’ of less than
zero; the arithmetic mean of the AVRESP’ for this sample is −1.629; as shown in Table 2
and Figure 7b). The average trend in heart rate increases when the olfactory perception is
“like” (t = 1.997, p < 0.05; 57 samples have an HR_Mean’ of greater than zero; the arithmetic
means of the HR_Mean’ for this sample is 2.893; as shown in Table 2 and Figure 7c).

The average trend in skin conductance decreases when the olfactory perception is
“disgust” (t = 1.997, p < 0.05; 59 samples have an SC_Mean’ of less than zero; the arithmetic
mean of the SC_Mean’ for this sample is −0.221; as shown in Table 2 and Figure 7a). The
trend in respiration in “disgust” is relatively chaotic (as shown in Table 1 and Figure 7b),
with 37 samples having an AVRESP’ of greater than zero (t = 2.028, p < 0.05; with an
arithmetic mean of AVRESP’ of 2.814 for this sample), and 29 samples having an AVRESP’
of less than zero (t = 2.048, p < 0.05; with an arithmetic mean of AVRESP’ of −2.578 for
this sample). The average trend in heart rate decreases when the olfactory perception is
“disgust” (t = 1.99, p < 0.05; 54 samples have an HR_Mean’ of less than zero; the arithmetic
means of HR_Mean’ for this sample is −22.181; as shown in Table 2 and Figure 7c).

In the individual analyses, 36 samples were selected from 132 samples. A total of
20 samples had a lower SC_Mean’ in the “like’‘ state than that in the “disgust” state (as
shown in Figure 8a), but there was no statistically significant difference (as shown in
Figure 8d). Additionally, 25 samples showed a lower AVRESP’ in the “like’‘ state than
in the “disgust’‘ state (t = 2.030, p < 0.05; as shown in Figure 8b,e). In 23 samples, the
HR_Mean’ was greater than zero in the “like’‘ state and less than zero in the “disgust’‘ state
(t = 1.994, p < 0.05; as shown in Figure 8c,f).
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Table 2. The comparison of the SC_Mean, RESP, and HR_Mean between the calm and stimulated stages
for the “like” and “disgust” states. The values in the calm and stimulated phases are arithmetic averages.

Change Value Calm Stage (Like) Stimulation Stage (Like) t p

SC_Mean 5.736 5.523 1.997 <0.01
AVRESP 12.480 10.851 1.997 <0.01
HR_Mean 79.030 81.924 1.997 <0.01

Change Value Calm Stage (Disgust) Stimulation Stage (Disgust) t p

SC_Mean 6.570 6.348 1.997 <0.01
AVRESP 12.436 12.881 1.997 0.286
HR_Mean 78.924 76.742 1.997 <0.01
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3.2. Comparative Analysis Results of Male and Female

In the “like” state, the SC change trend in the males is less than that in the females
(the arithmetic mean of the SC_Mean’ in the male samples is −0.142, and the arithmetic
mean of the SC_Mean’ in the female samples is −0.253; as shown in Table 2 and Figure 9a),
while the RESP change trend is greater than that in the females (the arithmetic mean of
the AVRESP’ in the male samples is −1.877, and the arithmetic mean of the AVRESP’ in
the female samples is −1.487; as shown in Table 3 and Figure 9b). The HR change trend is
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greater than that in the female samples (the arithmetic mean of the HR_Mean’ in the male
samples is 3.750, and the arithmetic mean of the HR_Mean’ in the female samples is 2.404;
as shown in Table 3 and Figure 9c). However, there is no statistically significant difference
between the above signal change values.
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“like” and “disgust” states. (a) Comparison of SC_Mean’ between males and females. (b) Comparison
of AVRESP’ between males and females. (c) Comparison of HR_Mean’ between males and females.
Green line is the average value of the two groups. * p < 0.05.

Table 3. Comparison of SC_Mean’, AVRESP’, and HR_Mean’ between males and females in the “like”
and “disgust” states. Like and disgust are both arithmetic means.

Change Value Like (Male) Like (Female) Difference
(Absolute Value) t p

SC_Mean’ −0.142 −0.253 0.111 2.028 0.382
AVRESP’ −1.877 −1.487 0.39 1.997 0.614
HR_Mean’ 3.75 2.404 1.346 2.030 0.209

Change Value Disgust
(Male)

Disgust
(Female)

Difference
(Absolute Value) t p

SC_Mean’ −0.046 −0.264 0.218 2.015 0.141
AVRESP’ 0.036 0.935 0.899 1.997 0.283
HR_Mean’ −1.777 −2.666 0.889 1.997 0.350

In the “disgust” state, the SC change trend in the males is less than that in the females
(the arithmetic mean of the SC_Mean’ in the male samples is −0.046, and the arithmetic
mean of the SC_Mean’ in the female samples is −0.264; as shown in Table 3 and Figure 9a),
while the RESP change trend is less than that in the female samples (the arithmetic mean of
the AVRESP’ in the male samples is 0.036, and the arithmetic mean of the AVRESP’ in the
female samples is 0.935; as shown in Table 3 and Figure 9b). The HR change trend is less
than that in the female samples (the arithmetic mean of the HR_Mean’ in the male samples
is −1.777, and the arithmetic mean of the HR_Mean’ in the female samples is −2.666; as
shown in Table 3 and Figure 9c). However, there is no statistically significant difference
between the above signal change values.

3.3. Prediction Results of Olfactory Perception Preference

This study used the SK-Learn toolkit (v1.2.2) and the PyCharm (v2022.2.3) interpreter
to build a logistic regression model. We used 144 samples that were collected in the
experiment to test our model, with 70% of the samples used for training the model and
30% of the samples used for testing the model. The model results show that the increase
in the SC_Mean’ is correlated with the prediction of a preference for “like”, but the effect
does not reach statistical significance (as shown in Table 4). The decrease in the AVRESP’ is
correlated with the prediction of preference for “like” (p < 0.05; as shown in Table 4), and the
increase in the HR_Mean’ is correlated with the prediction of preference for “like” (p < 0.05;
as shown in Table 4). The areas under the curves (AUCs) of the models are 0.676 and 0.833,



Sensors 2024, 24, 5604 10 of 14

when the AVRESP’ and HR_Mean’ are used as the input features of the model, respectively
(as shown in Figure 10a). Therefore, the influence of the HR_Mean’ on the model is greater
than that of the AVRESP’. When the two are combined as the inputs, the model’s AUC
was 0.888 (as shown in Figure 10b). Therefore, when the AVRESP’ and HR_Mean’ are
combined as the inputs for the model, the model’s prediction accuracy is optimal (the
model’s prediction accuracy was 84.1%; as shown in Table 5).

Table 4. The results of the logistic regression model. The influence of Intercept and SC_Mean’ on the
model did not reach statistical significance, so their AUC were not provided. β refers to the coefficient
in the regression equation provided in the footnote.

Prediction Model Independent Variable β p AUC

Logistic regression

Intercept −0.329 0.190 \
SC_Mean’ 0.039 0.921 \
AVRESP’ −0.335 <0.01 0.676
HR_Mean’ 0.474 <0.01 0.833

gpre f erence =
1

1+e
βintercept+βSC_Mean∗SC_Mean+βRESP∗RESP+βHR_Mean∗HR_Mean .
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Table 5. Confusion matrix of the model under multivariable inputs (AVRESP’ and HR_Mean’).

Observation/Forecast Forecast

Observation Like Disgust Correct Percentage

Like 55 11 83.3%
Disgust 10 56 84.8%

Overall percentage 84.1%

4. Discussion

Skin conductance, respiration, and heart rate are commonly used methods for assess-
ing physiological status. They are usually considered as indicators related to the activity
of the autonomic nervous system, and are widely used in the fields of psychophysiology,
emotion research, and physiological state monitoring. This study aims to investigate the
autonomic response (skin conductance, respiration, and heart rate) of fragrance consumers
when they exhibit olfactory preferences. The main results of this paper are as follows.

Olfactory preferences can lead to changes in SC, RESP, and HR. These findings are
consistent with previous literature, confirming that changes in physiological signals can
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be used to assess olfactory preferences [39]. The change trends in the RESP and HR
are statistically different when the olfactory preferences differ (p < 0.05). However, the
change trend in the SC is the same when the olfactory preferences differ. This conclusion
is consistent with that obtained from the overall analysis and individual analyses. The
change trend in the SC and RESP are decreasing, while the change trend in the HR is
increasing (p < 0.05) when the olfactory perception is “like”. The change trend in the SC is
the same as that in the “like” state when the olfactory perception is “disgust”. Although
there are numerical differences in the change trend in the SC under different preferences,
nevertheless there is no statistical difference. This indicates that the SC change values
of consumers during sniffing cannot accurately distinguish between olfactory likes and
disgusts. The trend in the RESP changes in the state of “disgust” is more chaotic (p < 0.05).
But in individual analysis, 25 samples showed lower RESP changes in the state of “like”
than in the state of “disgust” (p < 0.05). This indicates that there are differences in the
RESP changes among different preferences. Therefore, the RESP changes can provide a
reference for distinguishing between olfactory likes and disgust. The trend in change in
the HR varies under different preferences. Moreover, in individual analyses, 23 samples
exhibit significant differences (p < 0.05). Therefore, HR changes can effectively distinguish
olfactory preferences. Compared to SC and RESP, HR is more suitable for evaluating
olfactory preferences.

Our findings appear to contradict previous reports, which noted that the SC increases
during the preference period and that the changes are significantly different [26]. However,
this scheme involved selecting preferred products using buttons, with no response to
non-preferred products. Nevertheless, in our study, participants did not engage in any
operations that would interfere with the physiological signals of skin conductance. The
action of pressing the button generates a larger SC, which may be a factor contributing to
the inconsistency with the results presented in this paper. Another study reported results
similar to those of this paper, but it noted that the changes in SC during the preference
period showed significant differences [40]. However, this report used visual stimuli to
investigate the SC during the preference period. Generally, visual stimuli tend to elicit
stronger skin conductance responses because visual information is processed more quickly
and has a more direct connection to emotional responses [41]. This could be a possible
reason for the significant differences observed in the SC changes.

Another possibility is that olfactory preferences lead to changes in consumers’ emo-
tional states. People tend to become excited and joyful in a “like” state, while their emotions
deteriorate and become low in a “disgust” state. Researchers have demonstrated that posi-
tive emotions lead to an increase in HR, while negative emotions lead to a decrease [42].
Additionally, there are significant differences in HR between positive and negative emo-
tions, while there is no significant correlation between SC and emotions [43,44]. RESP
typically decreases with pleasant emotions. However, negative emotions often lead to
irregular breathing patterns [45].

In the comparison of the physiological signal changes between the males and females,
the trends in the SC, RESP, and HR changes are consistent with the overall analysis. The
specific differences between the genders are as follows: (1) Regardless of whether in a “like”
or “disgust” state, the average change trend in the SC in the females is greater than in the
males. (2) In the “like” state, the average change trend in the RESP in the males is greater
than in the females, while in the “disgust” state, it is less than in the females. (3) In the
“like” state, the average change trend in the HR in the males is greater than in the females,
while in the “disgust” state, it is less than in the females. However, none of these differences
demonstrate statistical significance. Therefore, there are no significant differences in the
physiological signal changes between the males and females when olfactory preferences
are present, and the autonomic responses in the males and females are consistent. This
is contrary to previous research findings [46], which showed that due to differences in
sex hormone levels, males and females exhibit different autonomic nervous responses to
stimuli. The reason for the difference in this current study from these previous findings may
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be that the olfactory stimuli in this study are relatively mild and do not reach the stimulus
levels in the previous research, resulting in no significant differences in the physiological
signal changes between the males and females in this study.

The olfactory preference prediction model we established has a high accuracy rate.
However, the influence of the SC_Mean’ on the model does not reach statistical significance.
Therefore, the effect of using SC to predict olfactory perception preferences is very poor,
which is consistent with the conclusions drawn from the statistical analyses. In addition,
the AUC results show that the HR_Mean’ has a greater impact on the model than the
AVRESP’. When the AVRESP’ and the HR_Mean’ are combined as the model inputs, the
model’s AUC is the highest. Therefore, this is the best scheme for predicting olfactory
perception preferences when using AVRESP’ and HR_Mean’ joint evaluation metrics.

However, this study still has limitations. Firstly, preferences were only categorized
into two groups, without distinguishing between different levels of preference. Therefore,
the differences in the physiological signals within the same preference category remain
unknown. Secondly, this study only collected autonomic responses from a single age
group, and future work can explore the autonomic responses of consumers from different
age groups and even different ethnicities. Thirdly, there is a wide variety of indicators
for physiological signals; however, only SC, RESP, and HR were utilized in our studies.
Future research can investigate the correlation between other physiological signals (e.g.,
electro-oculogram, skin temperature, and galvanic skin response) as well as olfactory
perception preferences. Finally, the regression model we used is simple, efficient, and
suitable for exploratory research. However, its prediction accuracy may not be as good as
other advanced models. Logistic regression was used to establish a predictive model in this
study, and other algorithms can be employed to improve accuracy in predicting preferences
in future studies. Despite the aforementioned limitations, it is important to note that
this current study serves as a preliminary investigation into this field. This study reveals
the correlation between commonly used physiological signals and consumer olfactory
preferences, providing a solid foundation for the assessment of olfactory preferences
through physiological indicators.

5. Conclusions

In summary, we have preliminarily identified autonomic responses (skin conductance,
respiration, and heart rate) in consumers with olfactory perception preferences. The results
of this study have significant practical implications for the field of fragrance products, par-
ticularly in fragrance product development and marketing. Utilizing physiological signals
can help manufacturers better understand consumers’ needs and preferences during the
early design phase of fragrances, ultimately saving time and costs. Additionally, the olfac-
tory preferences of consumers are more accurately expressed through physiological signals.
Therefore, customized fragrance designs are more easily established, and personalized
olfactory experiences can be offered to different types of consumers through customized
fragrance designs, enhancing the product’s competitiveness and appeal.
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