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Abstract: Prevalence estimates of Parkinson’s disease (PD)—the fastest-growing neurodegenerative
disease—are generally underestimated due to issues surrounding diagnostic accuracy, symptomatic
undiagnosed cases, suboptimal prodromal monitoring, and limited screening access. Remotely
monitored wearable devices and sensors provide precise, objective, and frequent measures of motor
and non-motor symptoms. Here, we used consumer-grade wearable device and sensor data from
the WATCH-PD study to develop a PD screening tool aimed at eliminating the gap between patient
symptoms and diagnosis. Early-stage PD patients (n = 82) and age-matched comparison participants
(n = 50) completed a multidomain assessment battery during a one-year longitudinal multicenter
study. Using disease- and behavior-relevant feature engineering and multivariate machine learn-
ing modeling of early-stage PD status, we developed a highly accurate (92.3%), sensitive (90.0%),
and specific (100%) random forest classification model (AUC = 0.92) that performed well across
environmental and platform contexts. These findings provide robust support for further explo-
ration of consumer-grade wearable devices and sensors for global population-wide PD screening
and surveillance.

Keywords: Parkinson’s disease; wearable sensors; digital biomarkers; remote monitoring; gait
analysis; phonation; feature engineering; mobile health technologies; early detection

1. Introduction

Parkinson’s disease (PD) is the fastest-growing neurological disorder, with 6.2 million
individuals currently affected worldwide and 14.2 million individuals projected to be
affected by 2040 [1]. PD prevalence studies are heterogeneous and often underestimate cur-
rent and projected cases of PD [2,3]. Limited capabilities surrounding screening resources
may contribute to underestimating the global PD burden [4].

PD is a multidomain disease that is traditionally characterized by motor symptoms
via in-clinic evaluations [5], which are subjective, rater-dependent, and infrequent [6,7].
Diagnostic accuracy using these methods, particularly in early-stage PD, ranges between
58% and 85% [8,9]. Population-based studies have found that 12% to 83% of individuals
presenting with PD symptoms are undiagnosed [10]. Detecting patients who are transition-
ing from prodromal to early-stage PD remains challenging [11]. Emerging biomarker-based
approaches may have promise in this domain, but these require clinic visits and invasive
spinal tap procedures that may limit their widespread adoption [12]. Thus, developing
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methods and capabilities that provide easier access to more efficient and accurate screening
resources promises to facilitate more frequent symptom monitoring, thereby enabling
earlier diagnostic and treatment interventions and overall better long-term quality of life.

Wearable devices and sensors generate information-rich continuous data streams
that can measure disease- and behavior-relevant signals [13]. Digital measures engi-
neered from wearable devices and sensor data offer opportunities to more precisely,
objectively, and frequently monitor the patient’s disease burden relative to traditional
clinical endpoints [14–16]. Numerous studies have evaluated wearable devices and sensors
in PD symptom monitoring [17–26] and machine-learning capabilities are emerging to
develop multivariate predictive models of PD [27]. For example, Arora and colleagues
recorded smartphone sensor-based assessments of voice, balance, gait, finger tapping, and
response time in a small cohort of PD patients and non-demographically matched health
comparisons and found that a random forest model achieved a sensitivity and specificity
of 96.2% and 96.9%, respectively, for predicting PD status [18]. Critically, however, the
investigators in this study performed record-wise rather than subject-wise cross-validation,
which overestimates classification performance due to the non-independence of the train-
ing and test datasets. In a separate study, Omberg and colleagues recorded smartphone
sensor-based assessments of finger tapping, voice, gait, and balance in a large cohort of
self-reported PD and non-PD participants in the mPower study and found that a random
forest model achieved an AUC of 0.80 for predicting PD status [23]. This study was limited,
however, by reduced control over enrollment screening and data quality, the use of non-
demographically matched study groups, and non-clinically confirmed PD status. Existing
studies, therefore, have been insufficient in capturing the multi-domain sequelae of PD,
focusing instead on capturing data from a single device or sensor modality. Furthermore,
despite emerging interest in using machine learning capabilities to develop multivariate
predictive models of PD [27], large-scale studies of wearable devices and sensors used by
clinically confirmed PD patients have yet to develop a robust classification model of PD
status that can be implemented globally as a widely accessible screening tool.

In the current work, our goal was to develop a PD screening tool using consumer-grade
wearable devices and sensors. To this end, we implemented feature engineering and multi-
variate machine learning modeling using data generated from the large-scale multicenter
WATCH-PD (Wearable Assessments in the Clinic and at Home in PD) study (NCT03681015).
Briefly, WATCH-PD was a one-year longitudinal study of clinically confirmed early-stage
PD and age-matched comparison group (HC) participants who completed a multidomain
(i.e., cognitive, psychomotor, speech, and mobility) battery of assessments that acquired
data from multiple sensors equipped on consumer-grade smartwatch and smartphone de-
vices [28]. Using this high-dimensional multi-sensor and multidomain dataset, we sought
to: (1) engineer a robust library of features using a combination of time- and frequency-
domain signal processing; (2) evaluate the reliability, validity, and selectivity patterns of
features for PD status; and (3) develop a machine learning model that maps engineered
features onto PD status and evaluate model performance metrics across environmental and
temporal contexts.

2. Materials and Methods
2.1. Study Design and Sample

Participants living with Parkinson’s disease (PD) and healthy controls (HC) were re-
cruited to complete the multi-center (n = 17) WATCH-PD (Wearable Assessments in the Clinic
and at Home in PD) (NCT03681015) observational study at a designated Parkinson Study
Group research site. The WCGTM Institutional Review Board approved the procedures used
in the study, and there was full compliance with human experimentation guidelines.

Criteria for enrollment into the PD group included: (1) a diagnosis that has been
clinically documented by a movement disorder specialist; (2) the participant is older
than 30 years at diagnosis; (3) a disease duration of less than two years; (4) a Hoehn
and Yahr stage of <3; (5) no baseline use of dopaminergic or other PD medications; and
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(6) no alternative Parkinsonian diagnosis. Approximately half of the PD group underwent
DaTscan screening to confirm their diagnosis. Criteria for enrollment into the HC group
included: (1) age-match to the PD group; (2) no previous PD diagnosis; and (3) no other
significant neurologic disease. All participants provided written informed consent before
study participation. The HC participants underwent clinical assessment, including MDS-
UPDRS screening, to confirm a lack of Parkinsonism.

Participants completed a one-year longitudinal study comprising both traditional
clinic visits (n = 6) and remotely monitored home visits (n = 24). Clinic visits were completed
at baseline and in months 1, 3, 6, 9, and 12. Home visits were completed every other
week. Clinical visits served to establish traditionally optimal environmental conditions for
collecting performance data from the mobile assessment battery; in contrast, home visits
served to evaluate whether similar levels of performance could be observed when the tests
were completed remotely without direct clinical supervision. Participants completed the
same mobile assessment battery in both environments.

2.2. Mobile Assessment Battery

Participants completed the BrainBaseline Movement Disorders mobile assessment
battery (Clinical ink; Winston-Salem, NC, USA) as part of their study participation [28]. The
BrainBaseline Movement Disorders mobile assessment battery was completed on a provi-
sioned Apple smartphone (iPhone XS Max or 12 Pro; OS versions 12.1-15.1; Cupertino, CA,
USA) and smartwatch (Apple Watch 4 or 5; OS versions 5.1.2-8.0) devices. Smartwatches
were worn on either the most strongly affected wrist (PD group) or the non-dominant
wrist (HC group). Smartphones were primarily held with both hands during the battery,
apart from the Gait and Balance task, in which the phone was worn on the trunk. Brief
assessment descriptions are as follows (Table 1):

• Visual Short-Term Memory (VSTM): Participants were instructed to remember four
colored squares and to respond, after a brief blank display screen, as to whether a
single probe color matched one of the previously remembered squares. Response
accuracy was the primary outcome measure.

• Symbol Digit Modalities Test (SDMT): Participants completed a modified SDMT in
which they were presented with a symbol, matched this symbol to an appropriate
number within a symbol–number key, and then verbalized the appropriate number
before proceeding to the next symbol. The total number of completed symbols was
the primary outcome measure.

• Trails: Participants completed a digital version of the Trail-Making Test, in which
they were instructed to draw lines between target objects in either numerical order
(i.e., 1-2-3-4) or in alternating number-letter order (i.e., 1-A-2-B-3-C). The total time to
completion was the primary outcome measure.

• Fine Motor: Participants were presented with a randomly positioned and oriented
major circular sector and were instructed to drag and rotate the object to match the
position and orientation of a target sector. The total number of completed objects was
the primary outcome measure.

• Finger Tapping: Participants were presented with two circular target locations and in-
structed to rapidly tap the center of each location with their pointer and middle fingers
in alternating order. The total number of taps was the primary outcome measure.

• Gait and Balance: During the Gait task, participants were instructed to walk as they
normally would for 60 s. During the Balance task, participants were instructed to
stand with their feet shoulder-width apart and remain motionless for 30 s. Motion
data were then captured from smartphone and smartwatch sensors during the Gait
and Balance tasks.

• Tremor: Tremor testing comprised Postural and Resting Tremor sub-tasks. During
the Postural Tremor sub-task, the participants were seated and instructed to maintain
their arms in a straight line at a 90-degree angle with respect to their body for 10 s.
During the Resting Tremor sub-task, the participants were seated and instructed to
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maintain their arms at rest by their sides for 10 s. Motion data were captured from
smartwatch sensors during the Tremor tasks.

• Phonation: Participants were instructed to speak and sustain the phoneme ‘ahh’ for as
long as possible within a 15-s measurement window. Speech data were captured from
the smartphone microphone and encoded in .wav format.

• Articulation: Participants were instructed to speak and repeat the phoneme sequence
‘pa-ta-ka’ as many times as possible within a 15-s measurement window. Speech data
were captured from the smartphone microphone and encoded in .wav format.

• Reading: Participants were instructed to read three sentences sampled from the Har-
vard Sentences Bank at a rate reflecting their typical reading speed. Speech data were
captured from the smartphone microphone and encoded in .wav format. In the present
work, the Reading task data were excluded from the analysis.

Table 1. Summary of the mobile assessment battery.

Assessment Functional Domain Device(s) Sensors Data Elements Sampling Interval

VSTM Working memory Smartphone Phone screen Trial type, response
accuracy, and response time Trial-by-trial

SDMT Processing speed,
working memory Smartphone Phone screen

Trial symbol, expected
number, observed number,

response accuracy, and
trial duration

Trial-by-trial

Trails Processing speed,
executive function Smartphone Phone screen

Completion time, number
of restarts, number of
errors, sample time,

detected screen position
(x, y), nearest target, and

target locations

Screen position
change

(23.9 ± 6.3 Hz;
8.1–54.2 Hz)

Finger Tapping Psychomotor
performance Smartphone Phone screen

Total taps, total alternating
taps, tap time, tap location,
tap duration, tap position

(x, y), and
tap-to-target distance

Each tap

Fine Motor Psychomotor
performance Smartphone Phone screen

Total completed, sample
time, shape position (x, y),
shape orientation, target

position (x, y), and
target orientation

Screen position
change

(10.5 ± 2.8 Hz;
1.9–23.4 Hz)

Phonation Speech Smartphone Phone microphone
Speech duration, speech

onset time, and raw
signal (.wav)

32 kHz

Articulation Diadochokinetic
speech Smartphone Phone microphone

Speech duration, speech
onset time, and

raw signal (.wav)
32 kHz

Tremor Postural stability and
resting tremor Smartwatch

Accelerometer,
gyroscope,

magnetometer,
and compass

Acceleration (x, y, z),
gravitational acceleration
(x, y, z), orientation (roll,

pitch, yaw), angular
velocity (x, y, z), magnetic
field (x, y, z), and heading

99.99 ± 0.5 Hz
[82.5–100.8 Hz]

Gait and Balance Gait and
postural sway

Smartphone,
Smartwatch

Accelerometer,
gyroscope,

magnetometer,
and compass

Acceleration (x, y, z),
gravitational acceleration
(x, y, z), orientation (roll,

pitch, yaw), angular
velocity (x, y, z), magnetic
field (x, y, z), and heading

Watch:
99.99 ± 0.5 Hz
[82.5–100.8 Hz]

Phone:
99.99 ± 0.5 Hz
[99.2–100.8 Hz]

VSTM = visual short-term memory; SDMT = symbol digit modality test.
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Clinic visits were initiated by study-site personnel and self-administered by participants.
For home visits, the participants received reminder notifications at 9:00 a.m. local time and,
once initiated, were given 1 h to complete their self-administered scheduled activities.

2.3. Feature Engineering

Features were engineered from all the continuous data sources available from each
assessment (see Table 1). Our library of features was modeled after previous works,
extracting features from cognitive [29,30], speech [31,32], and accelerometer-based mobility
assessments [33–35]. Details regarding the feature engineering routine are as follows.

VSTM. Two features were extracted from VSTM: mean response accuracy and working
memory capacity (K).

SDMT. Two features were extracted from SDMT: total completed symbol–digit pairs
and mean response accuracy.

Trails. Twelve features were extracted from Trails. The total completion time was
extracted from A and B sub-tasks. Additional features were engineered from the recon-
structed path drawn during each subtask: (1) total reconstructed path length; (2) root mean
squared error between the reconstructed and idealized paths between target locations, and
total spectral energy in the 4–10 Hz band observed within: (3) reconstructed path tracings
in the vertical screen dimension; (4) reconstructed path tracings in the horizontal screen
dimension; and (5) residual errors between reconstructed and idealized paths.

Fine Motor. Nineteen features were extracted from Fine Motor. The total completed
with the dominant hand, the total completed with the non-dominant hand, and the ratio of
the total completed with the dominant to non-dominant hands were extracted from the
summary data. For each hand, additional features were engineered from raw time series
data, reflecting the reconstructed position and orientation of target objects: (1) total path
length; (2) ratio of the total path length to the idealized path length; (3) movement speed
(pixels/millisecond); (4) total rotation; (5) the ratio of total rotation to idealized rotation;
(6) rotation speed (degrees/millisecond), and total spectral energy observed within the
4–10 Hz band: (7) reconstructed position tracings in the vertical screen dimension; and
(8) reconstructed position tracings in the horizontal screen dimension

Finger Tapping. Twenty-eight features were extracted from Finger Tapping. The
number of alternating taps, the number of total taps, and the ratio of alternating to total
taps for both dominant and non-dominant hands were extracted from the summary data.
For each hand, additional features were engineered from raw time series data, reflecting
tap position and duration: (1) median and inter-quartile range (IQR) of tap duration;
(2) median and IQR of tap distance from the target location; (3) median and IQR of tap
onset asynchrony time; (4) median and IQR of the inter-tap interval; (5) IQR of the spatial
variance in vertical and horizontal screen dimensions; and (6) peak spectral frequency of
the tap time series.

Tremor. Triaxial accelerometry data were generated with respect to the smartwatch
reference frame. Prior to implementing feature engineering libraries on Tremor data, pre-
processing routines linearly rotated the triaxial accelerometry data to triaxial gravitational
acceleration data to produce a watch-independent geospatial reference frame, in which the
z-axis forms a 90-degree angle with respect to the surface plane. Velocity and position were
derived by calculating the first and second cumulative trapezoidal integrals, respectively,
of the raw accelerometer signal.

Two hundred and thirty-one unique features were engineered from the Tremor tasks,
yielding 462 total features. Of these, 20 univariate time-domain features were engineered
separately from each accelerometer axis: (1) zero-cross rate; (2) summary statistics (median,
mean, 25th percentile (Q1), 75th percentile (Q3), IQR, and the standard deviation (SD),
kurtosis, skewness) of inter-cross interval time distributions; (3) SD and IQR of raw acceler-
ation; (4) summary statistics (mean, median SD, Q1, Q3, and IQR) of integrated velocity;
and (5) the total path length of acceleration, velocity, and position. Univariate time-domain
analyses yielded 60 unique features.
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Two multivariate time-domain features (total path length and convex hull area) were
engineered separately from each unique combination of accelerometer axes (x-y, x-z, y-z,
and x-y-z) for acceleration, velocity, and position. Multivariate time-domain analyses
yielded 24 unique features.

Forty-nine univariate frequency-domain features were engineered separately from
each accelerometer axis: (1) spectral energy within the following energy bands: 3.5–4.5 Hz,
4.5–5.5 Hz, 5.5–6.5 Hz, 6.5–7.5 Hz, 7.5–8.5 Hz, 8.5–9.5 Hz, 9.5–10.5 Hz, and 4–10 Hz;
(2) spectral roll-off at 1%, 25%, 50%, 75%, and 99% percentiles; (3) Mel-frequency cepstral
coefficients (MFCC) 1–16, calculated within the 0–49 Hz range; and (4) summary statistics
(entropy, SD, kurtosis, skewness, and flatness) of total spectral energy (0–49 Hz), spectral
energy within the 4–10 Hz band, spectral energy outside the 4–10 Hz band, and the ratio of
energy from within to outside of the 4–10 Hz band. Univariate frequency-domain analyses
yielded 147 unique features.

Gait and Balance. Triaxial accelerometry data were generated with respect to the
smartwatch and smartphone reference frame. Prior to implementing feature engineering
libraries on the Gait and Balance tasks, several preprocessing routines were performed.
Triaxial accelerometry data from both devices were linearly rotated into a common geospa-
tial reference frame, as performed on Tremor data. Smartphone and smartwatch data
streams were temporally synchronized to ensure that each sample was comparable in time.
Step-detection algorithms were implemented to identify periods in which foot strikes were
detected in the acceleration signals. First, a 10-Hz high-pass finite impulse response (FIR)
filter was applied to the raw acceleration signal, followed by the application of a 5-Hz
low-pass FIR filter to the modulus of the high-pass filtered signal. Next, the second deriva-
tive of the signal was calculated and values exceeding a 15% increase in signal relative to
the mean signal were counted as steps. Steps with an inter-step interval of greater than
1000 milliseconds were excluded from the analyses. Velocity and position were derived by
calculating the first and second cumulative trapezoidal integral, respectively, of the raw
accelerometer signal.

In total, 1053 unique features were engineered from the Gait and Balance tasks, yield-
ing 2106 total features. The time- and frequency-dependent feature engineering routines
described in Tremor were implemented on both smartphone and smartwatch data from
Gait and Balance, yielding 462 unique features.

Nineteen spectral coherence features were engineered from all 15 combinations of
accelerometer dimensions and device pairings: (1) peak spectral coherence frequency;
(2) total spectral coherence across frequencies; and (3) spectral coherence observed at 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, and 45 Hz. The coherence analyses yielded
285 unique features.

Fifty-one gait-related features were engineered from each triaxial dimension from each
device: (1) step count; (2) step frequency; (3) step distance and summary statistics (mean,
median, Q1, Q3, IQR, SD, kurtosis, skewness) features derived from the data interleaving
each step: (4) inter-step interval; (5) step velocity; (6) step distance; (7) the path length of
acceleration; (8) the path length of velocity; and (9) the path length of position. The gait
analyses yielded 306 unique features.

Phonation and Articulation. In total, 495 unique features were engineered from the
Phonation and Articulation tasks, yielding 990 total features. The total speech duration was
extracted from the summary data. Voice waveforms were divided into 15 segments of equal
length, and summary statistics (mean, median Q1, Q3, IQR, 1st percentile, 99th percentile,
IQR99, SD, kurtosis, skewness, flatness, and root mean square) were derived for 38 features
generated within each segment: (1) fundamental frequency; (2) harmonic-to-noise (HNR);
(3) jitter, in both milliseconds and percentage; (4) shimmer, in both decibels and percent-
age; (5) total energy within the 50–80, 80–120, 120–200, 200–360, 360–680, 680–1500, and
1500–4000 Hz spectral energy bands; (6) the flatness, entropy, variance, skewness, and
kurtosis of all spectral energies; (7) spectral roll-off at 25%, 50%, 75%, and 90% percentiles;
and (8) MFCC1–16.
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Evaluating Disease Relevance of Features. In an exploratory analysis, we evaluated
whether our engineered features demonstrated disease or behavioral relevance by inspect-
ing the proportion of all features that were associated with early-stage PD status. Impor-
tantly, separate feature selection routines were implemented during the machine learning
modeling phase of this analysis. To enumerate how many features showed significant
distributional differences between the PD and HC participants, univariate linear regression
was performed on each feature independently, wherein a given feature was the dependent
variable and the participant’s group (PD, HC) was a categorical independent variable
(Feature~Group [PD, HC]). F-statistics from each feature-wise univariate test were aggre-
gated into a distribution. We then evaluated the overall proportion of features showing
significance, as well as the proportion of features within each assessment showing signifi-
cance. Given the exploratory nature of this analysis, thresholds for feature-wise significance
were set to p = 0.05 and corrections for multiple comparisons were not implemented.

2.4. Machine Learning Modeling

To evaluate the robustness of the machine learning models, all machine learning
analyses were implemented using a Monte Carlo simulation (n = 100) on data sorted
subject-wise into training (90% of all participants) and test (10% of all participants) sets for
cross-validation.

Model Comparison. To identify the model that was most predictive of PD status,
model comparison analyses were conducted using the following steps in turn: feature
wrangling, feature selection, feature reduction, model development, model evaluation, and
model selection.

Data wrangling was performed to combine multiple data sources into a single data
frame prior to implementing the feature processing and modeling routines. Any given
assessment produced a single array of unique features. Performing feature engineering
routines across all sessions and participants produced an m × n matrix for each assessment,
where m is the total number of sessions completed and n is the total number of features
engineered for the assessment. Each feature matrix was merged into one data frame,
where each row was a unique participant and session. For example, if a participant
partially completed some assessments in a single session, the row for that session would
be missing some features. Features generated across all sessions—both at home and
in the clinic—were averaged together for each participant, producing a 1 × n row of
features for each participant, thereby minimizing the session and temporal variance in the
measurements and normalizing features to a normal distribution.

Feature selection routines were performed to reduce the dimensionality of the features
used during modeling by identifying those features that best discriminated between PD
and HC participants. To this end, we used univariate linear regression (as described in
Evaluating Disease Relevance of Features in Section 2.3) and sorted the features by F-statistic
value. Features (n = 100) demonstrating the highest F-statistic were selected for modeling
and the remaining features (n = 3521) were excluded from further analysis. Notably, not
all features showing a significant association with early-stage PD status were selected
for further analysis. As will be described below, feature selection was parametrically
included or omitted from the analysis routine to evaluate the impact of feature selection on
model performance.

Feature reduction routines were performed to reduce the dimensionality of the features
used during modeling by eliminating multicollinearity between features. To this end, we
used principal component analysis using the Python scikit-learn function decomposition.PCA.
Principal components (n = 10) explaining the greatest amount of variance in the input
features were selected for further analysis and the remaining principal components were
excluded from further analysis. A fixed number of principal components were selected to
ensure that the data formats were consistent across models. As will be described below,
feature reduction was parametrically included or omitted from the analysis routine to
evaluate the impact of feature reduction on model performance.
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To evaluate the impact of feature processing on model performance, the feature selec-
tion and feature reduction routines were parametrically manipulated. For feature selection,
either a subset of features (n = 100) was selected for modeling (selection +), or all features
were selected for modeling (selection −). For feature reduction, either principal compo-
nents (n = 10) were extracted from the raw features and selected for modeling (reduction +)
or the raw features were selected for modeling (reduction −). Consequently, each model
included four possible feature-processing steps: (1) selection (+), reduction (+); (2) selection
(+), reduction (−); (3) selection (−), reduction (+); and (4) selection (−), reduction (−). Prior
to model development, features in both the training (90% of participants) and test (10%
of participants) sets underwent one of these four processing routines. The performance
of each model was compared against the context of the inclusion and exclusion of each of
these feature-processing steps.

Nine unique models were developed and evaluated: logistic regression (LR), linear
discriminant analysis (LDA), support vector machine (SVM), decision tree (DT), gradient
boosted tree (GBT), random forest (RF), stochastic gradient descent (SGD), Gaussian naïve
Bayes (GNB), and multilayer perceptron (MP). Various machine learning models were
evaluated due to the lack of convergence in validated models in the current literature. Each
model underwent four feature-processing routines through separate iterations, yielding
36 total unique models. Each model was developed and trained on PD training group
labels while the PD test features and labels were withheld from analysis. Critically, training
and test features were sorted subject-wise so that feature sets for a given participant were
sorted into either the training set or the test set. The training model coefficients were saved
for model evaluation.

Model evaluation was implemented by inspecting how well each model performed
in predicting PD test labels. To this end, we applied the training model coefficients to the
independent test set features to generate predictions of the PD test group labels. PD labels
and model predictions were convolved into a 2 × 2 table, from which the model perfor-
mance metrics of accuracy, sensitivity, and specificity were calculated. These procedures
were implemented iteratively across all Monte Carlo simulations (n = 100), generating a
sample of independent model prediction metrics based on a random assortment of features
into training and test sets on each pass through the Monte Carlo simulation. Critically,
all models were evaluated on the same training and test data across each Monte Carlo
simulation. The models were trained and tested using the scikit-learn Python library.

Model selection was performed to identify the model most predictive of PD sta-
tus. To this end, we used the Wilcoxon signed-rank test to compare the paired samples
(n = 100) of model performance metrics generated by each Monte Carlo simulation itera-
tion. In cases where multiple high-accuracy models were statistically indistinguishable
from each other, the most parsimonious model was selected. Here, the most parsimo-
nious model was defined as the least complex model requiring the fewest number of
feature-processing procedures.

Cross-Environmental Predictions. We sought to determine whether the performance
and sensor data generated in clinic and home environments were of sufficient comparability
to support the remote screening of PD status based on home assessments alone. To this
end, cross-environmental learning analyses trained models on data generated by sensors
and assessments in one environment (e.g., clinic) and predicted the PD status based on
data generated by the same sensors and assessments in an independent environment
(e.g., at home). Prior to modeling, the features generated across home and clinic visits were
averaged together, yielding two vectors of data reflecting the home and visit features for
each participant. Only participants with both home and clinic vectors were submitted for
analysis. During model development, the participant data were partitioned into training
and test sets (or cohorts), as described above.

We used the model selected from the Model Comparison analysis and implemented
the same Monte Carlo simulation methods. Model training and testing routines were
conducted using a 2 (training environment: home vs. clinic visits) × 2 (testing environ-
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ment: home vs. clinic visits) × 2 (model test dataset: same vs. independent cohort)
study design. For example, one modeling condition would be to train the model on home
data generated by the training cohort and test on clinic data generated by the training cohort
(training environment = home, test environment = clinic, model test dataset = same cohort),
while a separate modeling condition would be to train on home data generated by the train-
ing cohort and test on clinic data generated by the test cohort (training environment = home,
test environment = clinic, model test dataset = independent cohort). Using this design,
we were able to evaluate: (1) how the training environment affected classification accu-
racy; (2) how the testing environment affected classification accuracy; (3) how models
trained and tested within the same environment performed relative to models trained
and tested across environments; and (4) how the cross-environment classification accuracy
differed when models were trained and tested on the same or independent cohorts across
independent environments.

A repeated-measures ANOVA was used to evaluate the omnibus effects of the training
environment, test environment, and model test dataset. Post hoc analyses focused on:
(1) the effects of cohort, to demonstrate proof-of-principle that training and testing on the
same cohort inflates classification accuracy; (2) the effects of the environment on classifica-
tion accuracy by evaluating the same and independent cohort conditions separately; and
(3) the generalizability of the classification results to the population by evaluating model
performance metrics in the clinic training environment, home testing environment, and
independent cohort conditions. Importantly, classification results from model training and
testing procedures that were performed on the same data were excluded from discussion
to preclude the obvious concerns of overfitting.

2.5. Reliability Analysis

We sought to evaluate: (1) external reliability, to assess the measurement consistency
across environments by comparing performance between clinic visits, conducted within
a relatively controlled and supervised environment, and home visits, conducted within
a relatively uncontrolled and unsupervised environment; and (2) test-retest reliability, to
assess measurement consistency across time. To this end, external reliability and test-retest
reliability were assessed for each engineered feature using intraclass correlations (ICC).
Thresholds for acceptable reliability coefficients can range from 0.45 to 0.98 [36]. In the
current work, we selected an ICC coefficient value of 0.6 as the threshold for acceptance,
representing a reliable feature for both external and test-retest reliability analyses.

ICC coefficients were derived for each feature in both external and test-retest reliability
analyses. Traditionally, reliability coefficients are reported individually for each feature or
measurement assessed. Given the volume (n = 3621) of features engineered in this work, we
evaluated the sample characteristics of our feature ICC coefficients relative to our reliability
threshold. Specifically, we calculated the proportion of feature ICC coefficients exceeding
the reliability threshold and whether the sample of feature ICC coefficients was statistically
higher than the reliability threshold. To calculate the proportion of features exceeding the
reliability threshold, we enumerated the number of feature ICC coefficients greater than
0.6 as a percentage of all features within a given assessment. To determine whether the
feature ICC coefficients were statistically higher than the reliability threshold, we used
one-sample t-tests to calculate whether the sample mean of ICC coefficients was greater
than 0.6. Similar analyses were performed only on those features identified as important
features during the machine learning modeling procedures.

2.6. Cross-Platform Validation

To test the robustness of our feature engineering pipeline, we leveraged data from
the mPower study [37]. Volunteer participants with or without a professional diagnosis of
PD utilized iPhones (4S to 6 plus, ~65% iPhone 6 of 6 plus) to complete Gait and Balance,
Verbal Phonation, and Finger Tapping assessments ad libitum.
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The feature engineering routines described above were implemented here. Due to
differences in assessments and task administration, preprocessing modifications were neces-
sary to facilitate comparison between the WATCH-PD and mPower platforms. WATCH-PD
Gait and Balance samples were restricted to 30 s (10 to 40 s) of the 60-s recording dura-
tion, whereas mPower data containing less than 25 s of data were excluded. Since the
mPower study excluded watch measurements, Gait and Balance watch data were excluded
from WATCH-PD to maintain consistency across the study data sets. In the mPower
finger-tapping assessment, the non-dominant hand was not evaluated so these features
were excluded from the WATCH-PD dataset. Similarly, tap duration was not measured in
mPower, so it was not possible to calculate duration-dependent features such as tap-off
duration, frequency, and tap duration itself. Thus, these features were also excluded from
WATCH-PD for equal comparison. Finally, verbal phonation features were unchanged
between studies. The reduced feature set derived from mPower and the equivalent features
from WATCH-PD were submitted to the same model comparison pipeline described in the
Model Comparison in Section 2.4, as described above.

2.7. Feature Comparison

We evaluated the predictive power of mPower features extracted using our pipeline
using a voting classifier in scikit-learn/python. This approach was modeled after the
ensemble approach deployed in R and described by Sieberts and colleagues [26]. Specif-
ically, a voting classifier was constructed from elastic net, random forest, support vector
machine, k-nearest neighbor, and neural network-based approaches. The classifier was
trained on 80% of the data (the per-subject median of each feature) and tested on the other
20% over 50 bootstraps, and the area under the receiver operating characteristic (auROC)
curve was used as an accuracy metric. For comparison, we repeated this approach on the
accelerometer feature sets employed by Sieberts and colleagues.

3. Results
3.1. Study Sample and Data

PD (n = 82) and HC (n = 50) participants enrolled in the WATCH-PD (NCT03681015)
study across 17 Parkinson Study Group research sites between June 2019 and December
2020 (see Section 2 for enrollment criteria). Study participants were demographically
matched across groups, with the exception that PD participants were more likely to be
male. MDS-UPDRS ratings were higher in PD participants for both total (PD: 35.2 ± 12.4;
HC: 5.9 ± 5.3; p < 0.001) and Part III (PD: 24.1 ± 10.2; HC: 2.7 ± 3.5; p < 0.001) scores [28].

As part of the 1-year longitudinal study, participants completed the BrainBaseline
Movement Disorders platform assessment application (Clinic ink; Winston-Salem, NC,
USA) (Table 1) on their smart devices. Assessments were designed to assess a range of
functional domains known to be impacted by PD. Participants completed the assessment
application during both traditional on-site “clinic” sessions (n = 6), which included addi-
tional clinical evaluations described elsewhere [38], and remote visits in which participants
completed the assessment application at “home” (n = 24). Clinic visits were completed
at baseline and in months 1, 3, 6, 9, and 12. Home visits were completed every other
week. Clinical visits served to establish traditionally optimal environmental conditions
for collecting performance data from the mobile assessment battery; in contrast, home
visits served to evaluate whether similar levels of performance could be observed when
tasks were completed remotely without direct clinical supervision. Critically, participants
completed the same mobile assessment battery (Table 1) in both clinic and home sessions.

The overall assessment application compliance was 79% and 70.4% for clinic and home
visits, respectively, and assessment application compliance rates were similar across the
study groups (p = 0.86). Participants completed 24,882 total assessments and the proportion
of all assessments completed by the PD group was consistent across each task and was
similarly consistent with the proportion of all study participants (Table 2).
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Table 2. Volume of data collection.

Assessment Total (n) PD (n) HC (n) % PD * Device(s)

Participants 132 82 50 62.1
VSTM 2820 1775 1045 62.9 Smartphone
SDMT 2817 1773 1044 62.9 Smartphone
Trails 2815 1772 1043 62.9 Smartphone

Finger Tapping 2814 1770 1044 62.9 Smartphone
Fine Motor 2812 1769 1043 62.9 Smartphone

Verbal Phonation 2820 1776 1044 63.0 Smartphone
Verbal Articulation 2813 1771 1042 63.0 Smartphone

Tremor 2605 1620 985 62.2 Smartwatch
Gait and Balance 2566 1597 969 62.2 Smartphone, Smartwatch

* Proportion of assessments generated by PD participants. VSTM = visual short-term memory; SDMT = symbol
digit modality test; PD = Parkinson’s disease; HC = healthy control.

3.2. Feature Engineering

A total of 3621 features were engineered from all platform assessments (Table 3).
Time- and frequency-dependent signal processing routines were implemented to extract
disease- and behavior-relevant features from the continuous sensor data generated from
the assessment battery (see Section 2). Features engineered from the Trails and Fine Motor
assessments were associated with the total path length of on-screen touch movement
patterns, deviations between idealized and observed on-screen completion paths, and
the degree of tremor-related activity in on-screen touch movement patterns. Features
engineered from Finger Tapping were associated with the distributional properties of tap
duration times, inter-tap onset asynchrony, inter-tap interval times, spatial variance in the
tap location and distance from the target tap location, and peak tap frequency. Features
engineered from Tremor were associated with the distributional properties of acceleration,
velocity, acceleration zero-cross rate, the total path length of acceleration and velocity,
the total area of acceleration and velocity over time, spectral activity within the tremor
frequency range, spectral roll-off, and Mel-frequency cepstrum coefficients (MFCC) 1–16.
Features engineered from Gait and Balance were associated with the spectral coherence
between smartwatch and smartphone acceleration patterns, the distributional properties
of step count, step frequency, inter-step interval times, and the total path length between
steps, in addition to the same features derived from Tremor. Features engineered from the
Phonation and Articulation assessments were associated with the distribution properties
of pitch, harmonic-to-noise ratio, jitter, shimmer, spectral energy bands, spectral roll-off,
and MFCC1–16.

Table 3. Proportion of engineered features that are selective for PD status across each assessment.

Assessment Features (n) Percentage of All Features Selectivity (%) *

VSTM 2 0.05% 0%
SDMT 2 0.05% 50%
Trails 12 0.3% 50%

Finger Tapping 28 0.8% 78.6%
Fine Motor 19 0.5% 73.7%

Verbal Phonation 495 13.7% 11.5%
Verbal Articulation 495 13.7% 14.5%

Tremor 462 12.7% 62.1%
Gait and Balance 2106 58.2% 44.1%

* Proportion of features showing significant differences between the PD and HC groups. VSTM = visual short-term
memory; SDMT = symbol digit modality test.

In an exploratory analysis, we evaluated whether our engineered features demon-
strated disease or behavioral relevance by inspecting the proportion of all features asso-
ciated with early-stage PD status. Briefly, we performed feature-wise univariate linear
regression and aggregated all 3621 F-statistic values into a distribution (Figure 1; see
Section 2 for more details). We found that 1398 of all feature-wise univariate linear regres-
sion tests demonstrated significance between PD and HC participants, indicating that 38.6%
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of all features were associated with early stage-PD status. Next, we evaluated which assess-
ments generated features that were significantly associated with early-stage PD status at a
proportion higher than chance (p = 5%). To this end, we grouped the F-statistics from each
feature-wise univariate test by assessment and implemented the same analysis described
above. We found that nearly all assessments generated features significantly associated
with early-stage PD status at a proportion higher than chance, except for VSTM (Table 3).
Separate routines were implemented for feature selection during the machine learning
modeling analysis.
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Figure 1. Evaluating feature selectivity. Linear regression was performed on each feature inde-
pendently to evaluate feature selectivity for early-stage PD status. F-statistics from feature-wise
linear regression were aggregated into a distribution and the threshold for significance was set to
p < 0.05 (red line). In fact, 38.6% of all features were significantly associated with early-stage PD
status. Variability in feature selectivity was observed across assessments (Table 3).

3.3. Machine Learning Model Comparison

To identify the optimal model for classifying PD status using features engineered from
the assessment battery, a model comparison analysis was performed on data aggregated
across all study visits. Briefly, we used a Monte Carlo simulation (n = 100) to evaluate
the robustness of model performance metrics across nine machine learning models, im-
plementing parametric manipulations of feature selection and feature reduction routines
(see Section 2) via univariate linear regression and principal component analysis, respec-
tively. For any given iteration of the Monte Carlo simulation, the same training (90% of
all subjects) and test (10%) datasets were implemented across all model construction and
evaluation phases, respectively, whereas the sorting of the training and test datasets was
randomized across the simulation iterations using subject-wise cross-validation. Critically,
feature selection and feature reduction routines were only implemented on the subject-wise
training datasets.

We found the most accurate and parsimonious model of PD status to be a random
forest model using raw feature values without the implementation of feature selection and
reduction routines (Figure 2A,B). The receiver-operator curve (ROC) for the random forest
model showed an area under the curve (AUC) of 0.92 (IQR: 0.85–0.95) in terms of detecting
PD status (Figure 2C). Median model performance metrics demonstrated 92.3% accuracy
(IQR= 84.6–92.3%; Figure 2D), 90.0% sensitivity (IQR = 85.7–100%; Figure 2E), and 100.0%
specificity (IQR = 80–100%; Figure 2F).
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Figure 2. Machine learning model comparison. (A) Accuracy (median ± IQR) of machine learn-
ing model as a function of each model evaluated. Each modeling routine was preceded with (+)
or without (−) feature selection and feature reduction routines (see legend). Model classification
accuracy was sorted by value and all models with statistically similar classification accuracy values
(Wilcoxon signed-rank test) were identified as the optimal models (black line). The random forest
model without feature selection or feature reduction routines (red) was the most accurate and parsimo-
nious model. (B) The sensitivity and specificity of each model were plotted as a function of each other.
Four values are present for each model, representing the inclusion or exclusion of feature selection and
feature reduction routines. (C) The receiver-operator curve (ROC) for the random forest model with-
out feature selection or feature reduction routines across all Monte Carlo simulations (n = 100) showed
an area under the curve (AUC) of 0.92 (IQR: 0.85–0.95) in detecting PD status. (D–F) Distribution of
model classification accuracy (D), sensitivity (E), and specificity (F) for the random forest model with-
out feature selection or feature reduction routines across all Monte Carlo simulations (n = 100).
Median values for each model performance metric (red line) are denoted. (DT = decision tree;
GBT = gradient boosted tree; GNB = Gaussian naïve Bayes; LDA = linear discriminant analysis;
LR = logistic regression; MP = multilayer perceptron; RF = random forest; SGD = stochastic gradi-
ent descent; SVM = support vector machine).

Evaluating feature importance for predicting PD status in the random forest model
revealed that the Gait and Balance, Tremor, and Finger Tapping tasks produced the 50 most
important features (Figure 3A). Feature importance was calculated as the accumulation of
the impurity decrease within each tree in the random forest model. Finger Tapping features
(n = 3) were associated with tapping efficiency in both the dominant and non-dominant
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hands and variance in tap duration in the dominant hand. Gait and Balance features (n = 39)
were derived primarily from the smartwatch during the Gait sub-task and were associated
almost exclusively with the distribution around spectral activity in the Tremor (4–10 Hz)
frequency band. Tremor features (n = 8) were derived primarily from the Resting Tremor
sub-task and were similarly associated with the distribution around spectral activity in the
Tremor (4–10 Hz) frequency band. Critically, these features represent the most important
and selective features from the total feature set and are not representative of all selective
features. Indeed, 38.6% of all 3621 features were selective for PD status, including more
heuristic features such as gait metrics.
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Figure 3. Random forest model feature importance. (A) Feature importance values (x-axis) for
the features with the highest importance (n = 50; y-axis). Feature importance was calculated as
the accumulation of the impurity decrease within each tree in the random forest model. The most
important features were derived from the Finger Tapping (red), Gait and Balance (blue), and Tremor
(magenta) tasks. (B) Cumulative probability distribution of the proportion of features represented
within each assessment as a function of features ordered by importance. Features engineered from
SDMT, Finger Tapping, Trails, Fine Motor, and Tremor were proportionally ranked higher in feature
importance relative to chance (dotted black line). (C) Cumulative probability distribution of the
proportion of features generated from the watch, phone, and watch–phone synchronization from the
Gait and Balance task as a function of features ordered by importance. Features engineered from the
watch were ranked proportionally higher in feature importance relative to features engineered from
the phone and watch–phone synchronization.

We next determined whether the relative frequencies of important features could be
due to the relatively higher frequency of features generated within each assessment. The
relative proportions of each task among the most important features (Finger Tapping = 6%;
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Gait and Balance = 78%; Tremor = 16%) were higher than the proportion of features relative
to each task (Table 3). The cumulative probability distributions of features within each
task as a function of feature importance revealed that the SDMT, Finger Tapping, Trails,
Fine Motor, Gait and Balance, and Tremor tasks all contributed important features at a
rate higher than chance (Figure 3B). Given the preponderance of watch-specific features
demonstrating superior importance, we further compared feature importance between
smartphone and smartwatch devices during the Gait and Balance task. Critically, the
same features were derived from both the smartwatch and smartphone, supporting this
comparison. The cumulative probability distributions of features generated from the watch,
phone, and synchronization between the smartwatch and smartphone demonstrated that
watch-specific features were generally superior in this task (Figure 3C).

We next sought to evaluate how the random forest model performed when introduced
to cross-environmental manipulations.

3.4. Cross-Environmental Predictions

We sought to determine whether the performance and sensor data generated in clinic
and home environments were of sufficient comparability to support remotely screening
PD status based on home assessments alone. Using the same random forest model and
approach described above, training and test datasets were parametrically constructed from
the home and clinic environments, where the models were trained on clinic (or home) data
and tested on both home and clinic data. Thus, we were able to compare the within- and
cross-environment model predictions. To determine whether our model was generalizable
to the population or restricted to the current study sample, we evaluated cross-environment
predictions for data generated by the same or independent cohorts (see Section 2 for more
details). Only subjects who completed sessions both at home and during clinic visits were
included in the analysis (n = 126; PD = 78, HC = 48).

A repeated-measures ANOVA on model classification accuracy revealed a significant
three-way interaction between the training environment (home vs. clinic), test environment
(home vs. clinic), and model test datasets (same vs. independent cohorts) (F(1,99) = 198.67,
p < 0.0001) (Figure 4A–C). As expected, classification accuracy was lower when the models
were tested on independent cohorts relative to the same cohort (p < 0.0001). Classification
accuracy for models tested on the same cohort across environments (e.g., trained on home
performance data and tested on clinic performance data) was better when the models were
trained on home data relative to clinic data (p = 0.0007), which may be due to the better
representation of symptom heterogeneity in the larger volume of measurements collected
at home relative to clinic visits. Critically, however, the classification accuracy for models
tested on independent cohorts was statistically indistinguishable across environments
(p > 0.14), suggesting that independent validation in a separate dataset would not be
contingent on the environment in which the data were collected.

The practical application of this approach would support remotely screening new
patients at home before ever visiting a clinic. Using this framework, we hypothesized that
models based on clinic visits using the current assessment battery would accurately predict
PD status in an independent cohort of remotely monitored patients who completed the
same assessment battery at home. To test this hypothesis, models were trained on clinic
data from one cohort and tested on home data from a separate cohort. Median model
performance metrics under these methods demonstrated 92.3% accuracy (IQR = 84.6% to
92.3%; Figure 4D), 88.9% sensitivity (IQR = 85.7% to 100.0%; Figure 4E), and 100% specificity
(IQR = 77.1% to 100.0%; Figure 4F). These results suggest that BrainBaseline classifiers are
robust to changes in the environment and may be reliably deployed in both home and
clinical settings.
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Figure 4. Cross-environmental learning. (A–C) Mean model classification accuracy (A),
sensitivity (B), and specificity (C) for random forest model predictions as a function of training
and test environmental contexts (home or clinic) (error bars represent the standard error of the mean).
Model predictions were generated for either the same subjects (within; blue bars) or independent
subjects (between; orange bars). Classification accuracy was higher when predictions were made on
the same relative to independent subjects (p < 0.0001) and when models were trained on home data
relative to clinic data (p = 0.0007). When model predictions were made on data generated by indepen-
dent subjects, no difference in classification accuracy was observed across environmental contexts
(p > 0.14). (D–F) Distribution of model classification accuracy (D), sensitivity (E), and specificity (F)
for the random forest model trained on clinic data and tested on home data in independent subjects
across all Monte Carlo simulations (n = 100). Median values for each model performance metric (red
line) are denoted.

3.5. Cross-Platform Analysis

We next determined whether our feature engineering and machine learning approach
is platform-agnostic and—as a consequence—robust across study platforms and protocols.
To this end, we leveraged our feature engineering approach to extract features from the
mPower study dataset [37]. These data were contributed by users of the Parkinson mPower
mobile application as part of the mPower study developed by Sage Bionetworks and
described in Synapse. mPower differs from WATCH-PD in several ways, including a larger
sample (n = 1087 PD and 5581 HC), remote participation, self-reported diagnosis, and
iPhone-only assessments of Gait and Balance, Finger Tapping, and Verbal Phonation.

We derived fewer features (n = 1271) that were common to both WATCH-PD and
mPower assessments. Features were submitted using the machine learning approach
described above. Analysis of the reduced WATCH-PD feature set revealed that the most
accurate and parsimonious model was a random forest model without feature selection
or reduction, with an AUC of 0.83 (IQR: 0.75–0.88) in detecting PD status (Figure 5A).
The median model performance metrics were as follows: 84.6% accuracy (Figure 5B; IQR:
76.9–87.8%), 100% sensitivity (Figure 5C; IQR: 85.7–100%), and 75% specificity (Figure 5D;
IQR: 62.5–90.6%). Analysis of the mPower feature set revealed that a gradient boosted
tree model without feature selection or reduction was the best-performing model with an
AUC of 0.70 (Figure 5E; IQR: 0.66–0.73), 86.2% accuracy (Figure 5F; IQR: 84.8–88.3%), 67.5%
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sensitivity (Figure 5G; IQR: 60.6–71.4%), and 94.6% specificity (Figure 5H; IQR: 92.5–96.0%).
We hypothesized that the lower sensitivity in the mPower study was due to imbalanced
group sizes (n = 448 PD, 1155 HC). To evaluate this hypothesis, we randomly selected a
subset of HC participants that was equal in number to the PD group and performed the
same model comparison analysis. Again, a gradient boosted tree model without feature
selection or reduction was the most accurate and parsimonious model, achieving an AUC
of 0.82 (Figure 5I; IQR: 0.79–0.84) for detecting PD status. The model performance metrics
were as follows: 84.1% accuracy (Figure 5J; IQR: 81.4–86.6%), 85.7% sensitivity (Figure 5K;
IQR: 81.2–88.7%), and 82.7% specificity (Figure 5L; IQR: 79.5–86.5%).
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Figure 5. Evaluating the mPower dataset. Distribution of AUC (A,E,I), accuracy (B,F,J), sensitivity
(C,G,K), and specificity (D,H,L) for model classification results across all Monte Carlo simulations
(n = 100) for the reduced feature sets common to both the mPower and WATCH-PD study datasets.
In the WATCH-PD reduced feature set (A–D), a random forest model without feature selection or
feature reduction was the best-performing model. In both the imbalanced (E–H) and balanced (I–L)
mPower feature sets, a gradient boosted tree model without feature selection or feature reduction was
the best-performing model. Median values for each model performance metric (red line) are denoted.

Each dataset exhibited similar patterns of feature importance. In contrast, a lower
percentage of WATCH-PD features (31.5%) were significant, relative to mPower features
(48% imbalanced and 39% balanced). In each dataset, a large proportion of Finger Tapping
features were selective for PD status: 88.9% in WATCH-PD, 77.8% in mPower imbalanced
dataset, and 77.8% in the mPower balanced dataset. Gait and Balance features showed
similar levels of selectivity for PD status across WATCH-PD (39.4%), mPower imbalanced
(32.1%), and mPower balanced (25.9%) datasets. By contrast, Verbal Phonation demon-
strated higher levels of PD selectivity in the mPower imbalanced (62.9%) and balanced
(51.9%) datasets relative to WATCH-PD (10.9%).

3.6. Feature Reliability

Reliable endpoints are critical to clinical trial design and patient monitoring. Here,
we sought to evaluate: (1) external reliability, to assess measurement consistency across
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environments; and (2) test-retest reliability, to assess measurement consistency across
time. To this end, we used intra-class correlations (ICC) to evaluate both measures of
reliability in all engineered features. An ICC coefficient value of 0.6 was selected as the
threshold for acceptable reliability [36]. Given the volume (n = 3621) of features that were
engineered, we evaluated the sample characteristics of ICC coefficients relative to reliability
thresholds by calculating the proportion of coefficients exceeding the reliability thresholds
and assessing whether the sample mean of coefficients was statistically higher than the
reliability thresholds.

We found that 76.4% of all features demonstrated acceptable external reliability. A
preponderance of features was above the external reliability thresholds for Finger Tapping
(92.9%), Gait and Balance (74.3%), and Tremor (88.1%) assessments (Figure 6A). ICC coeffi-
cients were statistically higher than the external reliability thresholds for all assessments
except for SDMT and Trails (Figure 6B) (Table 4). Similarly, we found that 77.6% of all
features demonstrated acceptable test-retest reliability. A preponderance of features was
above the test-retest reliability thresholds for Finger Tapping (92.9%), Gait and Balance
(76.3%), and Tremor (79.2%) assessments (Figure 6C). ICC coefficients were statistically
higher than test-retest reliability thresholds for all assessments except VSTM, SDMT, and
Trails (Figure 6D) (Table 4).
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Figure 6. Feature reliability. (A,B) The external reliability of each feature was evaluated using
intraclass correlations (ICC) between the clinic and home measurements. The proportion of features
higher than the threshold for moderate ICC values (ICC = 0.6) (A) and mean ICC values (error bars
represent the standard error of the mean) across all features (B) were evaluated for each assessment.
(C,D) The test-retest reliability of each feature was evaluated using ICC between measurements
across all time bins. The proportion of features higher than the threshold for moderate ICC values
(ICC = 0.6) (C) and mean ICC values (error bars represent the standard error of the mean) across all
features (D) were evaluated for each assessment. (E,F) Distribution of the ICC coefficients, only for
features with the highest feature importance values (Figure 3A). ICC coefficients were significantly
higher than the threshold (ICC = 0.6; red line) for both external reliability (p < 0.00001; (E)) and
test-retest reliability (p < 0.00001; (F)) analyses.
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Table 4. Summary of features demonstrating moderate or higher reliability.

External Reliability Test-Retest Reliability

Above
Threshold

(%) *

Above
Threshold

(p-Value) **

Above
Threshold

(%)

Above
Threshold
(p-Value)

VSTM 100 <0.00001 100 0
SDMT 100 0.073 100 0.13
Trails 50.0 0.73 33.3 0.35

Finger Tapping 92.9 <0.00001 92.9 <0.00001
Fine Motor 78.9 0.0017 84.2 <0.001

Verbal Phonation 75.8 <0.00001 78.2 <0.00001
Verbal Articulation 74.7 <0.00001 80.6 <0.00001

Tremor 88.1 <0.00001 79.2 <0.00001
Gait and Balance 74.3 <0.00001 76.3 <0.00001

* Proportion of features demonstrating moderate or higher ICC coefficients (ICC = 0.6). ** Level of significance
for one-sample t-test between all features and the threshold for moderate reliability (ICC = 0.6). VSTM = visual
short-term memory; SDMT = symbol digit modality test.

We next focused the same analysis on only those features most important for predicting
PD status in the random forest model (Figure 3A). We found that 98% of these features
(ICC = 0.93 ± 0.07) were above the external reliability thresholds (t(49) = 33.90, p < 0.00001)
(Figure 6E). We similarly found that 96% of these features (ICC = 0.92 ± 0.12) were above
the test-retest reliability thresholds (t(49) = 18.46, p < 0.00001) (Figure 6F).

4. Discussion

Consumer-grade wearable devices and sensors offer the potential for improved PD
prevalence and surveillance metrics via broader access to screening tools. Here, we used
a combination of feature engineering and multivariate machine learning modeling to
develop a PD screening tool based on data generated from the large-scale multi-center
WATCH-PD study. Our approach focused on clinically confirmed early-stage PD and HC
participants who generated high-dimensional data from multiple sensors while completing
a multidomain (i.e., cognitive, psychomotor, speech, and mobility) battery of assessments
on consumer-grade smartwatch and smartphone devices over a one-year period. We
engineered a library of low-level signal-based disease- and behavior-relevant features
from the wearable device and sensor data generated by participants during their study
participation. Our machine learning model comparison approach revealed a random
forest model that predicted early-stage PD status with high accuracy, sensitivity, and
specificity that persisted across changes in environmental contexts. Moreover, the same
feature engineering and model selection approach also accurately classified later-stage
PD status in an independent dataset generated on a different platform. Together, these
results demonstrate the potential of consumer-grade technologies in screening early-stage
PD status.

Numerous studies have evaluated wearable devices and sensors in PD symptom
monitoring [17–26], though these studies focused on capturing data from a single device
or sensor modality to the exclusion of capturing the multi-domain sequelae of PD. Fur-
thermore, few among these studies have evaluated whether wearable devices and sensors
can generate predictive models of PD status with direct applications to patient screening
and surveillance [18,23,26]. Two studies evaluated separate cohorts of early-stage PD
patients who completed voice, finger tapping, gait, balance, and memory assessments on a
smartphone [18,23]. Arora and colleagues (2015) evaluated a small cohort of PD patients
(n = 10) and non-demographically matched HC (n = 10) participants [18]. Using their
features, they found that a random forest model of PD status achieved sensitivity and
specificity of 96.2% and 96.9%, respectively. Critically, however, investigators performed
record-wise rather than subject-wise cross-validation, which overestimates classification
performance due to the non-independence of training and test datasets [39]. Thus, this
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study was limited by the small sample size, non-demographically matched study groups,
and overestimated classification performance. Omberg and colleagues (2021) evaluated
population-level cohorts of self-reported PD patients (n = 1414) and self-reported non-PD
participants (n = 8432) participating in the unsupervised, remotely completed mPower
study [23]. Using their chosen features, they found that a random forest model of self-
reported PD status achieved an AUC of 0.80. In a subsequent crowdsourcing analysis of the
same study’s data [26], the best crowdsourced model was a deep-learning neural network
that achieved an AUC of 0.87. This study was limited, however, by its reduced control
over enrollment screening and data quality, non-demographically matched study groups,
and non-clinically confirmed PD status. In the current work, in contrast, we evaluated a
larger demographically matched and clinically confirmed cohort of PD (n = 82) and HC
(n = 50) participants, who completed visits both in the clinic and remotely while at home.
Participants completed a battery of multidomain assessments that more comprehensively
captured PD symptoms, including upper extremity tremor and bradykinesia using the
smartwatch, relative to previous studies. Using a more appropriate machine learning
methodology, including subject-wise cross-validation, our random forest model achieved
superior classification performance. Importantly, our comprehensive modeling results
converge with prior machine learning approaches demonstrating the superiority of tree-
based models, such as random forests, in classifying PD status. Indeed, the same feature
engineering and modeling approach selected a gradient boosted tree model that accurately
classified participants in the mPower study. Furthermore, we sought to understand the
boundary conditions of our model by evaluating its performance across environmental
contexts and found that our model performs equally well when tested on clinic data col-
lected in a controlled environment and home data remotely collected in an uncontrolled
environment. Taken together, we have instrumentally extended our understanding of how
device and sensor selection, assessment-to-disease mapping, and analytic methodologies
are critical to tracking PD status in real-world settings.

We sought to directly compare the features generated by the watch and phone to
understand whether either device is more effective at predicting PD status. To this end,
our analysis focused on the same set of features being engineered from acceleration-based
signals and generated concurrently from the watch and phone during the gait task. No
other task generated similar data streams or features from both devices. We found that
watch-derived features were probabilistically more important than phone-derived features,
indicating that features related to arm swing drawn from the watch are more important
than features related to gait parameters drawn from the phone in predicting PD status. This
finding raises important considerations regarding the minimization of patient burden and
the minimal number of devices and sensors required to capture and classify disease-relevant
signals. Both the devices used in the current work captured disease-relevant information.
Indeed, the exercise of mapping disease-relevant features onto multidimensional clinical
scales, such as the MDS-UPDRS, demands multiple sensors and devices. Here, the watch
captured those measurements relevant to tremor and arm swing, whereas the phone cap-
tured those measurements relevant to gait, speech, and finger tapping measurements. In
other studies, for example, the Roche PD Mobile Application v1 used only a smartphone to
evaluate Parkinsonian symptoms [20], whereas the subsequent Roche PD Mobile Applica-
tion v2 added a smartwatch to better capture bradykinesia symptoms and passive mobility
measurements [21]. Despite the apparent advantage of having multiple devices, a better
resolution of patient symptom burden is not achieved with numerous sensors. Lonini and
colleagues, for example, developed models of bradykinesia and tremor and demonstrated
that a model including features from a single hand acceleration sensor performed just as
well as a model including features from multiple sensors distributed across both hands,
arms, and thighs [22]. Thus, a single smartphone and smartwatch set is sufficient for
minimizing patient burden while maximizing Parkinsonian symptom sensitivity.

Our approach has strong applicability for developing population-wide screening tools
to detect early-stage PD. Using a combination of feature engineering and machine learning
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model comparison routines on sensor data streams generated from a fit-for-purpose mobile
PD application, we were able to construct a Random Forest model that predicted early-stage
PD status with 92% accuracy. Clinical diagnostic accuracy, in comparison, ranges between
58 and 85% [8,9]. While early detection is achievable using standard clinical methodologies
in the absence of remote technologies, both current practice and the existing evidence
suggest that early PD is underdiagnosed, and testing demonstrates low repeatability. Our
approach may, therefore, support improvements in diagnostic accuracy and reductions in
the prevalence of symptomatic undiagnosed PD cases [11]. Critically, our approach aims to
provide a platform for remotely screening individuals for PD and is, therefore, not intended
to be a diagnostic tool. Indeed, the current platform could be a complementary tool to the
MDS-UPDRS, whereby individuals identified as having PD based on the platform readout
would require clinical evaluation to evaluate, diagnose, and identify the stage of their
disease. Furthermore, the same platform and approach show similar promise in classifying
disease status and progression in other movement disorders, including amyotrophic lateral
sclerosis [40,41]. Using this remote technology platform, both physicians and patients may
be better equipped to screen and monitor the transition to early-stage PD and other move-
ment disorders, thereby minimizing the clinic and patient burden, remotely generating
and accumulating diagnostic evidence over time, facilitating earlier diagnosis and access to
treatment, and improving the long-term quality of life.

Our feature engineering and machine learning approach performed well on the
mPower study data, an independent dataset collected from later-stage PD patients on
a different platform. This study shared Gait and Balance, Verbal Phonation, and Finger
Tapping assessments with WATCH-PD. Using a reduced feature set derived from the
shared assessments across the platforms, we showed that a random forest model produced
a classification of WATCH-PD status that was in the upper range of clinical diagnostic
accuracy (84.6%). Critically, another tree-based classifier performed well on the same
feature set derived from the mPower dataset (gradient boosted tree; 86.2% accuracy for the
imbalanced dataset and 84.1% accuracy for the balanced dataset). While demonstrating
accuracy metrics that are commensurate with clinical accuracy, models derived from the
reduced feature set still underperform compared to the random forest classifier trained
on the full WATCH-PD dataset (92.3%). One potential explanation for reduced accuracy
is that the mPower study only collected sensor data from a smartphone, excluding mea-
surements from smartwatches that produced features that were putatively more important
than phone-based features in the WATCH-PD data, as described above. Regardless, these
results suggest that our approach to feature engineering and model selection is platform-
agnostic and, thus, may be applicable to a variety of existing and future studies. Standards
will need to be developed, however, to account for inter-study differences in assessment
implementation, sampling rate, and device type [42].

Several study limitations demand further consideration and research to better under-
stand the potential of remote digital health technologies in supporting population-wide
early-stage PD screening. (1) The sensitivities reported here may have been affected by the
fact that our study comprised an enriched sample of formally diagnosed early-stage PD
patients, who may have had more severe symptoms relative to non-diagnosed individuals
living with PD. Indeed, we developed models of PD status using clinically confirmed
patients to ensure that our model labels mirrored the ground truth diagnosis. Developing
our models against traditional clinician ratings, which are demonstrably less accurate than
biomarker confirmation, would have resulted in a less accurate model and a subsequently
less useful tool for remotely screening PD status. To ensure that the current screening
tool can detect non-diagnosed individuals living with a lower symptom burden, our ap-
proach and model must be validated in an independent study comprising a larger sample
with more heterogeneous Parkinsonian symptoms. (2) Low-level signal-based features
(e.g., acoustic audio features) were prioritized over high-level model-based heuristic fea-
tures (e.g., speech lexical features). In PD, for example, both low-level signal-based [43] and
high-level model-based heuristic [44] features have been developed for bradykinesia. Here,
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we prioritized low-level signal-based features to fully characterize the rhythmic activity
embedded within the device- and sensor-generated signals produced by neurotypical
and Parkinsonian patterns of speech and movement. Further work focused on directly
comparing low-level against high-level features will be necessary from the perspectives
of model predictability and explainability. (3) There are potential concerns over model
overfitting, given the large volume of features (n = 3621) and a relatively small number of
subjects (n = 132). These concerns, however, are mitigated by our analysis design. First, we
parametrically introduced feature selection and feature reduction routines, ensuring that
models constructed from saturated feature sets were compared against models constructed
from feature sets with reduced dimensionality. Second, we implemented cross-validation
procedures to ensure that model training and testing were performed on independent
datasets, preventing any influence of overfitting during the model development of our
evaluation of model performance. While it is true that some models demonstrated rela-
tively low cross-validation accuracy, these models were equally represented across feature
selection and feature reduction imputations. Thus, the selection of our best-performing
model—a random forest model constructed from a saturated feature set—was not due
to overfitting. Validating our model in a larger study sample with greater heterogeneity
in Parkinsonian symptomatology will further seek to address these concerns. (4) The
binary classification of early-stage PD was prioritized over predicting MDS-UPDRS scores
because we focused on evaluating the utility of the current platform as a screening tool.
Consequently, we were unable to evaluate our features and model against the clinical
gold-standard MDS-UPDRS, including comparing our model against MDS-UPDRS scores,
understanding the additional diagnostic value of our platform relative to clinical gold stan-
dards, and developing predictive models of PD severity and progression. (5) Our analysis
was agnostic to the longitudinal design of this study. Indeed, the current work aimed
to assess the potential of our approach and platform for use as a screening tool without
the requirement to track changes over time. Future analyses will focus on furthering our
approach by evaluating feature sensitivity and digital phenotype progression over time.

PD is the fastest-growing neurological disorder [1], impairing multiple functional
domains, including cognition, motor coordination, speech, and mobility [7]. Contributors
to the underestimation of the global PD burden [2,3] include low diagnostic accuracy with
clinical standard measures [8,9], symptomatic undiagnosed cases [10], and challenges in
identifying prodromal patients transitioning to PD [11]. Broader access to objective, repeat-
able, and validated remote screening assessments that capture the multidomain features of
PD symptomatology stands to improve our understanding of the global PD burden and to
facilitate time to treatment and care. Here, we extend our understanding of how remotely
monitored consumer-grade wearable devices and sensors can contribute to better global
surveillance and greater availability of PD screening. Using our comprehensive platform
approach, we demonstrate that PD status can be remotely evaluated population-wide
across environmental conditions with high accuracy, sensitivity, and specificity. Further
validation in an independent study cohort and subsequent regulatory approval will be
necessary to align this research field with the roadmap recommended by the Movement
Disorders Society Task Force on Technology [45].
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