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Abstract: This research proposes constructing a network used for person re-identification called
MGNACP (Multiple Granularity Network with Attention Mechanisms and Combination Poolings).
Based on the MGN (Multiple Granularity Network) that combines global and local features and the
characteristics of the MGN branch, the MGNA (Multiple Granularity Network with Attentions) is
designed by adding a channel attention mechanism to each global and local branch of the MGN.
The MGNA, with attention mechanisms, learns the most identifiable information about global and
local features to improve the person re-identification accuracy. Based on the constructed MGNA,
a single pooling used in each branch is replaced by combination pooling to form MGNACP. The
combination pooling parameters are the proportions of max pooling and average pooling in com-
bination pooling. Through experiments, suitable combination pooling parameters are found, the
advantages of max pooling and average pooling are preserved and enhanced, and the disadvantages
of both types of pooling are overcome, so that poolings can achieve optimal results in MGNACP and
improve the person re-identification accuracy. In experiments on the Market-1501 dataset, MGNACP
achieved competitive experimental results; the values of mAP and top-1 are 88.82% and 95.46%. The
experimental results demonstrate that MGNACP is a competitive person re-identification network,
and that the attention mechanisms and combination poolings can significantly improve the person
re-identification accuracy.

Keywords: person re-identification; attention mechanism; combination pooling; max pooling; average
pooling

1. Introduction

The task of person re-identification aims to find images of the same person’s identity,
in gallery of images, matched with query images [1]. A query image and an image matched
of a person with the same identity have differences such as lighting, pose, viewpoint,
occlusion, background clutter, etc., which makes person re-identification challenging [2–5].

Deep neural networks are often implemented for feature extraction in person re-
identification. Some networks usually only focus on the global features of persons’ images
for re-identification and ignore the local details. On the other hand, others just employ the
local features of images and ignore the global features. The MGN [6] is a network used to
conduct re-identifications with good identification accuracy, which combines global and
local features and selects ResNet-50 as the backbone network to extract the basic features of
an image, and then uses three branches to learn both the coarse-grained global features and
the medium-grained and fine-grained local features. The combination of global and local
features for person re-identification improves the person re-identification accuracy. The
MGN with good identification accuracy has been chosen for research to further develop an
advanced approach.

The attention mechanism helps to concentrate on important information in the data [7,8],
and it is applied in various aspects [7,8]. When image recognition and person re-identification
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are under consideration, the attention mechanism focuses on important features in the im-
ages [9]. The enhancement of important features makes it easier to distinguish, match, and
identify person images, so the accuracy of the image recognition and person re-identification
can be improved [9].

The attention mechanism is often implemented to learn the global features of an image
and find the most important and most recognizable feature regions of an entire image
in image recognition and person re-identification. This article has conducted research,
analysis, and experiments on the MGN and attention mechanism. The global and local
features extracted by the MGN are the features of fixed areas in an image. The application
of the attention mechanism in the global area is conducive to learning the most important
features of an entire image. The application of the attention mechanism in the local area
helps master the most important features in the local area of an image. The application of
both the global and local features derived by the attention mechanisms together can further
improve the accuracy of person re-identification.

Pooling is a common operation in convolutional neural networks (CNNs) [10]. Also,
pooling plays an important role in the MGN used for person re-identification since the
local features of the MGN branch are obtained by equally dividing the global features into
upper, lower, and upper middle and lower parts by the pooling method. The features
before the poolings are run are global, and the height H, width W, and dimension (number
of channels) C of the features are not 1, and the features are represented by H × W × C.
After the poolings are run, there exist global features and local features, and the width
and height of all features are 1, the dimension is not 1, and the features are represented
by 1 × 1 × C. If focused on both local and global features, only the dimensional (channel)
attention mechanism can work.

The commonly used pooling methods include max pooling and average pooling,
which have their advantages and disadvantages. The poolings used in the MGN are Max
poolings. If max pooling and average pooling can be used together, and the appropriate
combination proportions of two pooling methods can be found through experiments,
the combination pooling can preserve the advantages of the two pooling methods and
overcome the disadvantages of the two pooling methods; thus, it can improve the accuracy
of person re-identification.

The network that uses the attention mechanisms to focus on global and local features
of the branch is called the MGNA when the initial network MGN is chosen. Then, the
network that uses combination poolings instead of max poolings is called MGNACP when
the MGNA is chosen.

The research contributions can be summarized as follows:
A person re-identification network, the MGN, has been chosen and it integrates global

and local features to achieve good accuracy in person re-identification.
By utilizing the attention mechanisms on both the global and local features of the MGN,

the MGNA enhances the identifiable quality of features to improve person re-identification
accuracy.

Combination poolings are used by MGNACP on the basis of the MGNA in place of
max poolings in order to retain the advantages and overcome the disadvantages of max
and average pooling, which can enhance person re-identification accuracy.

The remaining part of this article is structured as follows. Section 2 reviews the related
works regarding feature representation, the attention mechanism, and pooling aspects.
The methods are thoroughly explained in Section 3, which also includes the structure of
the MGN network, the attention mechanism and MGNA network, max pooling, average
pooling, combination pooling, and the MGNACP network. Section 4 compares the results
of the proposed method with those of state-of-the-art approaches. The experimental results
of the MGNA (MGN with attentions) were discussed. The parameter proportions of
combination poolings were explored, and the best combination pooling parameters of
MGNACP were found through experiments. The research is concluded in Section 5.
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2. Related Work
2.1. Feature Representation

When person re-identification is under investigation, feature representation is a very
important aspect. The better the learned feature representation, the higher the accuracy of
person re-identification. The feature representation of person re-identification is divided
into global features, local features, and both global and local features. In the global feature
representation, ref. [11] utilized ResNet-50 as the backbone network and only used global
features to perform re-identification through various available training techniques. Ref. [12]
took pointwise convolution, depth convolution, and multi-feature flow to extract the fea-
tures of different scales and aggregate these features for person re-identification. Ref. [13]
constructed two peer-to-peer deep networks and trained them using mutual learning strate-
gies for person identification. Ref. [14] employed Singular Vector Decomposition (SVD)
to optimize deep representation learning and generate more discriminative vectors for
person re-identification. Ref. [15] added a relationship-aware global attention mechanism
to ResNet to enable the network to better extract global features and increase accuracy.

When local features are under consideration, ref. [16] divided the image into horizon-
tally overlapped strips, and extracted features from these strips for person re-identification
by implementing histogram, color extraction, and texture operators. Ref. [17] learned the
individual local feature projection of each image sample according to the current data
distribution, and projected all the samples into a common discriminant space for the
similarity metric. Ref. [18] proposed a bilinear convolutional network to learn the multi-
region features of images for person re-identification. Ref. [19] divided the image into two
non-overlapping upper and lower parts, and used two convolutional networks to train
classification on the upper and lower parts. During testing, the features of the upper and
lower parts were combined to conduct the distance metric. In [20], the image was fixed
and evenly divided into multiple non-overlapping parts. The features extracted from each
part of the image were matched with the corresponding area for the metric. Outliers were
assigned to the area with the most similar match.

Among global and local representations, ref. [21] adaptively learned discriminative
global and local representations. Ref. [22] generated middle modal images from the images
of different modalities by utilizing the middle modal generator, extracted the combined
features of the original image and the middle modal image by dual-stream network,
and then extracted their global and local features for person re-identification. Ref. [23]
used partial features and a pyramid spatial pooling module to learn the identity and
attributes of the person and perform person re-identification. In the data enhancement
stage, ref. [24] converted low-resolution images into super-resolution images, and then the
features were extracted from low-resolution and super-resolution images to obtain fusion
features. Next, pose estimation was selected as a guide to extract global and local features
for person re-identification. Ref. [25] built two branches after the backbone network, one
for extracting global features, and the other for deriving global and local features for
person re-identification. After extracting features from the backbone network, ref. [26]
constructed two branches. One was used to extract global features, the other evenly split
features into multiple parts. The part prediction alignment method is used in the local
branch to align the predicted distributions between each part and then combine the global
and local features for person re-identification. Ref. [27] constructs two branches. One
branch extracted the global features and used the graph convolutional network to learn the
image structure. The other branch extracted local features, utilized graph convolution to
learn the spatial relationships of local features, and combined global and local features to
person re-identification. Ref. [28] learned global features and local features, as well as the
relationship between global and local features, to enhance the connections between local
and global contexts. Ref. [29] used a horizontal pyramid to learn global and multi-scale
local features, and then took max pooling and average pooling to generate each partial
feature representation and concatenate them for person re-identification.
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The MGN person re-identification network is chosen, which combines local and global
features to identify person images and achieve good person re-identification results [6].

2.2. Attention Mechanism

The attention mechanism is a mechanism that focuses on important information in
things and can be applied to many fields such as text mining [30,31], speech recognition [32],
and image recognition [33,34]. For example, in computer vision, the attention mechanism
also has many applications, including image classification [35], object detection [36], face
recognition [37], 3D vision [38], and person re-identification [39,40]. There are some com-
monly used and representative attention mechanisms. In [34], the Recurrent Attention
Model (RAM) uses Recurrent Neural Network (RNN) to generate attention mechanisms.
In [33], the Spatial Transformer Network (STN) is a spatial attention mechanism, which
learns invariance to translation, scaling, rotation, and other more generic warping methods
to accurately learn various changes of input data. It also spatially transforms and aligns
the input data adaptively, so that the more important areas of the image in space are paid
attention to. Ref. [35] took Global Average Pooling (GAP) instead of a fully connected layer
for classification when classifying images, which can minimize the number of parameters
while maintaining classification accuracy. The scores generated by GAP functioned as
weights to linearly assign a weight to each image in the feature channel for linear addition
to obtain the Class Activation Map (CAM). The CAM generated by GAP was input into
the original image to make the classification interpretable, that is, it can be observed which
areas of an image are most discriminative. Ref. [41] introduced the squeeze and excitation
network (SE), a channel attention mechanism, that uses global average pooling and a fully
connected network to learn the correlation between global information and channels, and
it focuses on important channels. Ref. [42] proposed the Dual Attention Network (DANet),
which uses the self-attention mechanism to form two types of attention mechanisms: one is
spatial attention and the other is channel one. The outputs of spatial attention and channel
attention are summed to form a hybrid attention mechanism that focuses on both space
and channels.

Specifically, when person re-identification operation is under consideration, ref. [43]
proposed a Siamese learning architecture that is able to understand the identity-aware
invariant representation of cross-view matching and simultaneously learn the attention
mechanism and the attention consistency mechanism to identify the consistent attention
regions in images of the same identity. Ref. [40] established a high-order attention module
to learn more subtle information, enhance image discrimination, and enrich the image
information. Ref. [44] fused semantic features at different levels to guide the generation of
attention modules for person re-identification. Ref. [45] constructed multiple branches to
learn the Class Activation Map (CAM) in different regions and proposed a ranking activa-
tion map, which helped obtain more discriminative features for person re-identification.
Ref. [46] employed the Class Activation Map (CAM) as supervision information to generate
spatial attention mechanisms, used the similarity between spatial attention mechanisms
and channel feature maps as channel attention, and performed spatial and channel attention
on the features extracted by the backbone network for person re-identification. Ref. [47]
built a Siamese network to extract features from image pairs. After the backbone net-
works extracted features, they used the self-attention mechanism to focus on the important
features of a single image and then applied the mutual attention mechanism to focus on
the common features of image pairs for person re-identification. Ref. [48] combined an
attention mechanism through a spatial attention module and channel attention module
and applied it in the multi-layer convolutional network for person re-identification.

The implemented attention mechanisms are constructed based on the characteristics of
the MGN, and they employ channel attention mechanisms that not only focus on important
global information, but also on significant local information in each part. Different from the
SE channel attention [41], the implemented attention mechanisms do not utilize the fully
connected network but the convolutional network with H × W × C of 1 × 1 × C.



Sensors 2024, 24, 5638 5 of 29

2.3. Pooling

Pooling is an important component of CNNs and can increase the image receptive field
and allow the network to be better optimized while preventing overfitting and keeping
the feature map from being deformed. The commonly used pooling methods include
max pooling and average pooling. Different CNNs employ different pooling methods.
LeNet [49] used average pooling, AlexNet [50] and VGG [51] used max pooling, and ref. [10]
applied global average pooling in CNNs. GoogLeNet [52] implemented max pooling and
global average pooling. DenseNet [53] utilized max pooling, average pooling, and global
average pooling. ResNet [54] conducted max pooling and global average pooling.

In person re-identification, ref. [55] proposed a focused attention network with a
lightweight and multi-scale scheme to learn multi-scale feature representation for person
re-identification. When the data are input in, they are first augmented, and after the initial
feature extraction is run by a convolutional network, the average pooling is employed and
then sent to the multi-scale focused network. When person re-identification is performed,
the features first perform global average pooling. Ref. [56] put forward a two-stream
network, one branch worked for extracting features from the original RGB image data,
and the other one was responsible for extracting features from color images generated
by randomly exchanging channels, to reduce color interference and perform person re-
identification. After the image features were extracted by the backbone network, global
average pooling and global max pooling were utilized to sum the features, and then the
features were extracted for person re-identification. Ref. [57] selected discriminative video
fragments in the video through the correlation insight model, and then sent the video
fragments to the discrepancy description network to generate the discrepancy descriptor
for person re-identification in videos. When extracting features in a correlation insight
model, max pooling was applied. Ref. [58] extracted global features by a multi-scale global
attention module. Additionally, local feature extraction considers the continuity of each
part, which makes global features more reasonable and local features more detailed. During
feature extraction, multiple modules employed global average pooling and global max
pooling to extract the features. In [59], there were three branch subnetworks after the
backbone network was constructed. They included an accessory attribute network to
extract personal decoration information, a body attribute network to describe the regional
structure of a person, and a color attribute network to describe color features. A tree feature
selection algorithm was applied to construct global features for person re-identification.
In the accessory attribute network, global average pooling was performed on each local
feature when extracting local features. The color attribute network also utilized global
average pooling when extracting color features. In [60], the proposed network could
divide global features into local features according to the posture module, and it could find
the correlation between different sample postures through the self-attention and external
attention modules. At the same time, it can also not be disturbed by posture samples with
large variations. The interaction between self-attention and external attention modules and
the pose-guided module relied on average pooling.

The pooling method in this article is used to implement combination pooling, which
is not the simple addition of max pooling and average pooling, but identifies the most
suitable proportions of two pooling methods through experiments and combines them.
Thus, the two pooling operations complement each other to overcome disadvantages and
preserve advantages.

3. Methods

This section introduces the MGN structure, attention mechanism method of the
MGNA, and combination pooling method of MGNACP. Table 1 lists all the symbols
used in this section.
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Table 1. Symbols used in Section 3.

Symbols Explanations

Pi, i = 1, 2, 3
Branches of the MGN
or branches of the MGNA
or branches of the MGNACP

g
In the MGN and MGNA, it is the global feature branch using GMP
or
In MGNACP, it is the global feature branch using GCP

pj, j = 1, 2 or j = 1, 2, 3

In the MGN and MGNA, it is the local feature branch using LMP
or
In MGNACP, it is the local feature branch using LCP
When branch i = 2, the number of stripe j = 1, 2; when branch i =3, the number of
stripes j = 1, 2, 3

zPi
g , i = 1, 2, 3

The features obtained by using GMP in each of the three branches of the MGN
or
The features obtained by using GCP in each of the three branches of MGNACP

zPi
pj , i = 2, 3

then i = 2, j = 1, 2
then i = 3, j = 1, 2, 3

The features obtained by using LMPs in the P2 and P3 branches of MGNACP
or
The features obtained by using LCPs in the P2 and P3 branches of MGNACP

f Pi
g , i = 1, 2, 3

In the MGN, global features zPi
g continue to extract features to obtain three

256-dimensional global features
In MGNACP, global features vPi

g continue to extract features to obtain three
256-dimensional global features

f Pi
pj , i = 2, 3,

then i = 2,j = 1, 2
then i = 3, j = 1, 2, 3

In the MGN, local features zPi
pj further extract features to obtain five 256-dimensional

local features
In MGNACP, local features vPi

pj further extract features to obtain five 256-dimensional
global features

conv1×1 1 × 1 convolution

BN Batch normalization

ReLU ReLU activation function

Sigmoid Sigmoid activation function

vPi
g , i = 1, 2, 3 Global features obtained through the attention mechanisms

vPi
pj , i = 2, 3

then i = 2, j = 1, 2
then i= 3, j = 1, 2, 3

Local features obtained through the attention mechanisms

R f , f = 1, 2, 3, · · · , F Pooling area, the feature area where the pooling window is located

f , f = 1, 2, 3, · · · , F The sequence number of the pooling area that the feature is divided by the pooling
window

F The number of pooling areas that the feature is divided by the pooling window∣∣∣R f

∣∣∣, f = 1, 2, 3, · · · , F The number of pixels in the pooling area where the pooling window is located

i, i= 1, 2, 3, · · · , |R| The ith pixel in the pooling area where the pooling window is located

ui, i = 1, 2, 3, · · · , |R| The ith pixel value of the pooling area where the pooling window is located

R The entire pooling area, that is, the feature area where the pooling window is located is
the entire feature

|R| The number of pixels in the entire pooling area R

v f , f = 1, 2, 3, · · · , F The output value after the pooling calculation of the f th pooling area R f in the feature

v The output value of the entire pooling area R after the pooling calculation
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Table 1. Cont.

Symbols Explanations

λ λ ∈ (0, 1), the proportion of max pooling and average pooling in combination pooling

GMP Global Max Pooling

LMP Local Max Pooling

GAP Global Average Pooling

LAP Local Average Pooling

GCP Global Combination Pooling

LCP Local Combination Pooling

MGN Multiple Granularity Network

MGNA Multiple Granularity Network with Attentions

MGNACP Multiple Granularity Network with Attention Mechanisms and Combination Poolings

3.1. MGN Network

The Multiple Granularity Network (MGN) is a method for person re-identification
combining multiple features and global features in images. Coarse-grained information
is obtained from the global features of the image, while the medium-grained and fine-
grained information are captured from multiple partial features of images. The MGN is
composed of a backbone network and three branch networks. The backbone network is
responsible for extracting the basic features of images through the ResNet-50 network with
high recognition accuracy. The three branches further extract deeper semantic features of
different granularities based on the features extracted by ResNet-50. The parameters of
these three branches are not shared, but they share the ResNet-50 backbone network. The
upper branch of the MGN extracts coarse-grained semantic information. The upper branch
uses the Global Max Pooling (GMP), and the output features are then conducted with a
1 × 1 convolution, batch normalization, and ReLU activation functions. The final output
dimension is 256. The middle branch of the MGN extracts medium-grained semantic
information. The middle branch uses GMP and Local Max Pooling (LMP). The former is
used to learn global features, and the latter evenly horizontally divides the feature into
upper and lower stripes. Each output feature learns medium-grained semantic features in
the same way as the upper branch setting. The lower branch extracts fine-grained semantic
information and utilizes GMP and LMP. The former is not divided to learn global features,
and the latter evenly and horizontally divides the feature into three stripes: upper, middle,
and lower. Each output feature learns fine-grained semantic features in the same way
as the middle-branch setting. During the testing process, the upper branch is equipped
with a single 256-dimensional global feature, while the middle branch incorporates one
256-dimensional global feature and two 256-dimensional local features. Similarly, the
lower branch includes one 256-dimensional global feature and three 256-dimensional local
features. These concatenated global and local features serve as identification features for
person re-identification. The three branches of the MGN are recorded as Pi, i = 1, 2, 3.
g denotes the global feature branch that passes through GMP, pj represents the local feature
branch that passes through LMP, i = 2, j = 1, 2; i = 3, j = 1, 2, 3. The global and
local features of the three branches after GMPs and LMPs are run are shown as zPi

g , zPi
pj . It

continues feature extraction to obtain 256-dimensional global and local features, which
are recorded as f Pi

g , f Pi
pj . In testing, f Pi

g and f Pi
pj are concatenated for the distance metric for

person re-identification. For more information on the MGN network, the MGN can be
referred to [6]. The overall architecture of the MGN is demonstrated in Figure 1.
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Figure 1. The overall architecture of the MGN. GMP: Global Max Pooling; LMP: Local Max Pooling;
conv1*1 reduce: the features are reduced to 256 dimensions by a 1 × 1 convolution, and then subjected
to batch normalization and ReLU activation function.

3.2. Attention Mechanism Method of MGNA

The three branches of the MGN after ResNet-50 form the three global features zPi
g ,

i = 1, 2, 3 and five local features zPi
pj , i = 2, j = 1, 2; i = 3, j = 1, 2, 3. Global features

learn the overall information of the picture, and local features grasp the local information
of the upper, lower, and upper middle and lower parts of the picture. The attention
mechanisms learn the most discriminative information in the area of interest and focuses
on this information. Although the MGN learns global and local features, global features
are dedicated to learning global information, and local features are dedicated to learning
local information. But there is also the most discriminating information in global and local
information respectively. The attention mechanisms can learn the most discriminating
features of global and local features and improve identification accuracy. The MGN has
both global and local features only after GMPs and LMPs, so the attention mechanisms for
both global and local features can only be added after GMPs and LMPs. The features after
GMPs and LMPs are run are 1 × 1 × 2048 convolution, where 1 × 1 denotes the height and
width of the feature, and 2048 represents the number of channels of the feature, so we only
need to employ the channel attention mechanisms to focus the features.

The channel attention mechanism performs a 1 × 1 convolution (the feature size
becomes 1 × 1 × C/r) on the input feature (the feature size is 1 × 1 × C), and the channel
dimensions are reduced from 2048 to 128. After passing through the ReLU activation
function (the feature size is 1 × 1 × C/r), another 1 × 1 convolution is performed (the
feature size becomes 1 × 1 × C), and the channel dimensions are increased from 128 to 2048.
Then, it passes through the Sigmoid activation function (the feature size is 1 × 1 × C), and
the output value is the channel attention weight. The learned channel attention weights
are multiplied with the input features by the channel-wise so that more attention is paid to
the important feature information. C is the number of channels of the feature and r is the
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reduction ratio used to limit model complexity and aid the generalization of the attention
mechanism. The global attention mechanism is defined by

vPi
g = Sigmoid

(
conv1×1

(
ReLU

(
conv1×1

(
zPi

g

))))
· zPi

g , i = 1, 2, 3 (1)

The local attention mechanism is delineated by

vPi
pj= Sigmoid

(
conv1×1

(
ReLU

(
conv1×1

(
zPi

pj

))))
· zPi

pj , i = 2, j = 1, 2; i = 3, j = 1, 2, 3 (2)

The attention mechanism is shown in Figure 2.
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Figure 2. The schematic diagram of a channel attention mechanism. conv1*1_relu reduce: the feature
is reduced to 128 dimensions by a 1 × 1 convolution, and then subjected to ReLU activation function;
conv1*1_sigmoid increase: the feature is increased to 2048 dimensions by a 1 × 1 convolution, and
then subjected to Sigmoid activation function.

The global features vPi
g , i = 1, 2, 3 and local features vPi

pj , i = 2, j = 1, 2; i = 3,
j = 1, 2, 3 are obtained by the attention mechanisms, which continues to extract features.
In the original MGN without the attention mechanism, the features are reduced from 2048
dimensions to 256 dimensions through performing a 1 × 1 convolution of the features zPi

g

and zPi
pj , and then passing through batch normalization and ReLU activation function to

obtain the features f Pi
g and f Pi

pj , which are delineated as

f Pi
g = conv1×1

(
BN

(
ReLU

(
zPi

g

)))
, i = 1, 2, 3 (3)

f Pi
pj = conv1×1

(
BN

(
ReLU

(
zPi

pj

)))
, i = 2, j = 1, 2; i = 3, j = 1, 2, 3 (4)

In the MGNA, the features are reduced from 2048 dimensions to 256 dimensions
through performing a 1 × 1 convolution of the features vPi

g and vPi
pj , and then batch nor-

malization and ReLU activation function are used to obtain features f Pi
g and f Pi

pj , which are
delineated as

f Pi
g = conv1×1

(
BN

(
ReLU

(
vPi

g

)))
, i = 1, 2, 3 (5)

f Pi
pj = conv1×1

(
BN

(
ReLU

(
vPi

pj

)))
, i = 2, j = 1, 2; i = 3, j = 1, 2, 3 (6)

In testing, f Pi
g and f Pi

pj are concatenated for the distance metric for person re-identification.
The attention mechanisms are added to the MGN (including global and local branches)

to learn the most discriminating information in global and local features. The method
of adding attention mechanisms to the MGN branch is denoted by MGNA (Multiple
Granularity Network with Attentions), as shown in Figure 3.
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Figure 3. The overall architecture of MGNACP. GCP: Global Combination Pooling; LCP: Local
Combination Pooling; Attention: a channel attention machine; conv1*1 reduce: the features are
reduced to 256 dimensions by a 1 × 1 convolution, and then they are subjected to batch normalization
and ReLU activation function; Combination Poolings: the combination pooling part of each branch
of MGNACP, where GCP is used to obtain global features and LCP is used to obtain local features;
Channel Attentions: the channel attention mechanism part of each branch of MGNACP, where each
global and local branch adds a corresponding channel attention mechanism (the attention mechanism
of each global branch is conducive to learning the most important information of the global feature.
The attention mechanism of each local branch is conducive to learning the most important information
of local feature).

3.3. Combination Pooling Method of MGNACP

The CNN (Convolution Neural Network) has a powerful feature learning ability and
is widely implemented in various fields of artificial intelligence. Convolution and pooling
are its two important components. The pooling operation has a fixed-size pooling window
that can slide and calculate on the feature. When compared with convolution, after the
parameters are fixed, the pooling operation does not learn the hyperparameters. The
pooling operation is mainly employed in the spatial dimension to change the data size
and reduce the size of the feature. The pooling operation retains substantial features and
reduces redundant ones as well as the amount of calculation, so that the network can be
better optimized while preventing overfitting. The pooling operation also increases the
image receptive field. The size of the input feature area corresponding to one pixel of the
output feature is the receptive field. When performing the pooling operation, the pooling
window takes multiple pixels of the feature before pooling, which corresponds to one pixel
after pooling, so the receptive field of the feature after pooling is increased. The pooling
operation helps keep the feature invariant, including translation, scaling, and rotation
invariant, which means that the input features with slight translation, scaling, and rotation
are pooled, and the output results are the same. While max pooling takes the maximum
value in the pooling area as output, average pooling computes the average value in the
pooling area as output.



Sensors 2024, 24, 5638 11 of 29

Pooling first determines the size of the pooling window and the stride size when the
pooling window slides. The pooling value of each region that the pooling window slides
through in the feature serves as the output feature value. R f represents the pooling area,
the feature area where the pooling window is located. f indicates the sequence number of
pooling areas which the feature is divided by the pooling window. F refers to the number
of pooling areas which the feature is divided by the pooling window.

∣∣∣R f

∣∣∣ denotes the
number of pixels in the pooling area where the pooling window is located. i represents the
ith pixel in the pooling area where the pooling window is located. ui describes the ith pixel
value in the pooling area where the pooling window is located. R means the entire pooling
area, that is, the feature area where the pooling window is located is the entire feature. |R|
indicates the number of pixels in the entire pooling area R. v f represents the output value
after the pooling calculation of the f th pooling area R f in the feature. v designates the
output value of the entire pooling area R after pooling calculation. λ ∈ (0, 1) denotes the
proportion of max pooling and average pooling in combination pooling. λ is determined
experimentally and discussed in Section 4.

(1) Max pooling

Max pooling is defined as:

v f = max
ui∈R f

ui, f = 1, 2, 3, · · · , F, i = 1, 2, 3, · · · ,
∣∣∣R f

∣∣∣ (7)

Max pooling can be divided into local max pooling and global max pooling. The
pooling window is smaller than the size of the feature, and the feature is divided into
several areas for max pooling, which is Local Max Pooling (LMP). The pooling window
is the same size as the feature, the feature is not divided into several areas, and the entire
feature is performed via max pooling, which is Global Max Pooling (GMP).

Global max pooling is defined as:

v = max
ui∈R

ui, i = 1, 2, 3, · · · , |R| (8)

(2) Average pooling

Average pooling is defined as:

v f =
1∣∣∣R f

∣∣∣∑ui∈R f
ui, f = 1, 2, 3, · · · , F, i = 1, 2, 3, · · · ,

∣∣∣R f

∣∣∣ (9)

Average pooling can be divided into local average pooling and global average pooling.
When the pooling window is smaller than the feature size, the feature is divided into
several regions for average pooling, which is called Local Average Pooling (LAP). The
pooling window is the same size as the feature, the feature is not divided into several
regions, and the entire feature is performed via average pooling, which is Global Average
Pooling (GAP).

Global average pooling is defined as:

v =
1
|R|∑ui∈R ui, i = 1, 2, 3, · · · , |R| (10)

(3) Combination pooling

Max pooling selects the maximum pixel value of the pooling area as output, which
can save the texture information of the image, but also ignores detailed information.
Average pooling picks the average pixel value of the pooling area as the output, which can
preserve the overall feature information, but also makes the features blurry and difficult to
distinguish. By combining max pooling and average pooling, the most suitable proportions
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of two methods of pooling are determined through experiments, which not only preserve
and enhance the advantages of two methods of pooling, but also overcome the shortcomings
of two methods of pooling. Then, combination pooling is defined as:

v f = λ· 1
|R f |∑ui∈R f

ui + (1 − λ) · max
ui∈R f

ui, f = 1, 2, 3, · · · , F, i = 1, 2, 3, · · · ,
∣∣∣R f

∣∣∣ (11)

Combination pooling can be divided into local combination pooling and global combi-
nation pooling. The pooling window is smaller than the size of the feature, and the feature
is divided into several areas for combination pooling, which is Local Combination Pooling
(LCP). The pooling window is the same size as the feature, the feature is not divided into
several areas, and the entire feature is performed via combination pooling, which is Global
Combination Pooling (GCP).

Combining global pooling is defined as:

v = λ· 1
|R|∑ui∈R ui + (1 − λ)·max

ui∈R
ui, i = 1, 2, 3, · · · , |R| (12)

The combination poolings of the proposed method is derived based on the MGNA.
The pooling part of each branch implements combination pooling instead of single pooling.
Global Combination Pooling (GCP) is utilized in each branch of global pooling, and
Local Combination Pooling (LCP) is implemented in each branch of local pooling. The
parameters of combination pooling applied in each branch are the same. The proposed
method is called MGNACP (Multiple Granularity Network with Attention Mechanisms
and Combination Poolings). Through experiments, the most suitable parameters for
combination poolings are determined, that is, the proportions of max pooling and average
pooling in each combination pooling, which preserves and enhances the advantages of two
pooling methods, overcomes the disadvantages, and makes the poolings achieve the best
performance in the MGNACP. In experiments, we set the combination pooling parameter
λ ∈ (0, 1), starting from λ = 0.1 and incrementing to 0.9 in steps of 0.1. The optimal
combination pooling parameters are the combination pooling parameters λ and 1 − λ
corresponding to the best experimental result of MGNACP. The schematic diagrams of
single GCP and single LCP in MGNACP are shown in Figure 4. The overall architecture of
MGNACP is shown in Figure 3.
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4. Experimentation
4.1. Dataset and Evaluation Protocol

The experiment employs a large scale person re-identification dataset called the Mar-
ket1501, which is collected by five 1280 × 1080 high-definition cameras and one 720 × 576
low-definition camera in different areas and different angles. The collection areas of some
cameras have certain slight overlaps. Each identity is captured by at least two or more
cameras. The dataset can use query images to find pictures of people with the same identity
from different cameras. There are 12,936 training images, and the training set has 751 per-
son identities in the Market1501 dataset. There are 19,732 test pictures, and the test set has
750 person identities. A total of 1501 person identities are employed for the experiment.
There are 3368 query images in the dataset. The dataset has an average of 19.9 images per
identity. The training and test sets of the dataset select the detection boxes detected by the
person detector as annotation boxes, and the images in the query set utilize hand-drawn
ground truth boxes as annotation boxes.

The experiment employs the CUHK03 dataset collected from two cameras. The dataset
has two modes, one with hand-drawn labeled annotation boxes and one with detection
boxes detected by the person detector as annotation boxes. The experiment selects the
detection box data mode. There are 7365 training images, and the training set has 767 person
identities. There are 5332 test images, and the test set has 700 person identities. A total of
1467 person identities are employed for the experiment. There are 1400 query images in the
dataset. The dataset has an average of 9.7 images per identity.

The details of the datasets are shown in Table 2.

Table 2. The details of datasets used in the experiments.

Detail Market-1501 CUHK03

ID 1501 1467

Annotated box 32,668 14,096

Query box 3368 1400

Box per ID 19.9 9.7

Train box 12,936 7365

Test box 19,732 5332

Train ID 751 767

Test ID 750 700

Camera 6 2

To compare the results of the leading methods with those of the proposed method, we
use the mean Average Precision mAP and Cumulative Matching Characteristics (CMC)
top-1 for comparison and evaluation.

4.2. Implementation Details

The experiment used an NVIDIA TITAN X GPU to accelerate the data process in
parallel. The framework applied for the experiment is PyTorch. In the experiment, some
parameters followed the settings of the original MGN [6], and the rest of the parameters
have been improved from the original article. The input image size, data augmentation, and
parameter initialization of ResNet-50 obey the original settings. The sampling parameters
were improved in the training. Six identities were served for the training data sampled in
each mini batch and four images were randomly selected for each identity. During training,
the optimization was improved, that is, the ADAM optimizer was employed to train a
total of 600 epochs. The initial learning rate is set to 0.0002. When training to 300 epochs,
the learning rate decays to 0.00002. When training to 500 epochs, the learning rate decays
to 0.000002.
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4.3. Comparison with State-of-the-Art Methods

Table 3 reports the experimental results without re-ranking of person re-identification
on the Market1501 dataset. We report from the perspective of the learning feature repre-
sentation of person re-identification, including global features (represented by G), local
features (represented by L), global and local multiple features (represented by M), and the
learning feature method by attention mechanism (represented by A). In Table 3, the best
results of all the experiments are listed in bold, and the gray background represents the
best experimental results of each type of feature representation.

The experimental results of MGNACP are mAP of 88.82% and top-1 of 95.46%. For
the experimental results of global feature representation, the method with the best mAP
experimental results is the BoT, and the best method for the top-1 experimental results is
the OSNet. In the experimental results of the BoT, mAP and top-1 are 85.9% and 94.5%.
MGNACP is 2.92% higher than the BoT in mAP, and 0.96% higher than the BoT in top-1. In
the experimental results of the OSNet, mAP is 84.9% and top-1 is 94.8%. MGNACP is 3.92%
higher than OSNet in mAP, and 0.66% higher than the OSNet in top-1. For the experimental
results of local feature representation, PCB + RPP presents the best experimental results,
with a mAP value of 81.6% and a top-1 value of 93.8%. MGNACP is 7.22% higher than the
PCB + RPP in mAP, and 1.66% higher than the PCB + RPP in top-1. For global and local
multiple feature representations, the method with the best mAP experimental results is
the PAGCN, and the best method for the top-1 experimental results is the MGN. In the
experimental results of the PAGCN, mAP and top-1 are 87.3% and 94.4%. MGNACP is
1.52% higher than the PAGCN in mAP and 1.06% higher than the PAGCN in top-1. In the
experimental results of the MGN, mAP is 86.9% and top-1 is 95.7%. MGNACP is 1.92%
higher than the MGN in mAP, and 0.24% lower than the MGN in top-1. For methods
that use attention mechanisms to learn feature representations, the method with the best
mAP is AND, and the method with the best top-1 experimental results is MHN-6. In the
experimental results of AND, mAP is 87.8% and top-1 is 92.3%. MGNACP is 1.02% higher
than AND in mAP, and 3.16% higher than AND in top-1. In the experimental results of the
MHN-6, mAP is 85.0% and top-1 is 95.1%. MGNACP is 3.82% higher than the MHN-6 in
mAP, and 0.36% higher than the MHN-6 in top-1.

By comparing the proposed method with various methods used for person re-identification
based on learned feature representations, MGNACP achieved a very good performance in
the experimental results of the Market-1501 dataset. The experiment results of MGNACP
are higher than the mAP of all the person re-identification methods shown in Table 3, and
slightly lower than the top-1 experiment results of the MGN, but better than all of the
other top-1 experiment results shown in Table 3. The experimental results indicate that
the proposed method has achieved better person re-identification accuracy, showing that
MGNACP is useful and feasible. In Section 4.4, the experimental results of the MGNA with
the attention mechanisms and MGNACP with combination poolings are discussed more.

Table 4 reports the experimental results without re-ranking of person re-identification
on the CUHK03 dataset using MGNACP and some competitive methods. In Table 4, the
best experimental results are shown in bold. The mAP of MGNACP is 78.61%, and the top-1
is 81.57%. Among the experimental results, the better method is the MGN, whose mAP is
77.31% and the top-1 is 80.07%. MGNACP is 1.5% higher than the MGN in mAP and 1.3%
higher than the MGN in top-1 results. Among the experimental results, MGNACP is better
than all the experimental results, indicating that MGNACP is useful and feasible.

Table 5 reports the experimental results with re-ranking of person re-identification
on the Market1501 dataset using MGNACP and some competitive methods. In Table 5,
the best experimental results are shown in bold. Re-ranking has greatly improved the
experimental results of all methods. The mAP of MGNACP with re-ranking is 94.55%, and
the top-1 is 96.32%. Among the experimental results with re-ranking, the better method is
the MGN, whose mAP is 94.2% and the top-1 is 96.6%. MGNACP is 0.35% higher than the
MGN in mAP, and 0.28% lower than the MGN in top-1. Among the experimental results
with re-ranking, MGNACP has the best mAP. Except that MGNACP is slightly lower than
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the MGN in top-1, it is better than all experimental results, indicating that MGNACP with
re-ranking is useful and feasible.

Table 3. The comparison of experimental results between the state-of-the-art methods and the
proposed method on the Market-1501 dataset. G: global features, L: local features, M: global and
local multiple features, A: learning feature method by attention mechanism; the best results of all the
experiments are listed in bold, and the gray background represents the best experimental results of
each type of feature representation.

Method Top-1 (%) mAP (%)

G

DML (2019) [13] 89.3 70.5

OSNet (2019) [12] 94.8 84.9

SVDNet (2017) [14] 82.3 62.1

AOS (2018) [5] 86.5 70.4

BoT (2019) [11] 94.5 85.9

L

PCB + RPP (2018) [20] 93.8 81.6

PCB (2018) [20] 92.3 77.4

Multi-region CNN (2017) [18] 41.2 66.4

DLFOS + XQDA (2020) [16] 62.7 -

part-based CNN + XQDA (2018) [19] 83.1 61.7

M

MSP-CNN (2019) [21] 84.2 66.3

SR-DSFF + FENet-ReID (2022) [24] 90.9 -

SRFnet (2023) [25] 94.2 85.7

PPA + TS (2021) [26] 92.4 79.6

PointReIDNet (2024) [61] 90.6 75.3

PAGCN (2022) [27] 94.4 87.3

GCN (2022) [28] 95.3 85.7

HPM (2020) [29] 94.2 82.7

PCN + PSP (2018) [23] 92.8 78.8

MGN (2018) [6] 95.7 86.9

DCR (2021) [4] 93.8 84.7

A

CASN (2018) [43] 94.4 82.8

CAM-Guided Attention (2022) [46] 94.7 85.1

Mutual-Attention (2020) [47] 93.8 83.6

IANet (2019) [48] 94.4 83.1

MHSA-Net (2022) [3] 94.6 84.0

CLRA-CNN (2020) [44] 92.3 78.2

AND (2022) [62] 92.3 87.8

MHN-6 (2019) [40] 95.1 85.0

PGFA (2019) [63] 91.2 76.8

CAMA (2020) [45] 94.7 84.5

HA-CNN (2018) [39] 91.2 75.7

AL-APR (2021) [64] 89.0 74.4

MGNACP (ours) 95.46 88.82
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Table 4. The comparison of experimental results between the state-of-the-art methods and the
proposed method on the CUHK03 dataset. The best experimental results are shown in bold.

Method Top-1 (%) mAP (%)

FMN (2020) [65] 42.6 39.2

PointReIDNet (2024) [61] 53.43 48.76

PCN + PSP (2018) [23] 60.7 56.0

AND (2022) [62] 60.6 56.5

HPM (2020) [29] 63.9 57.5

DCR (2021) [4] 68.4 61.4

PPA + TS (2021) [26] 65.5 62.4

CAMA (2020) [45] 66.6 64.2

CASN (2018) [43] 71.5 64.4

MHN-6 (2019) [40] 71.7 65.4

OSNet (2019) [12] 72.3 67.8

SRFnet (2023) [25] 73.3 69.6

MHSA-Net (2022) [3] 73.4 70.2

PAGCN (2022) [27] 75.1 71.6

GCN (2022) [28] 78.5 74.7

MGN(2018) [6] (Our Imp.) 80.07 77.31

MGNACP (ours) 81.57 78.61

Table 5. The comparison of experimental results with re-ranking between the state-of-the-art and the
proposed method on the Market-1501 dataset. The best experimental results are shown in bold. CC*
denotes the result with the official CC code without hard instance memory updating mechanism and
generalized mean pooling [66].

Method Top-1 (%) mAP (%)

SRFnet (2023) [25] 95.3 93.7

PAGCN (2022) [27] 96.1 94.1

CAM-guided Attention (2022) [46] 95.1 92.7

MHSA-Net (2022) [3] 95.5 93.0

PCN + PSP (2018) [23] 94.4 90.8

MGN (2018) [6] 96.6 94.2

BoT (2019) [11] 95.4 94.2

SPReID (2018) [67] 94.6 91.0

FMN (2020) [65] 87.9 80.6

CC* + CAJ (2024) [66] 93.7 90.2

MV-3DSReID (2023) [38] 96.1 90.9

MGNACP (ours) 96.32 94.55

Table 6 reports the experimental results with re-ranking of person re-identification on
the CUHK03 dataset using MGNACP and some competitive methods. In Table 6, the best
experimental results are shown in bold. Re-ranking has greatly improved the experimental
results of all methods. The mAP of MGNACP with re-ranking is 87.82%, and the top-1 is
86.50%. Among the experimental results with re-ranking, the better method is the MGN,
whose mAP is 87.02% and the top-1 is 86.07%. MGNACP is 0.8% higher than the MGN
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in mAP, and 0.43% higher than the MGN in top-1. Among the experimental results with
re-ranking, the experimental results of MGNACP are better than all of the experimental
results, indicating that MGNACP with re-ranking is useful and feasible. As can be seen
from Tables 4 and 6, for all methods in the CUHK03 dataset, in the experimental results
without re-ranking, the top-1 experimental results are higher than the mAP experimental
results; and in the experimental results with re-ranking, the mAP experimental results are
higher than the top-1 experimental results.

Table 6. The comparison of experimental results with re-ranking between the state-of-the-art and the
proposed method on the CUHK03 dataset. The best experimental results are shown in bold.

Method Top-1 (%) mAP (%)

FMN (2020) [65] 47.5 48.5

PCN + PSP (2018) [23] 71.2 72.1

MHSA-Net (2022) [3] 80.2 80.9

SRFnet (2023) [25] 80.2 81.9

MGN (2018) [6] (Our Imp.) 86.07 87.02

MGNACP (ours) 86.50 87.82

Due to the fact that the experimental results of various methods of various types in
the Market-1501 dataset are listed, it is not easy to view them directly. Therefore, Figures 5
and 6 show the selection of the method with better experimental results in recent years from
Tables 3 and 5, as well as our method MGNACP. The results are displayed in histograms,
so that the experimental results can be demonstrated more clearly. The mAP takes into
account many factors, so it serves as the main evaluation basis for the experimental results.
We arrange the mAP values of various methods from small to large. Figure 5 displays the
mAP values, and Figure 6 draws the top-1 values, in which MGNACP has achieved the
best mAP and top-1 scores with and without re-ranking.
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Figure 7a,b show the comparison curves of experimental results between the MGN
and MGNACP in the Market-1501 dataset without and with re-ranking. The figures report
the experimental results of MGNACP in every 50 epochs of 600 training epochs, including
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mAP and top-1 values. As the training epoch continues to increase, the experimental results
tend to increase steadily. When the experimental results increased steadily, MGNACP sig-
nificantly outperformed the experimental results of the MGN in mAP and top-1, indicating
that MGNACP (MGN with Attention Mechanisms and Combination Poolings) is useful
and feasible. The gap between mAP and top-1 is narrowed through re-ranking.

Figure 8a,b show the comparison curves of the experimental results between the MGN
and MGNACP in the CUHK03 dataset without and with re-ranking. The figures report
the experimental results of MGNACP in every 50 epochs of 600 training epochs, including
mAP and top-1 values. As the training epoch continues to increase, the experimental results
tend to increase steadily. When the experimental results increased steadily, MGNACP sig-
nificantly outperformed the experimental results of the MGN in mAP and top-1, indicating
that MGNACP (MGN with Attention Mechanisms and Combination Poolings) is useful
and feasible. The experimental results without re-ranking in Figure 8a show that there is
a small gap between the results of mAP and top-1 experimental results. The re-ranking
experimental results in Figure 8b show that when the experimental results tend to stabilize,
mAP is higher than the top-1 experimental results.
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4.4. Experimental Discussion

This section is the experimental discussion section, and we discuss the Attention
Mechanisms and Combination Poolings of MGNACP.

4.4.1. Experimental Results of Attention Mechanisms

In the attention mechanisms of MGNACP, we add attention mechanisms to each
branch of the MGN (including global and local branches) to learn the most discriminative
information in global and local features. The method of adding attention mechanisms to the
MGN branches is called the MGNA. Then, we experiment with the attention mechanisms.
In Table 7, the experimental results without re-ranking of the MGN and the MGNA on
the Market-1501 dataset are listed. The mAP of the MGN is 86.9%, and the top-1 is 95.7%.
The mAP of the MGNA is 88.46%, and the top-1 is 95.01%. The MGNA with the attention
mechanisms is 1.56% higher than the MGN without the attention mechanism in mAP, and
0.69% lower in top-1.

Table 7. The experimental results without re-ranking of the MGN and the MGNA on the Market-1501
dataset.

Method Top-1 (%) mAP (%)

MGN 95.7 86.9

MGNA 95.01 88.46

Table 8 gives the experimental results with re-ranking of the MGN and the MGNA
on the Market-1501 dataset. The mAP of the MGNA is 94.33%, and the top-1 is 95.93%.
The mAP of the MGN is 94.2%, and the top-1 is 96.6%. The MGNA is 0.13% higher than
the MGN in mAP, and 0.67% lower in top-1. From the experiment, it can be seen that the
mAP improvement of the MGNA without re-ranking is greater, but the mAP of the MGNA
with and without re-ranking has improved, which manifests that the proposed method
suggesting the addition of the attention mechanisms to the MGN is useful and feasible.

Table 8. The experimental results with re-ranking of the MGN and the MGNA on the Market-1501 dataset.

Method Top-1 (%) mAP (%)

MGN 96.6 94.2

MGNA 95.93 94.33

Figure 9a,b show the comparison curves of the experimental results between the MGN
and MGNA in the Market-1501 dataset without and with re-ranking. The figures report
the experimental results of MGNACP in every 50 epochs of 600 training epochs, including
mAP and top-1 values. As the training epoch continues to increase, the experimental results
tend to increase steadily. When the experimental results increased steadily, MGNACP
outperformed the experimental results of the MGN in mAP and top-1, indicating that the
MGNA (MGN with Attentions) is useful and feasible. The gap between mAP and top-1 is
narrowed through re-ranking.

In Table 9, the experimental results without re-ranking of the MGN and the MGNA
on the CUHK03 dataset are listed. The mAP of the MGN is 77.31%, and the top-1 is 80.07%.
The mAP of the MGNA is 77.53%, and the top-1 is 80.79%. The MGNA with the attention
mechanisms is 0.22% higher than the MGN without the attention mechanism in mAP, and
0.72% higher in top-1.

Table 10 gives the experimental results with re-ranking of the MGN and the MGNA
on the CUHK03 dataset. The mAP of the MGNA is 87.38%, and the top-1 is 86.50%. The
mAP of the MGN is 87.02%, and the top-1 is 86.07%. The MGNA is 0.36% higher than
the MGN in mAP, and 0.43% higher in top-1. From the experiment, it can be seen that
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the mAP of the MGNA with and without re-ranking has improved, which manifests that
the proposed method suggesting the addition of the attention mechanisms to the MGN is
useful and feasible.
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Table 9. The experimental results without re-ranking of the MGN and the MGNA on the CUHK03
dataset.

Method Top-1 (%) mAP (%)

MGN 80.07 77.31

MGNA 80.79 77.53

Table 10. The experimental results with re-ranking of the MGN and the MGNA on the CUHK03
dataset.

Method Top-1 (%) mAP (%)

MGN 86.07 87.02

MGNA 86.50 87.38
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Figure 10a,b show the comparison curves of the experimental results between the
MGN and MGNA in the CUHK03 dataset without and with re-ranking. The figures report
the experimental results of MGNACP in every 50 epochs of 600 training epochs, including
mAP and top-1 values. As the training epoch continues to increase, the experimental
results tend to increase steadily. When the experimental results increased steadily, the
MGNA outperformed the experimental results of the MGN in mAP and top-1, indicating
that the MGNA (MGN with Attentions) is useful and feasible. The experimental results
without re-ranking in Figure 10a show that there is a small gap between the results of
mAP and top-1 experimental results. The re-ranking experimental results in Figure 10b
show that when the experimental results tend to stabilize, mAP is higher than the top-1
experimental results.
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4.4.2. Experimental Results of Combination Poolings

For the combination poolings of MGNACP, the attention mechanisms are added
to the MGN to form the MGNA and applied the combination pooling for each branch
instead of using a single pooling for each branch. We found the most suitable parameters of
combination poolings, that is, the proportions of the max pooling and the average pooling in
each combination pooling are determined so that poolings can achieve the best performance
in MGNACP through experimentation. In the experiments of each dataset, Max and Avg
represent the proportions of max pooling and average pooling in combination pooling,
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with a change step size of 0.1 for both. There are nine groups of experiments in total, the
combination pooling parameters corresponding to the best MGNACP experimental result
are the optimal combination pooling parameters.

Table 11 depicts that the experimental results for the combination pooling parameters
of MGNACP on the Market-1501 dataset are listed. The best results of the experiment
are shown in bold. The best experimental results are realized when the max pooling and
average pooling account for 0.2 and 0.8 in each combination pooling. Under optimal
combination poolings, the experimental result of mAP is 88.82%, and the experimental
result of top-1 is 95.46%. The lowest result of mAP under the combination poolings
experiment is 88.35%, and the lowest top-1 is 95.03%. The optimal result is 0.47% higher
than the lowest result in mAP, and 0.43% higher in top-1. Therefore, the optimal solution
for each combination pooling on the Market-1501 dataset is a max pooling proportion
of 0.2 and an average pooling proportion of 0.8. Figure 11a,b show the mAP and top-1
experimental results the histogram of MGNACP on the Market-1501 dataset with different
combination pooling parameters. The combination pooling parameters of MGNACP on
the Market-1501 dataset reach the best when the max pooling and the average pooling
proportions are 0.2 and 0.8. The experimental results of mAP and top-1 become the best.

Table 12 depicts the experimental results for the combination pooling parameters of
MGNACP on the CUHK03 dataset. The best results of the experiment are shown in bold.
The best experimental results are realized when the max pooling and average pooling
account for 0.3 and 0.7 in each combination pooling. Under optimal combination poolings,
the experimental result of mAP is 78.65%, and the experimental result of top-1 is 81.71%.
The lowest result of mAP under the combination poolings experiment is 76.85%, and the
lowest top-1 is 79.43%. The optimal result is 1.8% higher than the lowest result in mAP, and
2.28% higher in top-1. Therefore, the optimal solution for each combination pooling on the
CUHK03 dataset is a max pooling proportion of 0.3 and an average pooling proportion
of 0.7. Figure 12a,b show the mAP and top-1 experimental results of the histogram of
MGNACP on the CUHK03 dataset with different combination pooling parameters. The
combination pooling parameters of MGNACP on the CUHK03 dataset reach the best when
the max pooling and the average pooling proportions are 0.3 and 0.7. The experimental
results of mAP and top-1 become the best.

From the two groups of experiments, it can be seen that the combined pooling param-
eters (Max, Avg) achieved good experimental results at (0.1, 0.9), (0.2, 0.8), and (0.3, 0.7).

Table 11. The experimental results of the parameter proportions of combination poolings on the
Market-1501 dataset. The best experimental results are shown in bold.

Combination Proportion Top-1 (%) mAP (%)

Max: 0.1, Avg: 0.9 95.28 88.65

Max: 0.2, Avg: 0.8 95.46 88.82

Max: 0.3, Avg: 0.7 95.35 88.79

Max: 0.4, Avg: 0.6 95.29 88.73

Max: 0.5, Avg: 0.5 95.03 88.60

Max: 0.6, Avg: 0.4 95.16 88.35

Max: 0.7, Avg: 0.3 95.07 88.50

Max: 0.8, Avg: 0.2 95.23 88.39

Max: 0.9, Avg: 0.1 95.10 88.46
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Table 12. The experimental results of the parameter proportions of combination poolings on the
CUHK03 dataset. The best experimental results are shown in bold.

Combination Proportion Top-1 (%) mAP (%)

Max: 0.1, Avg: 0.9 81.21 78.41

Max: 0.2, Avg: 0.8 81.00 78.37

Max: 0.3, Avg: 0.7 81.71 78.65

Max: 0.4, Avg: 0.6 80.29 77.55

Max: 0.5, Avg: 0.5 79.64 76.85

Max: 0.6, Avg: 0.4 80.00 77.93

Max: 0.7, Avg: 0.3 81.00 77.58

Max: 0.8, Avg: 0.2 80.57 77.08

Max: 0.9, Avg: 0.1 79.43 77.29

5. Conclusions

This study constructs MGNACP used for person re-identification. To do so, an at-
tention mechanism is added to each global and local branch of the MGN to construct the
MGNA. Then, changing the single pooling of each branch to combination pooling forms
MGNACP. MGNACP by attention mechanisms learns the most discriminative information
of each global and local branch, and Combination Poolings preserve and enhance the
advantages of max poolings and average poolings and overcome their shortcomings, so
that the performance of poolings on MGNACP is optimized, and the accuracy of person
re-identification is improved. MGNACP achieves high re-identification accuracy, indicating
promising outcomes. In the future, we may develop a more advanced method for person
re-identification by using more advanced attention mechanisms, different pooling methods,
and distance metrics regarding the characteristics of images.
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