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Abstract: In this paper, we present a noise-robust approach for the 3D pose estimation of multiple
people using appearance similarity. The common methods identify the cross-view correspondences
between the detected keypoints and determine their association with a specific person by measuring
the distances between the epipolar lines and the joint locations of the 2D keypoints across all the views.
Although existing methods achieve remarkable accuracy, they are still sensitive to camera calibration,
making them unsuitable for noisy environments where any of the cameras slightly change angle
or position. To address these limitations and fix camera calibration error in real-time, we propose a
framework for 3D pose estimation which uses appearance similarity. In the proposed framework,
we detect the 2D keypoints and extract the appearance feature and transfer it to the central server.
The central server uses geometrical affinity and appearance similarity to match the detected 2D
human poses to each person. Then, it compares these two groups to identify calibration errors. If a
camera with the wrong calibration is identified, the central server fixes the calibration error, ensuring
accuracy in the 3D reconstruction of skeletons. In the experimental environment, we verified that
the proposed algorithm is robust against false geometrical errors. It achieves around 11.5% and 8%
improvement in the accuracy of 3D pose estimation on the Campus and Shelf datasets, respectively.

Keywords: 3D pose estimation; multi-view geometry; on-device AI; bipartite graph matching

1. Introduction

Human pose estimation has a wide range of applications, including motion capture,
surveillance, and augmented/virtual reality (AR/VR). Recent advancements in computer
vision, driven by the rapid development of machine learning algorithms such as convo-
lutional neural networks (CNN), have significantly improved human pose estimation [1].
This human pose estimation problem can be categorized into various subfields based on
the factors such as number of individuals, resulting in the following subdivisions: single
person 3D pose estimation [2,3], and multi-person 3D pose estimation [4–6]. In this paper,
we address the problem of multi-person 3D pose estimation.

In addition, 3D pose estimation problems can be classified into either a single view [4,7,8]
or multiple view system [5,6,9,10]. In multi-person 3D pose estimation problems, while
approaches for estimating 3D poses using a single camera have been proposed, they
continue to encounter challenges such as self-occlusion, motion blur, and so on. To mitigate
these problems and enhance accuracy, 3D pose estimation across multiple views has been
introduced. The multiple view system addresses the self-occlusion and motion blur by
employing geometric information from other side views. Furthermore, multi-view systems
also offer the distinct advantage of accurately representing 3D poses in a global coordinate
system through global camera calibration.

In these multiple view systems, the greater the number of connected cameras, the
more the complementary data become available. It leads to enhanced accuracy in the 3D
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pose estimation. However, this approach is constrained by the necessary bandwidth for
transmitting substantial video data to the server. For instance, when using a USB camera,
this system encounters limitations due to USB bandwidth constraints. For example, USB 3.1
Gen 1 offers a theoretical bandwidth of 5 Gbps [11]. This implies that connecting too many
cameras to a single port using USB hubs can result in system failure due to bandwidth
restriction [12]. The available bandwidth of 1000 base Ethernet is also limited to 1 Gbps [13].

In response to these limitations, researchers have explored edge processing tech-
niques [14,15]. Edge AI devices, equipped with lightweight GPUs, can detect 2D human
poses from RGB images. Instead of transmitting high-capacity RGB images, edge devices
transmit low-capacity 2D human pose results to the server, effectively solving the band-
width limitation issue. Furthermore, these systems also contribute to the structuring of a
real-time system, reducing overall processing time as each device operates simultaneously.
This paper also leverages the edge processing system as a fundamental component of our
approach for the aforementioned benefits.

However, while edge processing can enhance accuracy and reduce execution time, the
multiple view system remains sensitive to the accuracy of global camera calibration. Correct
camera calibration is essential for achieving accurate and reliable results in instances that
involve multiple view triangulation. If the camera calibration is incorrect or inaccurate, it
can introduce projection errors and affect the overall quality of the triangulation results. In
well-controlled laboratory environments, multiple cameras are tightly mounted on rigid
frames. However, in most real-world scenarios, cameras may be mounted on simple tripods
or could be installed outdoors. In such situations, the pose of a mounted camera is more
vulnerable to external disturbances, including shock, vibration, gravity, or wind [16–18].

Thus, we propose a noise-robust 3D pose estimation method through camera cali-
bration correction. The proposed system can adaptively adjust extrinsic parameters by
detecting incorrect camera calibration through a comparison of geometrical affinity and
appearance similarity. Intuitively, if it is judged to be the same person based on appearance
of their clothing but, geometrically, it appears to be a different person, this could signal an
issue with the calibration of a specific camera.

Initially, the edge device detects 2D human poses and extracts appearance features
from the RGB image. Subsequently, both the 2D human pose data and appearance features
are transmitted to the central server. The central server then matches 2D human poses across
multiple views using both the geometrical affinity and appearance similarity. Subsequently,
the central server compares the results. If the 2D human poses from a particular camera
are excluded from the geometrical affinity group, the central server selects that camera
for the updating of the extrinsic parameters. Given a 3D skeleton and a 2D skeleton from
the miscalibrated camera, we can estimate the rotation matrix and translation vector. This
process enables a noise-robust system, achieved by identifying cameras with calibration
errors and correcting their calibration adaptively.

In the experimental evaluation, we simulate the environment where the calibration
parameters of some of the cameras change considering the realistic conditions where camera
calibration may drift or become inconsistent over time. In this scenario, we compare the
accuracy of reconstructed 3D human poses across different methods. Through quantitative
and qualitative results, including PCP (Percentage of Correct Parts) score comparisons
and the visual inspection of restored 3D poses, we demonstrate that the proposed method
improves the 3D pose estimation accuracy.

In summary, the primary objective of this paper is building a noise-robust system by
using additional appearance features from conventional geometrical approaches. In the
experimental results, we verified that only 48 bits of clothing color can enhance the 3D
pose estimation accuracy. This approach could be useful in a practical distributed system
consisting of edge devices, where minimal data are transmitted to the central server due to
the limited bandwidth and computational resources.

The remainder of this paper is organized as follows: Section 2 describes the related
works. In Section 3, we explain system architecture, while Section 4 introduces our noise-
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robust 3D pose estimation framework. Section 5 presents the experimental results and,
finally, Section 6 concludes the paper.

2. Related Work

In recent years, 3D human pose estimation has seen significant advancements with
improvements in deep learning techniques and computational resources. This section
reviews the various approaches for 3D human pose estimation and edge AI approaches.

2.1. 3D Human Pose Estimation

In the rapid development of neural networks, which has led to remarkable progress in
computer vision, various strategies have been proposed for estimating 3D human poses.
DeepPose [19] first utilized a CNN model to solve the complexities of 2D human pose
estimation and achieved a significant milestone with the introduction. After that, various
researchers focused on deriving 3D poses [20–22]. For the single-person 3D human pose
estimation, according to the regression steps, prior work can be divided into two main
categories—the one-stage approach and the two-stage approach. One-stage approaches
estimate the 3D poses directly from a given image. In contrast, two-stage approaches have
two separate steps where a 2D pose is estimated first, and then the 2D pose is lifted to the
3D space. The two-stage approaches are known to have a “reducing the overfitting” effect,
considering the quantity and the quality of the labeled 3D data [1].

As mentioned earlier, the one-stage approaches directly estimate the 3D pose without
detecting the 2D poses. Li and Chan showed that deep neural networks estimate 3D human
poses from an image with a reasonable accuracy [21]. They jointly trained pose regression
tasks with multiple body part detection tasks, known as the heterogeneous multitask
framework. However, the previous CNN-based techniques for estimating 3D human
poses ignore the dependencies between the different body joint locations. To account for
dependencies and results in increased performance, Tekin et al. [23] proposed a structured
3D human pose prediction framework from monocular images. Nevertheless, relying solely
on a single viewpoint remains challenging because of occlusions, complex poses, or actions.
To overcome these limitations and leverage complementary information from multiple
perspectives, two-stage approaches were proposed.

These two-stage strategies solve the occlusion problem by employing a multi-view
methodology. The multi-view methodologies use geometrical relationships between multi-
views to estimate the 3D pose based on the 2D joint locations. The basic architecture of
these models implements cascaded 2D and 3D estimation. Takahashi et al. [24] first pro-
posed an algorithm of estimating the 3D human pose from multi-view videos captured by
unsynchronized and non-calibrated cameras. In the proposed algorithm, a 2D pose detector
estimates 2D poses from multi-view videos and then a median filter applies a cubic spline
interpolation to the output data to reduce detection errors. Then, it selects two cameras
which are initialized by the standard SfM (Structure from Motion) and decomposed into
extrinsic parameters to estimate the 3D pose through triangulation. Also, A lightweight
solution [25] is proposed using the Direct Linear Transform (DLT) layer. The DLT layer
represents the association between the 3D and 2D poses from multi-views as a homoge-
neous linear system. Then, it resolves the 3D pose using singular value decomposition
(SVD). Although remarkable solutions for single-person 3D pose estimation have been
proposed, research on 3D multi-person pose estimation is still limited because matching
2D poses across multiple views is challenging. A typical approach is to use the epipolar
constraint to verify if two 2D poses are projections of the same 3D pose for each pair of
views [26]. Dong et al. [9] introduced a novel fast and robust method that is based on a
multi-way matching algorithm that aims to cluster the detected 2D poses among multi-view
images. Moreover, they combined geometric and appearance information for cross-view
matching. Then, the 3D pose is separately predicted for each individual from the resulting
matched 2D poses. In addition, Tanke et al. [27] introduced a simple approach to solve the
association problem, using a bipartite matching algorithm to track multiple people over
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the multi-view images. Subsequent research has continued to explore 3D pose estimation
using geometrical features. Remelli et al. [28] presented a lightweight solution for 3D pose
recovery from multi-view images captured by spatially calibrated cameras. Their method
leverages 3D geometry to fuse input images into a unified latent representation of pose,
independent of camera viewpoints. Additionally, more recent work [29] has employed a
cross-view U-shaped graph convolutional network (CV-UGCN) that performs triangulation
to lift 2D keypoints into coarse 3D poses and refines them for improved accuracy.

2.2. Edge AI-Based 3D Human Pose Estimation

Traditionally, 3D human pose estimation requires high-performance computing re-
sources; however, edge devices have recently become widely used for deploying AI models,
with the recent advances in hardware performance and AI model optimization. Con-
vNeXtPose [30] introduced a mobile 3D human pose estimation model, achieving real-time
performances. They achieved such state-of-the-art performances while requiring fewer pa-
rameters and FLOPS compared to the existing models. Hossain et al. [31] proposed RRMP,
which performs 2D and 3D pose estimation in real-time for mobile edge computing devices.
They verified that the RRMP performs with an average of 40 fps in real-time execution.

In addition, two-stage approaches with edge processing have also been proposed.
Bultmann et al. [14] introduced a method for the estimation of 3D human poses from a
multi-camera setup, employing distributed smart edge sensors. The smart edge sensors
detect 2D poses and transfer it to the host to lift 2D poses to a 3D pose. They used the
Google Edge TPU Dev Board (Google LLC, Mountain View, CA, USA) [32] equipped with
an ARM Cortex-A53 quad-core processor as edge device and showed that the framework
successfully works in the environment where 16 sensor boards were attached to the ceiling
of their lab. There has also been an instance of commercial deployment. StereoLabs, San
Francisco, USA has produced a vision-based AI product, releasing SDK which includes
a Fusion API feature [15]. The Fusion API provides two different workflows—Local and
Network. Local works in the traditional method. The host computer reads images from the
multiple cameras, connected via a USB, and estimates the 3D human pose. On the other
hand, in the network workflow, the system works with multiple clients and a single host
computer. The client is an edge device such as NVIDIA Jetson Xavier which transfers the
metadata, and then the host computer receives and aggregate it for 3D body tracking.

Obtaining and aggregating important features from the edge devices are important, but
most traditional methods use only poses and multi-view camera parameters for matching
persons. However, in this case, certain information which can be used to identify a person
can be ignored such as clothing. In this paper, we propose an edge-based 3D pose estimation
using appearance similarity combined with geometric knowledge.

3. System Architecture

The proposed framework consists of multiple edge AI devices and a single central
server as shown in Figure 1. The edge devices are responsible for detecting 2D human poses
and extracting appearance features from RGB images. Then, they transmit the 2D pose data
and appearance features to the central server. In an ideal scenario without any calibration
errors, the central server groups the 2D poses based on geometric affinity and reconstructs
them into 3D poses using multi-view triangulation. However, if there are calibration errors
present, the central server identifies any incorrect 2D poses by comparing the geometric
affinity and appearance similarity of the 2D pose groups. With the reconstructed 3D
poses and the identified incorrect 2D poses, the central server can estimate the rotation
and translation vectors required to fix the calibration errors. These estimated vectors are
feedback to the camera with the wrong calibration. Through this calibration self-correction
method, the proposed framework achieves robustness in noisy environments with potential
calibration errors by utilizing very little data corresponding to appearance similarity.
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4. Proposed Framework

This section describes the distinct functions and roles of the edge devices and the
central server within our proposed framework for noise-robust 3D pose estimation. The
edge devices transmit the 2D human pose data and appearance features necessary for 3D
pose estimation to the central server. The central server then groups the 2D human poses
corresponding to each individual and detects any camera with an incorrect calibration to
apply calibration error correction.

4.1. Edge Device

In the proposed framework, the edge devices have a role as the frontline processor.
We consider that each edge device has a lightweight GPU, reads raw RGB images from
camera, and extracts valuable information such as 2D human pose and appearance features.
Then, the edge devices transmit these results to the central server. Through this approach,
we can address the bandwidth requirements and lack of computational resources on the
central system.

4.1.1. 2D Human Pose Detection

First, the edge device detects a 2D human pose from the RGB image. Various 2D
human pose detection models for edge AI have been proposed in recent years [14,31,33].
For our implementation, we utilized OpenPose (v1.7.0) [33] due to its well-established
reputation and widespread adoption in the field. We denoted the detected 2D human pose
as follows: {

pi, k
}k∈[1, Ki ]

i∈[1, N]
(1)

where N is the number of edge devices, same for the calibrated cameras, and Ki is the
number of detected humans from ith camera.

4.1.2. Appearance Feature Extraction

The edge device then extracts appearance features. To extract appearance features,
the edge device collects RGB color samples between the 2D coordinates of the body joints
obtained from the 2D human pose detection. For instance, it captures the RGB values
between the left and right shoulder joints to represent the upper body’s color. Similarly, it
extracts RGB samples for the lower body region. After collecting RGB color samples of a
person, the edge device makes RGB histograms to identify the most frequently occurring
RGB values representing the clothing colors.

Figure 2 shows a process of appearance feature extraction. The left column displays
the raw RGB image and 2D human detection results. In the middle column, we present the
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RGB histogram, which is a quantified analysis of the color distribution. Finally, the right
column shows the extracted appearance feature of upper and lower body regions. These
features are represented by the most frequently occurring RGB values. As a result, the data
size of the raw image is condensed to 6 integers(8 bit), comprising three RGB values for
the upper body and three RGB values for the lower body. Here, we denote the appearance
feature as follows:{

ai, k
}k∈[1, Ki ]

i∈[1, N]
, ai, k =

{
Rup, Gup, Bup, Rlow, Glow, Blow

}
(2)

where N is also the number of edge devices and Ki is the number of detected humans from
ith camera.
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In this paper, we extracted RGB samples for the upper body, specifically between the
left shoulder and right shoulder, left shoulder and left hip, and right shoulder and right
hip. Additionally, we collected RGB samples for the lower body, between the left hip and
left knee, and right hip and right knee. We extracted a total of 400 color samples from each
body, such as in Figure 3.
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4.2. Central Server

The central server receives the results, pi, k and the corresponding ai, k from the N
edge devices. The central server makes groups of 2D skeletons by geometrical affinities
and appearance similarity to distinguish among multiple persons, respectively. Then, it
compares these two groups to check calibration errors. If a camera which has the wrong
calibration is identified, the central server employs a perspective-n-point (PnP) solving
algorithm for calibration self-correction, ensuring accuracy in the 3D pose reconstruction.

4.2.1. Geometrical Affinity

First, the central server measures geometrical affinity to make groups of 2D human poses
corresponding to the same physical 3D point in space, like most previous methods [9,25,27].
The central server calculates the spatial relationships between the detected 2D poses and all
the hypotheses in 3D which are geometrically aligned with the 2D poses. When a point is
observed by two cameras, we can draw epipolar lines, its projection of the point onto each
other image plane. By measuring the distance between the 2D pose and all the epipolar lines,
we can make a group of 2D poses which has the minimum cost. Figure 4 shows the epipolar
lines for two camera views.
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Several approaches have been proposed for grouping 2D human pose detections cor-
responding to the same individual, including the methods described in [9,25] and others. A
notable example is the iterative greedy matching algorithm, renowned for its simplicity [27].
In this work, we adapt the iterative greedy matching algorithm as our baseline for geomet-
ric affinity-based matching. Our objective is to evaluate the improvements in matching
accuracy and robustness when appearance affinity is incorporated into the process. Thus,
we note that the formulas and notations described in this section are derived from the
iterative greedy matching algorithm presented in [27]. Additionally, our approach can
be applied to all geometric approaches that utilize camera calibration data for cross-view
matching [27–29].

To estimate the 3D human poses from multi-view camera images, we first associate
the detections across all views. We denote that Pm

geo is the set of 2D human poses that are

associated to person m by geometrical affinity. When
∣∣∣Pm

geo

∣∣∣ exceeds 1, we can reconstruct
3D human pose for person m via triangulation.

Here, the geometrical cost Φgeo

(
pi,k, Pm

geo

)
for assigning a pose pi, k to an existing

person candidate Pm
geo derives from the summation of distances between a pose pi, k and

epipolar lines projected by Pm
geo.

Φgeo

(
pi,k, Pm

geo

)
=

1∣∣Vk,l
∣∣∣∣∣Pm

geo

∣∣∣ ∑
pj,l∈Pm

geo

∑
v∈Vk, l

ϕ
(

pi,k(v), pj,l(v)
)

(3)
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where Vk,l is the set of joins that are both visible for pi,k and pj,l . Also, pi,k(v) denotes the
2D coordinates of joint v of the 2D human pose pi,k. The distances between a pose pi, k and
the epipolar lines projected by pj,l can be defined as follows:

ϕ
(

pi,k, pj,l

)
=

∣∣∣pT
j Fi,j pi

∣∣∣+ ∣∣∣pT
i Fj,i pj

∣∣∣ (4)

where Fi,j is the fundamental matrix from camera i to camera j. Using the cost function
Φgeo

(
pi,k, Pm

geo

)
, we can find pi, k associated to an existing person candidate Pm

geo by solving
the bi-partite matching problem as follows:

X∗ =
argmin

X

|Pgeo |

∑
m=1

Ki

∑
k=1

Φgeo

(
pi,k, Pm

geo

)
Xk,m (5)

where
∑Ki

k=1 Xk,m = 1, ∀m and ∑|Pgeo |
m=1 Xk,m = 1, ∀k

If pi, k is associated to the person candidate Pm
geo then X∗k,m = 1, otherwise, X∗k,m = 0. If

pi, k is considered as the person candidate Pm
geo and the distance Φgeo

(
pi,k, Pm

geo

)
are under

the threshold σgeo, pi, k is added to the person candidate Pm
geo. Algorithm 1 describes the

grouping of 2D human poses with the geometrical affinity proposed in [27].

Algorithm 1: Grouping 2D poses with geometrical affinity

1: initialize Pgeo =
{{

p1, k
}}

2: for camera i← 2 to N do
3: for pose k← 1 to Ki do
4: for hypothesis m← 1 to

∣∣Pgeo
∣∣ do

5: Ck.m =Φgeo

(
pi,k, Pm

geo

)
6: end
7: end

8: X∗ =
argmin

X ∑
|Pgeo |
m=1 ∑Ki

k=1 Φgeo

(
pi,k, Pm

geo

)
Xk,m

9: for k, m where X∗k,m= 1 do
10: If Ck.m < σgeo then
11: Pm

geo = Pm
geo ∪

{
pi,k

}
12: else
13: Pgeo = Pgeo ∪

{
pi,k

}
14: end
15: end
16: end

4.2.2. Appearance Similarity

In this paper, we also measured appearance similarity to make groups of 2D human
poses. Unlike methods relying strictly on geometrical data, appearance similarity leverages
the consistent visual features of individuals, such as clothing color. The central server also
evaluates the appearance features transmitted by the edge devices, apart from grouping 2D
human poses based on geometrical affinity, as it is more intuitive to assume that a person
wearing the same clothes is the same person across the multiple views.

In a similar way, to calculate geometrical affinity, we can associate the detections with
appearance similarity. We denote that Am is the set of clothing colors that are associated
to person m. The appearance cost Φapp(ai,k, Am) for assigning a color ai, k to an existing
appearance candidate Am derives from the summation of the difference between a clothing
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color ai, k and an existing person candidate Am. The difference between the two appearances
is calculated by Euclidean distance as follows:

Φapp(ai,k, Am) =
1
|Am| ∑

aj,l∈Am

∣∣ak,l − ai,k
∣∣ (6)

Similar to geometrical affinity, we can find pi, k associated to an existing person candi-
date Pm

app by solving the bi-partite matching problem using the cost function Φapp(ai,k, Am).

X∗ =
argmin

X

|A|

∑
m=1

Ki

∑
k=1

Φapp(ai,k, Am)Xk,m (7)

where
∑Ki

k=1 Xk,m = 1, ∀m and ∑|A|
m=1 Xk,m = 1, ∀k

If ai, k is considered as the appearance candidate Am then X∗k,m = 1, otherwise,
X∗k,m = 0. If ai, k is considered as the appearance candidate Am and the difference Φapp(ai,k, Am)
are under the threshold σapp, pi, k is added to the person candidate Pm

app because the result
ai, k obtained from appearance feature extraction is matched with 2D human poses pi,k.
Algorithm 2 summarizes the grouping of 2D human poses with appearance similarity. The
result of the algorithm is Papp, which represents the set of 2D human poses associated with
individuals based on appearance similarity.

Algorithm 2: Grouping 2D poses with appearance similarity

1: initialize Papp =
{{

p1, k
}}

and A =
{{

a1, k
}}

2: for camera i← 2 to N do
3: for pose k← 1 to Ki do
4: for hypothesis m← 1 to |A| do
5: C′k.m =Φapp

(
ai,k, Am

)
6: end
7: end

8: X∗ =
argmin

X ∑
|Papp |
m=1 ∑Ki

k=1 Φapp
(
ai,k, Am

)
Xk,m

9: for k, m where X∗k,m= 1 do
10: If C′k.m < σapp then
11: Am = Am ∪

{
ai,k

}
12: Pm

app = Pm
app ∪

{
pi,k

}
13: else
14: A = A ∪

{
ai,k

}
15: Papp = Papp ∪

{
pi,k

}
16: end
17: end
18: end

4.2.3. Multi-View Triangulation and Calibration Self-Correction

In most research, camera calibration is assumed to be ideal. However, in practice, cali-
bration drift or inaccuracies can occur due to environmental factors or hardware movement.
In this paper, we propose a calibration self-correction method using two sets, Pgeo and
Papp, which represent 2D human poses obtained from geometrical affinity and appearance
similarity, respectively. This system achieves robust and accurate 3D pose estimation with
an additional 6 byte integers representing clothing colors. Figure 5 shows the overall
pipeline of multi-view triangulation and calibration self-correction.
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After obtaining the 2D human poses, the server reconstructs the 3D human pose from
the set of the 2D human poses Pgeo, leveraging the principles of projective geometry and

linear algebra. As described, when
∣∣∣Pm

geo

∣∣∣ are two and more, we can reconstruct 3D human
poses for person m via triangulation. The multi-view triangulation technique, facilitated
by the Direct Linear Transform (DLT) method [25], is a widely recognized approach in
computer vision. We denoteHm as 3D human pose for person m.

To identify incorrectly calibrated cameras, we utilize the differences between two
sets for person m, Pm

geo − Pm
app is the set difference which isolates 2D human poses that are

recognized through geometrical affinity but not confirmed by appearance similarity. In
essence, it represents geometric matches without appearance confirmation. Conversely,
Pm

app − Pm
geo is the set difference which isolates 2D human poses that are recognized through

appearance similarity but not aligned with geometrical affinity.
If n

(
Pm

geo − Pm
app

)
= 0 for a specific camera but n

(
Pm

app − Pm
geo

)
> 0, it indicates

a potential calibration error for the camera. It means the appearance-based method is
functioning as expected. However, if there are skeletons identified by clothing color (Pm

app)
that are not identified by epipolar geometry (Pm

geo), this discrepancy indicates a failure in
the geometric method, likely due to incorrect camera calibration. The server finds the
wrong calibrated camera from a set Pm

app − Pm
geo. The wrong calibrated camera index i∗ can

be defined as follows:

i∗ =
{

i
∣∣∣ ∀pi,k ∈ Pm

app − Pm
geo

}
(8)

Given a 3D skeleton Hm and a 2D skeleton pi∗ , k from the miscalibrated camera, we
utilized the SolvePnP or SolvePnPRansac algorithm implemented in [34] to estimate the
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rotation matrix and translation vector. These perspective-n-point (PnP) solving algorithms
estimate the camera rotation and translation from 3D–2D point correspondences. Then,
these estimated output R′ and t′ are applied to correct the calibration of the camera indexed
by i∗. This feedback mechanism enables updates to incorrectly estimated calibration values
in real-time, increasing the accuracy of reconstructed 3D pose.

5. Experimental Results
5.1. Simulation Environment

In this section, we describe the results of our experiments. First, we applied rotations
of θ degrees to both the x-axis and y-axis in the camera coordinate system in order to
simulate changes in the camera angle caused by external environmental factors, which
occurred after the initial camera calibration. Figure 6 shows the miscalibrated camera
environment by rotating the camera with θ degrees to both the x-axis and y-axis. These
rotations in the camera coordinate system resulted in the following changes to the image
coordinate system. In this environment, we verified that the proposed method effectively
corrected calibration errors and enhanced accuracy.

Rθ = RxRy =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ

 (9)
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5.2. Quantitative Results (PCP Score)

First, we measured the accuracy using the PCP (Percentage of Correct Parts) score for
a quantitative comparison [21]. The evaluation compared the accuracy of the 2D human
poses grouped by appearance similarity and geometric affinity. Subsequently, we applied
our calibration self-correction method to directly compare the effectiveness. Our calibration
correction approach can be generalized and applied to all geometrical methods that rely on
camera calibration data for cross-view matching [27–29]. In this paper, to benchmark our
results against the geometrical method, we reimplemented the iterative greedy matching
algorithm [27]. In the absence of calibration errors (θ = 0

◦
), the difference between the PCP

score reported in [27] and our implementation was less than 1%.

5.2.1. Campus Dataset

Table 1 shows the PCP scores for the Campus dataset [5], which was acquired using
three cameras. We applied a calibration error to one of the three cameras and evaluated the



Sensors 2024, 24, 5645 12 of 16

results. As expected, the 3D human pose reconstructed using only the 48-bit appearance
similarity had the lowest accuracy due to the limited information and challenges like
overlaps or individuals wearing similar clothing.

Table 1. PCP score in Campus dataset.

θ = 0
◦

θ = 1
◦

Actor 1 2 3 Avg. 1 2 3 Avg.

Appearance 0.88 0.88 0.45 0.73 - - - -

Geometrical [27] 0.88 0.89 0.89 0.89 0.66 0.81 0.85 0.77

Ours 0.83 0.89 0.89 0.87 0.83 0.9 0.89 0.88

θ = 2
◦

θ = 3
◦

Actor 1 2 3 Avg. 1 2 3 Avg.

Appearance - - - - - - - -

Geometrical [27] 0.66 0.82 0.85 0.78 0.66 0.82 0.85 0.78

Ours 0.83 0.9 0.89 0.88 0.83 0.9 0.89 0.88

When there was no calibration error (θ = 0
◦
), the geometric approach also performed

well. However, the geometric method experienced a significant drop in the PCP scores of
about 12%, with a calibration error

(
θ = 3

◦)
. Conversely, with a calibration error

(
θ = 3

◦)
,

our proposed method improved the PCP scores by approximately 11.5% compared to the
geometric method, while the accuracy decreased by about 2.2% compared to the geometric
method in an ideal environment without calibration errors (θ = 0

◦
).

When comparing the performance across increasing calibration error levels from 0
◦

to 3
◦
, the PCP scores of a geometrical approach did not significantly change because the

affected camera was geometrically excluded from the pose estimation process.
Figure 7 illustrates the average PCP scores across different frames. The x-axis repre-

sents the frame number, while the y-axis depicts the corresponding PCP scores, providing
insights into the temporal dynamics of the pose estimation accuracy throughout the video
sequence. The pale blue area represents the PCP score improvement achieved through
calibration correction.
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Figure 7. Average PCP score over frame in Campus dataset (θ = 3
◦
); geometrical-method [27]

and ours.

5.2.2. Shelf Dataset

In the subsequent experiment with the Shelf dataset [5], which was captured using
five cameras, we applied calibration errors to two of these cameras. Table 2 shows the PCP
scores for the Shelf dataset. Similar to the findings with the Campus dataset, the geometric
method saw a substantial decrease in PCP scores of around 11.5%, with a calibration error
(θ = 3

◦
). Our proposed method improved the PCP scores by approximately 8% compared
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to the geometric method, despite a slight decrease in accuracy of about 1% compared to the
geometric method under ideal conditions. The average PCP scores in Shelf dataset across
frames are also shown in Figure 8.

Table 2. PCP score in Shelf dataset.

θ = 0
◦

θ = 1
◦

Actor 1 2 3 Avg. 1 2 3 Avg.

Appearance 0.80 0.40 0.62 0.61 - - - -

Geometrical [27] 0.98 0.91 0.95 0.95 0.94 0.82 0.95 0.9

Ours 0.97 0.91 0.94 0.94 0.98 0.9 0.96 0.94

θ = 2
◦

θ = 3
◦

Actor 1 2 3 Avg. 1 2 3 Avg.

Appearance - - - - - - - -

Geometrical [27] 0.91 0.70 0.93 0.85 0.91 0.70 0.93 0.85

Ours 0.97 0.85 0.83 0.88 0.97 0.85 0.83 0.88
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5.3. Qualitative Results

Apart from the quantitative evaluations, we also conducted qualitative analyses by
visualizing the restored 3D poses. To visualize and compare the performance of our
proposed approach with the traditional geometric method, we utilized the Shelf dataset.
Figure 9 presents the ground truth 3D poses, reconstructed 3D poses using the geometric
method, and our proposed approach, respectively, in a scenario where the camera rotation
changed by 3 degrees. This visual comparison shows the improvement in the accuracy of
reconstructed 3D poses which is achieved by our method.

In the first and second row of Figure 9, highlighted with red circles, the 3D poses
reconstructed using the geometric method are inaccurately represented. It shows the
limitations of this approach in handling calibration errors. In contrast, the same figure
demonstrates that our proposed method successfully recovers the 3D pose.

Furthermore, in the third row of Figure 9, the geometric method incorrectly restored
the scene as if eight people were present rather than the four people truly recorded by the
camera. In contrast, our proposed approach accurately estimated the correct number of 3D
poses to be four, matching the actual video scene. This overestimation of the number of
people by the geometric method shows the significant impact of calibration inaccuracies on
the reliability of geometric reconstruction methods. Our approach was able to correctly esti-
mate the true number of individuals in the scene by incorporating appearance information
and calibration error handling.
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6. Conclusions

This paper proposes a noise-robust 3D pose estimation framework for real-world
scenarios, such as when the data transmission bandwidth is limited and the pose of a
mounted camera is vulnerable to external disturbances, including shock, vibration or wind.
We consider an edge processing system that consists of multiple edge devices working
with a single central server to use essential information instead of raw images with huge
sizes. The edge devices transmit the 2D human pose data to the central server, including
an additional 48 bits of appearance features. Then, the central server groups the 2D human
poses corresponding to each individual and detects any camera with an incorrect calibration
to apply calibration error correction. To identify the camera which has the wrong parameter,
the proposed framework compares two sets of images, which represent the 2D human
poses obtained from geometrical affinity and appearance similarity, respectively. If a
discrepancy is present, this could be a signal about the calibration error of a specific camera
because it means that the same person based on appearance appears to be a different
person geometrically. Then, we estimate the rotation matrix and translation vector via the
perspective-n-point (PnP) solving algorithms. The estimated rotation matrix and translation
vector are then applied to the wrongly calibrated camera. This feedback mechanism enables
updates to the incorrectly estimated calibration values in real-time, increasing the accuracy
of reconstructed 3D poses. In addition, we analyzed the experimental results, including PCP
score comparisons and visual inspections of restored 3D poses, to verify the improvement
in the proposed framework by adopting appearance similarity. We demonstrated that our
approach, which combines appearance and geometric data, increased the accuracy of the
3D pose estimation. It achieved around an 11.5% and 8% improvement in the accuracy of
3D pose estimation on the Campus and Shelf datasets, respectively.
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