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Abstract: This study presents a fit-for-purpose lab and field evaluation of commercially available
portable sensor systems for PM, NO,, and/or BC. The main aim of the study is to identify portable
sensor systems that are capable of reliably quantifying dynamic exposure gradients in urban en-
vironments. After an initial literature and market study resulting in 39 sensor systems, 10 sensor
systems were ultimately purchased and benchmarked under laboratory and real-word conditions.
We evaluated the comparability to reference analyzers, sensor precision, and sensitivity towards
environmental confounders (temperature, humidity, and O3z). Moreover, we evaluated if the sensor
accuracy can be improved by applying a lab or field calibration. Because the targeted application
of the sensor systems under evaluation is mobile monitoring, we conducted a mobile field test
in an urban environment to evaluate the GPS accuracy and potential impacts from vibrations on
the resulting sensor signals. Results of the considered sensor systems indicate that out-of-the-box
performance is relatively good for PM (R? = 0.68-0.9, Uexp = 16-66%, BSU = 0.1-0.7 ug/m3) and BC
(R? = 0.82-0.83), but maturity of the tested NO, sensors is still low (R = 0.38-0.55, Uexp = 111-614%)
and additional efforts are needed in terms of signal noise and calibration, as proven by the perfor-
mance after multilinear calibration (R? = 0.75-0.83, Uexp = 37-44%)). The horizontal accuracy of the
built-in GPS was generally good, achieving <10 m accuracy for all sensor systems. More accurate and
dynamic exposure assessments in contemporary urban environments are crucial to study real-world
exposure of individuals and the resulting impacts on potential health endpoints. A greater availability
of mobile monitoring systems capable of quantifying urban pollutant gradients will further boost
this line of research.

Keywords: air quality; sensors; exposure; assessment; citizens; validation

1. Introduction

Air quality has improved significantly over the past decades. Yet, exposure to particu-
late matter and nitrogen dioxide in Europe still causes an estimated 253,000 and 52,000 pre-
mature deaths per year [1]. Moreover, continuous worldwide urbanization results in
megacities with intrinsic hotspots, highlighting the importance of proper air pollution
monitoring. Currently, the exposure of the population to air pollution is still determined
based on home address (static exposure). However, research has shown that people are
exposed to the highest air pollution peaks at times when they are in transit (e.g., during com-
mutes) [2-6]. Studies applying activity-based models or personal monitors demonstrated
that transit activities, although short in duration, can be responsible for quite a large part
of the integrated personal exposure to combustion-related pollutants [2,4,7-9]. Research
based on an extensive dataset of 20,000 citizens confirmed that this in-transit (dynamic)
exposure is often (64% of the individuals) higher than the respective static residence-based
exposure [10]. To better assess dynamic exposure on a wider scale, mobile monitoring
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systems are needed that (i) can easily be used by study participants (e.g., citizens) and
(ii) produce reliable data.

Recent advances in sensor and Internet of Things (IoT) technologies have resulted
in a wide range of commercially available “low-cost” sensor systems that allow for quan-
tification of urban pollutants, e.g., particulate matter (PMx), nitrogen dioxide (NO,), and
ozone (O3), at an unprecedented scale [11]. Portable air quality sensors enable quantifi-
cation of dynamic exposure while raising awareness among citizens about their personal
exposure, in turn driving behavioral change [12-16]. Moreover, the obtained mobile data
can be used to construct urban exposure maps offering policy makers the right tools for
evidence-based policy measures [11,17-22]. As Helbig et al. [23] stated, wearable sensing
has two aspects: firstly, the exposure of an individual is recorded, and secondly, individuals
act as explorers of the urban area. While many stationary sensor systems have been eval-
uated and benchmarked in previous years [24,25], mobile sensor systems have different
requirements, e.g., power autonomy (battery), a high monitoring resolution, and accurate
positioning (GPS). Also, the sensor signal noise and between-sensor variability should be
low enough to be able to measure the spatial concentration variability at a high temporal
resolution (with multiple sensors). Today, many commercially available portable sensor
systems are already on the market, but it is hard to determine their fit-for-purpose. This is
one of the first studies benchmarking commercially available portable sensor systems for
mobile applications. This study includes an evaluation of the data quality performance of
different sensor systems under lab and field conditions, as well as during a mobile field
test to evaluate GPS performance, the impact of vibrations on the sensor signal, and the
overall potential to capture spatial pollutant gradients in urban environments. Doing so,
we evaluate the applicability of these sensor systems in real-world urban environments.

2. Materials and Methods
2.1. Sensor System Selection

Based on an earlier literature market study on air quality sensors [26], expert net-
work consultation (RIVM, VMM, NPL, Ineris, US EPA), reports of independent sensor
performance studies (AIRlab, AQ-SPEC, SamenMeten, EPA Air Sensor Toolbox), recent
sensor-based citizen science studies [13,27-33], and a new literature search on Web of

Science (~90 publications with search criteria “mobile”, “sensor”, “pollution”, “exposure”),
we compiled a longlist of 39 sensor systems with the following criteria:

commercially available

wireless/power solution (battery or via car)

weatherproof housing

data transmission/logging solution (internal, USB, Bluetooth, LTE-M, LoRA, wifi)

In addition to the criteria above, we defined a set of quantitative (R?, slope, intercept,
accuracy, and between-sensor uncertainty) and qualitative criteria (price, monitored pollu-
tants, additional variables (temperature, relative humidity, pressure, noise, . . .), monitoring
resolution, GPS localization, autonomy, display/LED, user-friendliness (portability, mount-
ing options, size, weight)) to differentiate between the longlist sensor systems. This longlist
was narrowed down based on the following:

e  sensor capability to monitor PM, NO,, and/or BC

e  availability of particle mass concentration (ig/m?; instead of particle number concentra-
tion)
power autonomy (battery instead of car-powered systems)
GPS localization (internal or via smartphone)

This resulted in a final shortlist of 12 suitable portable sensor systems for which
quotation requests were sent out. Ultimately, 10 sensor systems were purchased (Table S1),
of which 8/10 contained a PM; 5 and PMjg sensor, and 3/10 sensor systems contained an
additional NO, sensor (SODAQ NO,, DST Observair, and 2BTech PAM). All 10 sensor
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systems can be regarded as portable air quality sensor systems, with power autonomy
(battery), data storage and/or transmission, and GPS localization (Figure 1).

Figure 1. Considered sensor systems (10) with (upper panel left to right): PAM (2BTech, Broomfield,
CO, USA), GeoAir, Observair (DSTech, Pohang-si, Republic of Korea), SODAQ Air (SODAQ, Hilver-
sum, The Netherlands), PMscan (TERA Sensor, Rousset, France), OPEN SENECA (open-seneca.org),
and ATMOTUBE Pro (ATMOTECH Inc., San Francisco, CA, USA). Lower panel left to right: SODAQ
NO; (SODAQ, Hilversum, The Netherlands), Habitatmap Airbeam (Habitatmap, Brooklyn, NY,
USA), and BCmeter (BCmeter.org).

As no commercial low-cost sensor systems were available for BC, we considered a
mid-end instrument, including NO, (DST Observair), and research prototype for stationary
measurements (wifi, power cable) in the field co-location campaign. In order to obtain a
portable BCmeter, additional hardware/software developments will be needed.

2.2. Benchmarking Protocol

The purchased sensor systems were evaluated under controlled (laboratory) and real-
life (field) conditions (Figure 2). Field benchmarking included a mobile test on a cargo bike
and a 3-month co-location campaign at a regulatory urban background (R801) air quality
monitoring station in Antwerp, Belgium.

Figure 2. PM exposure chamber in the lab (left), mobile field test with cargo bike (middle), and field
co-location campaign at an urban background monitoring station (right).
2.2.1. Laboratory Test Protocol

Laboratory tests were performed for both PM and NO,.Test levels and test conditions
for NO, were based on the CEN/TS 17660-1:2022. For PM, we included a laboratory test
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to evaluate the potential of the sensor to measure the coarse fraction (PM; 519 = PMjg
— PMj; 5) because it is known that some low-cost sensors calculate PM, concentrations
based on the measured concentrations of PM; 5, and sensors can have various response
characteristics regarding size selectivity [34,35]. For PM; 5 and PMjy, we evaluated:

e  Lack-of-fit (linearity) at setpoints 0, 30, 40, 60, 130, 200, and 350 pg/ m? (PM;, dolomite
dust). This concentration range can be considered representative for exhibited PM
levels in typical urban environments [2,36—42]. A Palas Particle dispenser (RBG 100)
system connected to a fan-based dilution system and aluminum PM exposure chamber
was used.

e  Sensitivity of PM sensor to the coarse (2.5-10 um) particle fraction. We dosed, se-
quentially, 7.750 pm and 1.180 um-sized monodisperse dust (silica nanospheres with
density of 2 g/cm?) using an aerosolizer (from the Grimm 7.851 aerosol generator)
system connected to a fan-based dilution system and an aluminum PM exposure
chamber with fans to have homogeneous PM concentrations. This testing protocol
is currently considered to be included in the CEN/TS 17660-2 (in preparation) on
performance targets for PM sensors.

Based on the lack-of-fit results, the comparability against the reference is evaluated
from the resulting linearity (R?), accuracy (A; %), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Bias Error (MBE), and Expanded Uncertainty (Uexp). As
reference instrument, we used a Grimm 11-D with heated sampling inlet line (EDM 264,
Grimm). The accuracy is calculated per concentration setpoint as (1) in the lack-of-fit test
and evaluated between the sensors as an overall average of all setpoints (mean of means):

|sensor — REF|
A (%) =100 — ——=—==—— x 100 (1)
REF
The comparability between the sensors can be regarded as the observed variability
between sensors of the same type and is calculated by the between-sensor uncertainty
(BSU (2)):

Y E;f:l (sensorj — averagei)z

Bsusensor = (71 — 1)

(2)

with 7, the number of sensors (3), k, the number of measurements over time, sensor;;, the
sensor measurements for period 7, and average;, the mean result for period i.

In addition, we calculated the minimal and maximal observed Pearson correlation
(r) and MAE (ug/m?®) between the sensors of the same brand in order to evaluate the
intra-sensor comparability.

For NO,, we evaluated the following:

Lack-of-fit (linearity) at setpoints of 0, 40, 100, 140, and 200 pg/ m3.
Sensor sensitivity to relative humidity at 15, 50, 70, and 90% (£5%) during stable
temperature conditions of 20 + 1 °C.

e  Sensor sensitivity to temperature at —5, 10, 20, and 30 °C (£3 °C) during stable relative
humidity conditions of 50 + 5%.

e  Sensor cross-sensitivity to ozone (120 ng/m?) at zero and 100 pg/m3.

e Sensor response time under rapidly changing NO, concentrations (from 0 to 200 pg/m?3).

From the lack-of-fit tests, the comparability against the reference was evaluated from
the resulting linearity (R?), accuracy (%), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Mean Bias Error (MBE), and Expanded Uncertainty (Uexp).

In addition, we evaluated sensor stability (mean of exhibited standard deviations at
each (stable) concentration setpoint in the lack-of-fit test) and intra-sensor comparability by
calculating the between-sensor uncertainty (BSU). As reference instrument, we applied a
Thermo Scientific 42iQ-TL chemiluminescence monitor (Thermo Fisher, Waltham, MA, USA).
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2.2.2. Mobile Field Test

The mobile field test aimed at testing the GPS accuracy of the sensor systems along a
~10 km trajectory within the varying urban landscape (street canyons, open parks, tunnels,
...) of Antwerp, Belgium (Figure 3). GPS accuracy was evaluated by calculating the average
horizontal distance (m) of the high-resolution mobile GPS measurements to a reference GPS
track. The reference GPS track was determined by evaluating 3 different GPS platforms
(TomTom Runner2, Garmin Edge 810, and Komoot smartphone application) and selecting
the best performing one as the reference GPS trajectory.

Figure 3. Mobile field trajectory (10.4 km) in the city center of Antwerp, Belgium (upper left), and
applied cargo bike setup (upper right). Lower pictures show the variety of urban landscape and road
traffic along the cycling route.

2.2.3. Field Co-Location Campaign

During the field co-location campaign, the considered sensor systems were exposed
for a period of 3 months (7 September 2022-5 December 2022) to ambient pollutant con-
centrations in an actively vented outdoor shelter, deployed on top (near the air inlets) of a
regulatory urban background monitoring station (R801) in Antwerp, Belgium. Sensor sys-
tems were evenly distributed across the three shelter levels. Regulatory data included NO,
(Thermo 42C; pg/m?), O3 (Teledyne API400E; ug/m?), PMy, PM, 5, PMy (Palas FIDAS 200;
ug/ m?), BC (Thermo MAAP; ug/ m3), relative humidity (%), and temperature (°C) and
exhibited good hourly data coverage (n = 2132) of 96.7, 96.6, and 92.9% for, respectively, PM,
BC, and NO,. The collected raw (RAW) and lab-calibrated (LAB CAL; linear calibration
based on lack-of-fit) sensor data were subsequently evaluated for the following:

Hourly data coverage (%)

Timeseries plot: RAW & LAB CAL

Scatter plot: RAW & LAB CAL

Comparability between sensors: between-sensor uncertainty (BSU)
Comparability with reference (hourly): R?, RMSE, MAE, MBE
Expanded uncertainty (non-parametric): Uexp (%)

In addition we evaluated the sensitivity of the sensors (R%, RMSE, MAE, MBE) towards
the (real-life) coarse particulate fraction (PM;¢p—PM; 5) and exhibited meteorological con-
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ditions (temperature and relative humidity). Moreover, we tested the impact of a 2-week
field co-location calibration (FIELD CAL; linear calibration for PM and multilinear for NO,)
on the resulting sensor performance and compared the field calibration performance to the
lab calibration performance.

3. Results
3.1. Laboratory Test
3.1.1. PM

Due to the varying monitoring resolutions of the sensor systems (2 s-5 min; Supplementary S1),
all data were temporally aggregated to a 1-min resolution and merged with the reference (Grimm
11D) data. The SODAQ Air and NO, apply a 5 min resolution when stationary and change
automatically to ~10 s when mobile, resulting in fewer datapoints in the laboratory test. The GeoAir
experienced power supply issues during the lack-of-fit measurements (insufficient amperage from
applied USB hubs), resulting in data loss for all sensors (NA in Table 1). Setpoint averages (jg/ m?)
were calculated from the most stable concentration periods (final 15 min of each 1-h setpoint) and
are shown in Supplementary S2. From these setpoint averages, lack-of-fit (linear regression) curves
were generated (Supplementary S3), linearity (R?) and regression coefficients (slope + intercept
(y = a*x + b) and slope only (y = a*x)) determined and sensor accuracy (%) were calculated. All
results are shown per sensor system and subsequently presented in an overview table.

Table 1. Summary table of out-of-the-box performance (setpoint accuracy, setpoint stability, MAE, R?,
Uexp, and BSU) obtained for each considered sensor system and pollutant (PM and NO,) during the
laboratory tests.

SENSOR SYSTEM Accuracy (%) MAE R? Uexp BSU
PM; PM; 5 PMj pg/m3 - % ug/m3
ATMOTUBE (3) 84 65 29 10.0 0.98 47 1.5
OPEN SENECA (3) 83 54 22 12.6 0.99 55 1.2
TERA (3) 18 79 47 5.2 1.00 25 1.6
PM SODAQ Air (3) 64 70 31 8.9 0.99 40 4.0
SODAQ NO; (3) 68 52 21 10.9 0.99 45 NA
GeoAir (3) NA NA NA NA NA NA NA
PAM (1) 63 29 13 17.3 0.96 79 NA
SENSOR SYSTEM Accuracy Stability MAE R? Uexp BSU
% pg/m? pg/m3 - % ug/m3
SODAQ NO; (3) —166 51 270.3 0.11 304 124.7
NO, PAM (1) 72 27 49.5 0.13 110 NA
Observair (1) 0 0 79.0 0.98 112 NA

All sensor systems respond nicely to the increasing particle concentrations inside
the PM exposure chamber (Figure 4), resulting in a generally good linearity between
sensor and reference (R? = 0.96-1). Nevertheless, most of the sensor systems seemed to
underestimate the actual PM; 5 and PM;( concentrations, while overestimating the PM;
particle size fraction. Mean setpoint accuracy (mean of different setpoint accuracies) varied
from 82-85% for PM;, 63—69% for PM, 5, and 28-31% for PM1y (ATMOTUBE); 12-28% for
PM;, 76-84% for PM, 5, and 45-51 for PM;g (TERA PMscan); 80-86% for PMy, 53-56% for
PM; 5, and 22-23 for PM;g (OPEN SENECA); 31-94% for PM;, 48-95% for PM; 5, and 2043
for PM;g (SODAQ Air); 60-77% for PM;, 35-70% for PM; 5, and 13-29 for PM;y (SODAQ
NO»); and 63% for PM1, 29% for PM, 5, and 13% for PM;y 2BTECH PAM). Quantitative
performance statistics are calculated based on all 1 min averaged lack-of-fit data (R?>, MAE,
BSU and Uexp) for each sensor system and particle size fraction and shown in Table 1.
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Figure 4. Stepwise PM, 5 concentrations generated during the lack-of-fit test and measured concentrations by the different sensor systems (1-3; green-blue-red) and
the reference monitor (Grimm; purple/green).
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From Figure 4, it can be observed that the between-sensor uncertainty (BSU) is larger
for the SODAQ Air (3.96 ug/ m?3) and NO, (no simultaneous data) when compared to
ATMOTUBE (1.52 pg/m3), OPEN SENECA (1.21 pg/m3), and TERA PM (1.64 pg/m?3). For
the 2BTech PAM, this could not be evaluated, as we had only one device available.

After applying a linear lab calibration (based on lack-of-fit regression coefficients), all
sensor systems fell within expanded uncertainty <50% for PM; 5, which is the data quality
objective for indicative (Class 1) sensor systems (cfr. CEN/TS 17660-1 for gases).

Recent research showed that particle sensors exhibit low sensitivity in the coarse parti-
cle size range (2.5-10 pm) [43,44]. Therefore, a test procedure was developed to evaluate
sensor sensitivity to the coarse fraction and to evaluate if sensors really measure PM;g
rather than extrapolating it from the PM; 5 signal. We exposed the sensors to monodisperse
dust (silica microspheres) of, consecutively, 7.75 pm and 1.18 pm (fine) diameters. We
finetuned the settings of the aerosolizer to reach representative (~100-150 pg/m3) PMyj
concentrations by generating dust pulses every 30 s during a 5 min period. The idea is to
simulate conditions with mainly fine (‘Fine test cond’.) and mainly coarse aerosol (‘Coarse
test cond’.), respectively. Two representative 5-min periods (1 coarse test, 1 fine test) were
subsequently selected and evaluated by calculating the dust composition (% coarse), PMj,
PMj; 5, and PMcoarse sensor/REF ratios, and 2 relative change metrics as (3) and (4) (%):

e  Relative change (%) in fractional (coarse vs. fine) sensor/REF ratio during respective
fine and coarse test conditions:

( PMig_25 (sen, COARSE)  PMas5 (sen, FINE)

PMyg_»5 (REF, coarRsE)  PMas (REF, FINE)

(o) —_— 5 ’ - ’

ReLpMactona (%) = PMy5 (sen, FINE) <100 ©)

PM, 5 (REF, FINE)

e  Relative change (%) in PM;( sensor/REF ratio between fine and coarse test conditions:

( PMyg (sen,coarse)  PMig (sen, FINE)

PMyg (Rer, coarse)  PMug (REF, FINE)

0, J— ’ ’

Relp,o (%) = PMig (sen, FINE) X100 @

PMyg (REFFINE)

The sensor systems tend to visually pick up fine particle spikes but appeared far
less responsive to the coarse fraction spikes (Figure 5). Note that in both fine and coarse
generation spikes, PMj 5 is present. Similar responses are observed between the different
sensor systems, which is not surprising, as all sensors are ultimately based on three original
equipment manufacturer (OEM) sensors, namely Sensirion SPS30, Plantower PMS, and
TERA next-PM. From the calculated change ratios in Supplementary 54, the sensor/REF
ratio changed significantly between the considered particle size conditions (73-100%), with
all sensors showing very low sensitivity towards the coarse particle size fraction (PMcoarse
sensor/REF ratio from 0-0.11 as shown in Supplementary S4).

3.1.2. NO,

For all sensors containing a NO, sensor (3/10), lack-of-fit tests were conducted on three
days (August 12th, 14th, and 15th) at concentrations ramping between 0 and 200 ug/m?
(Figure 6). Due to the varying monitoring resolutions of the sensor systems (2 s—5 min),
all data were temporally aggregated to 1-min resolution and merged with the reference
data (Thermo NOy analyzer). Setpoint averages were calculated based on steady-state
conditions (final 1.5-h considering a 15-min buffer period before each setpoint change).
From these setpoint averages, lack-of-fit (linear regression) plots were generated, linearity
(R?) and regression coefficients (slope + intercept (y = a*x+b) and slope only (y = a*x))
determined and sensor stability (1g/m?3) and accuracy (%) were calculated. The SODAQ
NO, showed significant noise and data connectivity issues, resulting in a low stability (5-
80 ng/m?) and setpoint accuracy (—113-254%). Moreover, sensor readings were inversely
correlated (R? = 0.03-0.18) to the actual NO, concentrations (Figure 6), with a poor between-
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sensor uncertainty (BSU) of 125 ng/m?3. This out-of-the-box performance can be considered
as inadequate. Potential calibration is hindered by the high signal noise, while sensor
boxes showed connectivity issues and high BSU. The 2BTech PAM (only one unit available)
was positively correlated with the generated NO, concentrations, with a mean setpoint
accuracy of 72%, but exhibited significant noise and extreme peak values during the lack-
of-fit test, resulting in low sensor stability of 27 pg/m3. The DST Observair (one unit
available) is not pre-calibrated by the supplier and relies on co-location calibration in the
field. The uncalibrated sensor readings during the lack-of-fit test varied between —0.03 and
0.03 pg/m? and showed a negative linear response to the increasing NO, concentration
steps. Compared to the SODAQ NO; and PAM, the Observair exhibits much lower signal
noise, resulting in better stability (<0.01 pg/m?) and better calibration potential. After
calibration, the expanded uncertainty (Uexp) of the Observair (65%) outperforms the
observed accuracies of the SODAQ NO, (415-490%) and PAM (80%). Nevertheless, the
considered NO, sensors do not classify for the Class 1 uncertainty objective of <25%
(CEN/TS 17660-1 [45]).

| | | 1 | | | |

N
400 — “ =
300
200 —|

/| \
. \ Aoy l J( Aoa Ll | | L
100 VIl \ o n N ,, t
I'n ‘L \l \a \\L &\ } K./ K\} Kﬁk ﬁ‘\x/ \\_} \\_} \*"-\) \\_j t\
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Date
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600 o
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T T
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Concentration(ug/m?)
Concentration(ug/m?)

Date Date
PM,_mean PM;,_mean PM,-_mean PM;,_mean
Figure 5. Coarse PM testing procedure with consecutive 5-min generation periods of coarse (7.75 um)
and fine (1.18 um) PM peaks (upper panel; measured by Grimm REF monitor) and resulting ATMO-
TUBE and OPEN SENECA sensor response (iig/m?) in the lower panels.

The impact from a changing relative humidity (0-50-75-90%) at zero and span con-
centration resulted in similar responses (Supplementary S7), with initial peak responses
with every setpoint change followed by a subsequent stabilization (transient effect) under
different levels of noisiness (Observair < PAM < SODAQ NO,). Similar responses can be
explained by the underlying OEM sensor (Alphasense NO2-B43F), which is similar for all
NO; sensor systems. Similar transient effects (Supplementary S8) were observed under
varying temperatures (-5, 10, 20, and 30 °C), both at zero and span concentration.
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Date
SODAQ NO, 1 SODAQ NO, 2 SODAQ NO, 3 Thermo

Concentration(ug/m’)

PAM Thermo

Concentration(ug/m?)

NO: Ohse'.afle NO; REF Obs(ﬂv.‘lulu“e Thermo
Figure 6. Stepwise NO, concentrations generated during the lack-of-fit tests and measured raw (left)
and lab-calibrated (right) concentrations by the SODAQ NO, (1-3; upper in red), PAM (middle in
red), Observair (lower in red), and the reference monitor (Thermo NOy analyzer in purple/green).

To evaluate response time to rapidly changing NO, concentrations, sensors were
placed in glass tubes that allowed for rapid concentration changes from 0-200 pg/m3
(Supplementary S9). The smaller volume of the glass tubes (compared to the NO; exposure
chamber) only allowed evaluation of the Observair and PAM sensors as the SODAQ NO,
boxes did not fit in the glass tubes. Thirty-min setpoints (0 and 200 pg/m?3) were considered,
and lab-calibrated sensor data were compared to the 1-min data from the Thermo NOx
analyzer. Averages and 90-percentiles (90% of max concentration) concentrations were
determined for each 200 pg/m?3 plateau, and the associated response time, i.e., time needed
to reach 90% concentration, was calculated for each sensor system (and reference analyzer).
The resulting response times derived from the 3 consecutive 0-200 plateaus are provided
in Supplementary S9 and varied from 1-2 min for the sensor systems and 3 min for the
Thermo NOx reference analyzer. Quantitative performance statistics (R2, MAE, BSU, and
Uexp) are calculated based on all 1 min averaged lack-of-fit data for each sensor system
and are shown in Table 1.

3.2. Mobile Field Test

All sensors were mounted on top (in the free airflow) of a cargo bike. Package
sleeves were applied to damp vibrations of the cargo bike while cycling. Besides the
sensors, two mid-range instruments, namely a Grimm 11D (PM; without heated inlet) and
MAZ200 (BC), were placed inside the cargo bike with air inlets at the height of the sensors.
Finally, the cargo bike was equipped with 3 different GPS instruments (Garmin 810 Edge,
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TomTom Runner 2, Komoot smartphone application). The TomTom track showed the
highest monitoring resolution (1 s) and horizontal accuracy and was, therefore, selected as
reference track. The exhibited PM, 5 concentration variability (measured by the Grimm)
ranged between 4.8 and 133.3 pg/m?3, while the BC (measured by the MA200) varied
between 0.4 and 4.4 ug/m? (Supplementary S10). While the highest PM 5 concentrations
were observed at a housing fagade construction site, the highest BC concentrations were
obtained when cycling downwind of a busy highway (E313/E34). When plotting all sensor
tracks on a map (Figure 7), the GPS accuracy performed visually better in open areas
compared to narrow and/or high street canyons. A higher height/width ratio seems
to result in lower GPS accuracy, while GPS accuracy deteriorates as well when moving
through tunnels, which are well-described phenomena in the literature [27,46,47].

== TomTom_REF _line

© NO2_sel >
© PAM_sel

© TERA sel

© OPEN_sel

©® Observair_sel |
© GEO_sel |
© ATMO_sel

Figure 7. (Left): GPS tracks of the considered sensor systems (dots) and reference GPS track (blue
line). (Right): Accuracy calculation by means of horizontal distance to reference GPS track (blue line).

When calculating the average horizontal accuracy (m) as average distance to the ref-
erence track in QGIS (Figure 7), the horizontal accuracy was generally good, achieving a
<10 m horizontal accuracy for all sensor systems (Supplementary S11). The highest hori-
zontal accuracy (2.28 m) was obtained for the TERA PMscan, while the lowest horizontal
accuracy (8.15 m) was observed for the GeoAir.

With regard to the measured raw sensor signals (PM/NO;/BC), the mobile deploy-
ment (and related vibrations) did not seem to result in additional instrument noise or
outliers when compared to stationary conditions. Moreover, similar hotspots were identi-
fied when comparing the sensor systems to the high-grade (MA200 and Grimm) monitors
(Supplementary S12).

3.3. Field Co-Location Campaign

All sensor systems were deployed for 3 months (7 September 2022-5 December 2022)
in an actively vented exposure shelter on top of an urban background monitoring station
(R801) in the city center of Antwerp (Figure 8). Different data storage and transmission
protocols were used, including automatic cloud upload via GPRS/4G (SODAQ) and
internal SD card storage (GeoAir), while some sensor systems relied on a smartphone
application (TERA PMscan, ATMOTUBE) or a combination of these data transmission
protocols (PAM, OPEN SENECA, Airbeam, Observair). Some sensor systems were not
designed for continuous, long-term monitoring. TERA PMscan relies on a smartphone
application for operation, which resulted in forced automatic shutdowns by the smartphone
software after some time (~1-2 days) and lack of continuous long-term data. The Observair
relies on filter replacements for its BC measurement. As the filter saturates quickly, the
instrument turned to error mode and did not collect any BC or NO, data. The BCmeter
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also relies on filter replacements. A dedicated 1.5 week campaign (16-30 November) was
therefore set up to evaluate BC (and NO; from the Observair). The Airbeams arrived later
and became operational on the 9th of November. Sensor data were offloaded (remotely via
web dashboards and on-site via SD card readout) weekly to avoid data loss, and a logbook
was created to keep track of that status and encountered issues.

Figure 8. Location of the exposure shelter on top of R801 urban background monitoring station
(left), detail of the exposure shelter (middle), and positioning of the sensor systems at the different
platforms inside the shelter (right).

From the regulatory data, PMj 5 concentrations ranged from 1-51 jig/m3 (mean = 10.85 pg/m?),
while NO, exhibited 2-111 pg/m? (mean = 26 pg/m?). Atmospheric temperature varied between
1 and 27 °C (mean = 13 °C), while relative humidity was within 42 and 100% (mean = 83.5%).
Temporal pollutant variability reflects typical urban pollution dynamics (Supplementary S13), with
morning and evening rush hour peaks for NO, and BC, slightly delayed PM peaks with a regional
background character, and Oj that is photochemically formed at low NO, concentrations and high
solar radiation conditions (inversely related to NOy).

For each of the sensor systems, hourly data coverage, linearity (R?), accuracy, expanded
uncertainty, impacts from lab and field calibration, and sensor drift (sensor/REF ratio) over
time were evaluated (Table 2). For PM sensor systems, the sensitivity towards the coarse
particle fraction (PM;9p—-PM;5) and impact from, respectively, lab- and field calibrations
were additionally evaluated. PM field calibration was similar to the lab calibration, based
on linear slope/intercept derivation based on a training period (first 2 weeks: 7 September
2022-21 September 2022) and evaluated (R? and MAE) based on the remaining 2.5 months
of data (22 September 2022-5 December 2022). For NO, sensor systems, a multilinear
field calibration model was trained with covariates for sensor response, temperature, RH,
and Og, following earlier sensor calibration studies [48-50]. Model training was based on
2 weeks of co-location data (to fit the model and derive regression parameters), and the
calibration performance (R?> and MAE) was tested on the remaining 2 months of test data.
This multilinear field calibration outperformed the raw and lab calibrations for all NO,
sensor systems. Lab calibrations did not hold in field conditions, which is not surprising,
as field conditions are different in terms of PM composition and meteorological conditions
(temperature, relative humidity). Compared to the observed PM; 5 performance in Table 2,
performance decreases for PMjg (R? = 0.6-0.62, MAE = 12.6 ug/ m?), and the association is
entirely lost (R% = 0-0.01) when focusing on the coarse fraction (PMcoarse = PM19—PMy 5),
confirming the lack of sensitivity in the coarse particle size fraction. This was also observed
in an earlier field study with six different low-cost PM sensors [43]. For PM; 5, general good
correlations (R? = 0.7-0.9), varying accuracies (MAE = 34.7 ug/ m?), and low between-
sensor uncertainties (0.1-0.7 pg/m3) were observed. The accuracy worsened by applying
the lab calibration but was optimized further for all sensor systems based on the field cali-
bration. No distinct aging effect (gradual deviation in sensor/REF ratio) was observed over
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the 3-month co-location period. The considered PM sensor systems exhibited sensitivity
towards relative humidity (Supplementary S14), with exponentially increasing sensor/REF
ratios under increasing humidity (mainly impacting data quality from a relative humidity
>85%). This phenomenon is caused by condensational particle growth due to particle
hygroscopicity and is well documented in previous literature [43,48,51-57]. An overview
of the observed quantitative performance metrics based on the hourly-averaged data for
each of the sensor systems during the field co-location campaign is provided in Table 2.

Table 2. Summary table of quantitative performance metrics (accuracy, stability, MAE, R?, Uexp,
and BSU) obtained for each sensor system and pollutant (PM and NO;) during the field co-location
campaign (hourly data). * As the PAM only consisted of one instrument, BSU could not be calculated

(NA).
SENSOR SYSTEM Data MAE R? Uexp BSU
Coverage
% pg/ms - % pg/m?
ATMOTUBE (3) 76 43 0.88 48 0.6
OPEN SENECA (3) 100 3.7 0.90 35 0.3
TERA (3) 17 44 0.87 64 0.1
M SODAQ Air (3) 44 3.1 0.68 16 0.7
25 SODAQ NO; (3) 44 3.8 0.67 40 0.4
AIRBEAM (3) 53 39 0.87 36 0.7
GeoAir (3) 9% 3.0 0.89 28 0.6
PAM (1) 100 47 0.89 66 NA *
SODAQ NO,_raw (3) 44 190.3 0.42 614
SODAQ NO,_cal (1) 44 27.1 0.62 108
SODAQ NO,_mlcal (1) 44 5.6 0.83 37
NO PAM (3) 100 84.1 0.55 284
2 PAM_cal (1) 100 349.0 0.55 1225
PAM._calml (1) 100 442 0.75 44
Observair_raw 78 28.4 0.38 111
Observair_cal 78 28.8 0.38 95
Observair_mlcal 78 NA NA NA
Observair 78 0.3 0.82
BC BCmeter 78 0.2 0.83

Hourly PM; 5, NO,, and BC timeseries of the considered sensor systems and reference

data are provided in Figure 9.
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Figure 9. Hourly timeseries of PM; 5, NO,, and BC concentrations measured by the respective sensor
systems and the reference monitors at the R801 reference background monitoring station.

4. Discussion

During this lab and field benchmarking campaign, we collected quantitative and qual-
itative evidence on the fit-for-purpose of current commercially available dynamic exposure
sensor systems. An overview is provided of the observed sensor system performance
(hourly coverage, accuracy, R2, MAE, BSU, stability, Uexp) for the considered pollutants
under laboratory (Table 1) and real-world (Table 2) conditions.

For the considered PM sensor systems, out-of-the-box performance is already quite
good and close to the Class 1 data quality objective (Uexp < 50%). In addition, the sensors
showed high precision, <0.4 pg/m? in the lab and <0.6 pg/m? in the field, which allows
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for multi-sensor (network) applications (e.g., [13,58,59]). Whether the obtained accuracy
is sufficient to characterize PM gradients in urban environments (which are typically not
that steep) will vary from city to city and should be further investigated. In our mobile
field test, Grimm measurements showed PM, 5 concentrations along the 10km trajectory
ranging from 4.8 to 133 pug/m?3. This exposure variability is, therefore, quantifiable by the
considered sensor systems with MAEs of 3-4.7 pg/m?3. The highest accuracy was observed
for PM;, followed by PM, 5 and PM1g. The considered sensor systems do not reliably detect
the coarse particle size fraction or show sensitivity towards relative humidity. TERA is
the only sensor system that seems to pick up some coarse particles (R? = 0.3), while all
other sensors show R? of ~0. The accuracy of PM sensors can be further improved by
linear slope/intercept calibration. However, we showed that lab calibrations do not hold
in the field, as previously shown in other studies [11,13,48,60]. A local field calibration
(representative pollutant and meteorological environment) seems, therefore, crucial to
obtain the most reliable sensor data. In general, the assessed PM performance and observed
sensitivities (drift/RH) are very similar between the benchmarked PM sensors, which
can be explained by similar underlying sensor technology (Sensirion SPS30 + Plantower)
and lack of applied factory algorithms. The sensor systems showed elevated sensor/REF
ratios under increasing relative humidity, which can be explained by hygroscopic effects
documented in previous literature [48,51-55,57,61,62].

Regarding NO,, out-of-the-box performance was unsatisfactory for direct application,
as sensor systems suffered from noise (stability) and calibration (negative association)
issues. Although 2BTech PAM showed the best raw performance, a higher but negative
association (R?) and stability were observed for Observair. Following a linear laboratory
calibration, the best performance was, therefore, achieved for the Observair. Similar to the
PM sensors, linear lab calibrations do not hold in the field. For NO,, a local and multilin-
ear field calibration (incorporating covariates for temperature, relative humidity, and O3
sensitivity) showed acceptable sensor performance (R? = 0.75-0.83, MAE = 6-44 ug/m?),
which shows the potential of the considered NO, sensor systems. Further research and
development work should therefore focus on implementing research-proven noise reduc-
tion and calibration procedures [11,48,49,60,63-65] in commercial instruments to increase
the level of maturity on the market. Recent sensor studies applying multilinear [48,60] or
machine-learning-based [64,66] calibrations (co-location or network-based) have provided
evidence on sensor sensitivities and data quality improvements on a variety of sensors.
Application of this knowledge to commercial applications is crucial in order to obtain
reliable and actionable air quality data.

Regarding BC, both considered sensor systems showed good field performance
(R? = 0.82-0.83, MAE = 0.2-0.3 nug/m?3); however, we should mention that BCmeter cannot
yet be applied in mobile applications (due to wired power and wifi connectivity). The
measurement principle of light attenuation on filter strips has proven to be a robust method-
ology to measure black carbon in the past [15,67-72] and can be minimized to portable
and lower-cost instruments. Moreover, the spatial BC exposure variability, measured by
the Observair in the mobile field test, was in good agreement with the Aethlabs MA200
measurements (Supplementary S12). In general, all sensor systems showed a good hori-
zontal accuracy (<10 m) with no vibration impacts on the sensor readings for all pollutants
during the mobile field test, confirming the suitability of portable sensor systems for mobile
applications.

5. Conclusions

This study evaluated the fit-for-purpose of commercially available portable sensor
systems for dynamic exposure assessments in urban environments. We evaluated 10 sensor
systems, measuring PM, NO;, and/or BC in both laboratory and real-world conditions.
Besides quantitative performance assessments, qualitative experience on their portability,
data transmission/storage, and user-friendliness were obtained throughout the experi-
ments. Autonomous operation with internal GPS (no reliance on app connectivity) and
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data storage redundancy (SD storage besides cloud or app transmission) for example
showed to be valuable assets in terms of data coverage. Results of the considered sensor
systems indicate that out-of-the-box performance is relatively good for PM and BC, but
the maturity of the tested NO, sensors is still low, and additional effort is needed in terms
of signal noise and calibration. Multivariate calibration under field conditions showed
promising potential for real-world applications. Future directions for PM and BC should
focus on applicability (pollutant gradients in urban environments), added value, and user-
friendliness (day-to-day use) of real-world applications, while for NO;, research-proven
noise reduction and calibration procedures [11,48,49,60,63-65] should be implemented in
commercial instruments to increase the level of maturity on the market. This work shows
that commercially available portable sensor systems have reached a good maturity level for
PM and BC, while more work is needed for NO, in terms of calibration and noise reduction.
More accurate and dynamic exposure assessments in contemporary urban environments
are crucial to study real-world exposure of individuals and the impact on potential health
endpoints [17,73-78]. This research domain will be boosted by the greater availability of
mobile monitoring systems capable of quantifying urban pollutant gradients and enabling
personal exposure assessments, identification of hotspot locations, and new air quality
mapping applications, in turn driving awareness, behavior change, and evidence-based air
quality policies.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/s24175653/s1, Supplementary S1 Purchased portable sensor
systems for the lab and field benchmarking study. *PT = prototype. Supplementary S2 Obtained
setpoint averages (ug/ m?3) for each sensor (1-3) and brand during the lack-of-fit testing for PMy,
PM; 5, and PMjy. Supplementary S3 Obtained lack-of-fit curves and associated linear functions
for each sensor (ATMO1-3, TERA1-3, OPEN1-3, AIR1-3, and NO,_1-2; upper to lower) for the
corresponding PM;, PMj; 5, and PMy particle size fractions (left to right), Supplementary S4 Coarse
test results obtained on 14/7 (ATMOTUBE, OPEN SENECA, GeoAir, and SODAQ Air) and 2/9
(TERA, PAM, and SODAQ NO,) with observed coarse composition (% coarse), PMjy, PM; 5, and
PMcoarse sensor/REF ratios, fine/coarse change ratio (%; between highlighted columns), and PMjg
change ratio (%). *Faulty results due to peak mismatch. Supplementary S5 Obtained setpoint averages
for the considered NO, sensor systems. Supplementary S6 Obtained lack-of-fit curves and associated
linear functions for each sensor system; SODAQ NO; (1-3), PAM, and Observair. Supplementary S7
Lab-calibrated NO; sensor response to varying relative humidity steps (0-90-75-50-0%) under zero
(upper) and span (lower) concentrations. Supplementary S8 Lab-calibrated NO, sensor response to
varying temperature steps (—5, 10, 20, and 30 °C) under zero (upper) and span (lower) concentrations.
Supplementary S9 Response test setup, NO, average (AVG), 90-percentile (90%) concentration, and
associated response time (t_90), calculated for the Observair and PAM sensor systems and Thermo
NOx analyzer. Supplementary S10 Observed PMj 5 (left) and BC (right) concentrations experienced
by, respectively, the Grimm 11D and Aethlabs MA200 during the mobile field test. Supplementary
S 1 Average horizontal accuracy (m) and number of datapoints (n) of the considered sensor systems
during the mobile field test. Supplementary S12 Black carbon (j1g/m3) concentration maps generated
from the mobile measurements conducted by the Aethlabs MA200 and Observair during the mobile
field test in Antwerp, Belgium. Supplementary 513 Temporal pollutant variability of PM, BC, NO,,
and O3 at R801 during the field co-location campaign. Shadings denote 95% confidence intervals.
Supplementary S14 Sensitivity of the considered PM sensor systems towards relative humidity (%) as
observed during the field campaign by elevated sensor/REF PM; 5 ratios under increasing relative
humidity (%). Mind the different ranges in relative humidity between the sensors, resulting from the
varying data availabilities for some of the sensor systems (explained in Section 3.3).
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