Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAVs Used in the Experiment
2.2. Measurement and Recording of Acoustic Signals
2.3. Acoustic Analysis of Signals
2.4. MFCC Extraction from Recordings
2.5. Discriminant Analysis of MFCC
3. Results
3.1. Results of Acoustic Analysis
3.2. Results of Discriminant Function Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M.M.; Alrefaei, A.F.; Abbas, Q.; Naqvi, S.A.H.; Rao, M.J.; Mosa, W.F.A.; Abbas, Q.; et al. Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture. Agronomy 2023, 13, 1524. [Google Scholar] [CrossRef]
- Montes, O.; Castro, R.; Villanueva, C.; Pérez, M.; Uribe, M.; Jimenez, C. Fast analysis of plant health, plant count and nitrogen status using drones. Res. Crops 2020, 21, 82–87. [Google Scholar] [CrossRef]
- PA, O.; SJ, O.; CC, I.; GH, K. Unmanned Aerial Vehicle for Pipeline Surveillance: A Review. J. Energy Res. Rev. 2024, 16, 47–61. [Google Scholar] [CrossRef]
- Isa, M.F.M.; Rahim, N.Z.A.; Fathi, M.S. It’s a bird… It’s a plane… It’s a drone…: Telecommunication Tower Inspection Using Drone. In Proceedings of the 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), Johor Bahru, Malaysia, 2–3 December 2019; pp. 1–5. [Google Scholar]
- Jacobsen, R.H.; Matlekovic, L.; Shi, L.; Malle, N.; Ayoub, N.; Hageman, K.; Hansen, S.; Nyboe, F.F.; Ebeid, E. Design of an Autonomous Cooperative Drone Swarm for Inspections of Safety Critical Infrastructure. Appl. Sci. 2023, 13, 1256. [Google Scholar] [CrossRef]
- Pafitis, M.; Savva, A.; Kyrkou, C.; Kolios, P.; Theocharides, T. MELETI: A Machine-Learning-Based Embedded System Architecture for Infrastructure Inspection with UAVs. In Proceedings of the Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Use Cases and Emerging Challenges, Stanford, CA, USA, 25–27 March 2024; pp. 285–311. [Google Scholar] [CrossRef]
- Simoes, D.; Rodrigues, A.; Reis, A.B.; Sargento, S. Forest Fire Monitoring through a Network of Aerial Drones and Sensors. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops, Austin, TX, USA, 23–27 March 2020. [Google Scholar] [CrossRef]
- Ahmadian, N.; Lim, G.J.; Torabbeigi, M.; Kim, S.J. Smart border patrol using drones and wireless charging system under budget limitation. Comput. Ind. Eng. 2022, 164, 107891. [Google Scholar] [CrossRef]
- Ho, Y.-H.; Tsai, Y.-J. Open Collaborative Platform for Multi-Drones to Support Search and Rescue Operations. Drones 2022, 6, 132. [Google Scholar] [CrossRef]
- Enayati, S.; Li, H.; Campbell, J.F.; Pan, D. Multimodal Vaccine Distribution Network Design with Drones. Transp. Sci. 2023, 57, 1069–1095. [Google Scholar] [CrossRef]
- Rosser, J.C., Jr.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS J. Soc. Laparoendosc. Surg. 2018, 22, e2018.00018. [Google Scholar] [CrossRef]
- Elmeseiry, N.; Alshaer, N.; Ismail, T. A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications. Aerospace 2021, 8, 363. [Google Scholar] [CrossRef]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef]
- Lee, M.-T.; Chuang, M.-L.; Kuo, S.-T.; Chen, Y.-R. UAV Swarm Real-Time Rerouting by Edge Computing D* Lite Algorithm. Appl. Sci. 2022, 12, 1056. [Google Scholar] [CrossRef]
- Lonklang, A.; Botzheim, J. Improved Rapidly Exploring Random Tree with Bacterial Mutation and Node Deletion for Offline Path Planning of Mobile Robot. Electronics 2022, 11, 1459. [Google Scholar] [CrossRef]
- Hong, S.J.; Han, Y.; Kim, S.Y.; Lee, A.Y.; Kim, G. Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery. Sensors 2019, 19, 1651. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Mckeever, S.; Courtney, J. Flying Free: A Research Overview of Deep Learning in Drone Navigation Autonomy. Drones 2021, 5, 52. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges. Drones 2022, 6, 85. [Google Scholar] [CrossRef]
- Mandirola, M.; Casarotti, C.; Peloso, S.; Lanese, I.; Brunesi, E.; Senaldi, I. Use of UAS for damage inspection and assessment of bridge infrastructures. Int. J. Disaster Risk Reduct. 2022, 72, 102824. [Google Scholar] [CrossRef]
- Mięsikowska, M.; Nowakowski, M.; Lorenc, W.; Chodnicki, M. Signal Frequency Analysis of X4 Unmanned Aerial Vehicle. Mechanics in Aviation ML-XVII 2016, Volume II. Available online: https://ptmts.org.pl/pliki/wydawnictwa/ML-2016-t-II-WAT.pdf (accessed on 22 August 2024).
- Mięsikowska, M. Analysis of sound levels and speech intelligibility in the presence of X4 Unmanned Aerial Vehicle in External Environmental Conditions. In Proceedings of the 2023 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 20–22 September 2023; pp. 31–35, ISBN 979-8-3503-0498-5. [Google Scholar] [CrossRef]
- Mięsikowska, M. Discriminant analysis of voice commands in the presence of unmanned aerial vehicle. Information 2021, 12, 23. [Google Scholar] [CrossRef]
- Mięsikowska, M. Speech Intelligibility in the presence of X4 Unmanned Aerial Vehicle. In Proceedings of the 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 19–21 September 2018; pp. 310–314. [Google Scholar] [CrossRef]
- Sivaneri, V.O.; Gross, J.N. UGV-to-UAV cooperative ranging for robust navigation in GNSS-challenged environments. Aerosp. Sci. Technol. 2017, 71, 245–255. [Google Scholar] [CrossRef]
- Hlavata, R.; Kamencay, P.; Sykora, P.; Hudec, R.; Radilova, M. Recognition of Dangerous Objects using Deep Learning. In Proceedings of the 2024 34th International Conference Radioelektronika (RADIOELEKTRONIKA), Zilina, Slovakia, 17–18 April 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Dumitrescu, C.; Minea, M.; Costea, I.M. Development of an Acoustic System for UAV Discovery and Tracking Employing Concurrent Neural Networks. 2020. Available online: https://videleaf.com/wp-content/uploads/2021/01/Development-of-an-Acoustic-System-for-UAV-discovery-and-tracking-employing-Concurrent-Neural-Networks.pdf (accessed on 22 August 2024).
- Brighente, A.; Conti, M.; Peruzzi, G.; Pozzebon, A. ADASS: Anti-Drone Audio Surveillance Sentinel via Embedded Machine Learning. In Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada, 18–20 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Flak, P.; Czyba, R. RF Drone Detection System Based on a Distributed Sensor Grid With Remote Hardware-Accelerated Signal Processing. IEEE Access 2023, 11, 138759–138772. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective. Sensors 2020, 20, 2238. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Feng, S.; Liang, B.; Jiang, J. Real-Time Detection of Unauthorized Unmanned Aerial Vehicles Using SEB-YOLOv8s. Sensors 2024, 24, 3915. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, C.; Minea, M.; Costea, I.M.; Cosmin Chiva, I.; Semenescu, A. Development of an Acoustic System for UAV Detection. Sensors 2020, 20, 4870. [Google Scholar] [CrossRef] [PubMed]
- Mięsikowska, M. Analysis of signal of X8 unmanned aerial vehicle. In Proceedings of the Signal Processing-Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA, Poznan, Poland, 20–22 September 2017; pp. 69–72. [Google Scholar] [CrossRef]
- Satish, A.; Medda, A. Acoustic UAV Detection using Spherical Array Beamforming. Conference Record. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 2022; pp. 446–450. [Google Scholar] [CrossRef]
- Mięsikowska, M. Project Website, UAVs Recordings. Available online: https://t47-marzena.s3.kielce.pl/index.html (accessed on 23 August 2024).
- Discriminant function analysis–STATSoft Electronic Documentation. Available online: https://statisticasoftware.wordpress.com/2012/06/25/discriminant-function-analysis/ (accessed on 21 August 2024).
UAV Number | UAV Structure | UAV Model |
---|---|---|
D1 | X4 | MATRICE 300 |
D2 | X4 | Mavic 3 |
D3 | X4 | Mavic Air 2S |
D4 | X4 | Mavic Air 2 |
D5 | X4 | Mavic Mini 2 |
D6 | X4 | Mavic 2 Pro |
D7 | X4 | Mavic 2 Pro |
D8 | X4 | Mavic 3 |
D9 | X4 | Phantom 4 |
D10 | X4 | Mavic 2 Zoom |
D11 | X4 | Mavic Mini 2 |
D12 | X6 | Yuneec H520 |
D13 | X6 | Yuneec H520E RTK |
D14 | X6 | S900 1 |
D15 | X6 | X6D 1 |
D16 | X6 | Y6 1 |
D17 | X4 | Phantom 4 |
Day | Date | Place | Conditions | UAVs |
---|---|---|---|---|
Day 1 | 15 March 2023 | Kielce | Temperature: 5 °C Air Pressure: 1014 hPa Humidity: 51% Wind: 22 km/h | D1, D2 |
Day 2 | 15 April 2023 | Gdańsk | Temperature: 10 °C Air Pressure: 1015 hPa Humidity: 78% Wind: 25 km/h | D3, D4, D5, D6 |
Day 3 | 16 April 2023 | Dębogórze, vicinity of Gdańsk | Temperature: 6 °C Air Pressure: 1022 hPa Humidity: 93% Wind: 18 km/h | D7, D8, D9 |
Day 4 | 17 April 2023 | Dębogórze, vicinity of Gdańsk | Temperature: 7 °C Air Pressure: 1030 hPa Humidity: 80% Wind: 22 km/h | D10, D11, D12, D13 |
Day 5 | 18 April 2023 | Łapalice, vicinity of Gdańsk | Temperature: 8 °C Air Pressure: 1033 hPa Humidity: 90% Wind: 25 km/h | D14, D15, D16, D17 |
UAV | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | D16 | D17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12.5 Hz | ^ | ||||||||||||||||
16 Hz | ^ | ^ | |||||||||||||||
20 Hz | ^ | ^ | ^ | ||||||||||||||
25 Hz | ^ | ^ | ^ | ||||||||||||||
31.5 Hz | ^ | ^ | ^ | ||||||||||||||
40 Hz | ^ | ^ | |||||||||||||||
50 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ||||||
63 Hz | ^ | ^ | ^ | ^ | ^ | ||||||||||||
80 Hz | ^ | ^ | ^ | ||||||||||||||
100 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ||||||||
125 Hz | ^ | ||||||||||||||||
160 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ||||||||
200 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | |||||||
250 Hz | ^ | ^ | |||||||||||||||
315 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | |||||
400 Hz | ^ | ^ | ^ | ^ | ^ | ||||||||||||
500 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | |||||||||
630 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | |||||||||
800 Hz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ||||||||||
1 kHz | ^ | ^ | ^ | ^ | ^ | ||||||||||||
1.25 kHz | ^ | ^ | ^ | ||||||||||||||
1.6 kHz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ^ | |||||||
2.5 kHz | ^ | ^ | ^ | ^ | ^ | ^ | ^ | ||||||||||
4 kHz | ^ | ^ | ^ | ^ | ^ |
Roots Removed | Canonical R | Wilks’ Lambda | Chi-Square | p-Value |
---|---|---|---|---|
0 | 0.984 | 0.0000 | 995.17 | 0.00000 |
1 | 0.968 | 0.0000 | 749.98 | 0.00000 |
2 | 0.948 | 0.0004 | 551.43 | 0.00000 |
3 | 0.907 | 0.0044 | 387.49 | 0.00000 |
4 | 0.868 | 0.0251 | 263.53 | 0.00000 |
5 | 0.774 | 0.1015 | 163.55 | 0.00000 |
6 | 0.695 | 0.2537 | 98.08 | 0.00000 |
7 | 0.543 | 0.4903 | 50.96 | 0.00162 |
8 | 0.475 | 0.6951 | 26.01 | 0.05395 |
9 | 0.304 | 0.8971 | 7.76 | 0.55816 |
10 | 0.106 | 0.9884 | 0.83 | 0.93388 |
ci | K(Mavic 2 Zoom) | K(Mavic Mini 2) | K(Phantom 4) | K(Matrice 300) | K(Mavic 3) | K(Mavic Air 2S) | K(Mavic Air 2) | K(Mavic 2 Pro) | K(Yuneec H520) | K(Yuneec H520E RTK) | K(S900) | K(X6D) | K(Y6) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wi1 | 78.68 | 72.36 | 125.46 | 131.42 | 116.42 | 83.64 | 83.56 | 84.21 | 130.48 | 134.29 | 128.93 | 72.83 | 85.57 |
wi2 | −27.42 | −52.07 | −64.47 | −70.11 | −48.30 | −45.95 | −24.60 | −33.13 | −70.16 | −69.48 | −60.50 | −64.23 | −45.68 |
wi3 | 136.73 | 101.03 | 96.68 | 70.82 | 119.72 | 116.44 | 139.50 | 140.17 | 103.73 | 96.45 | 147.69 | 84.23 | 85.31 |
wi4 | −140.46 | −208.73 | −176.03 | −94.83 | −150.06 | −200.34 | −152.54 | −188.17 | −183.64 | −182.19 | −151.99 | −160.93 | −139.35 |
wi5 | 188.23 | 246.56 | 279.98 | 253.03 | 247.08 | 234.93 | 187.79 | 209.62 | 303.74 | 303.28 | 321.99 | 185.94 | 208.90 |
wi6 | −66.20 | 109.61 | −123.52 | −221.46 | −151.74 | 38.25 | −78.20 | −3.50 | −93.66 | −107.68 | −183.84 | 15.65 | −76.86 |
wi7 | −67.45 | −112.55 | −99.88 | −43.51 | −74.61 | −103.67 | −65.22 | −81.71 | −92.31 | −103.93 | −135.60 | −29.11 | −56.70 |
wi8 | 55.20 | −20.30 | 125.69 | 122.23 | 94.47 | 45.06 | 58.55 | 44.72 | 133.24 | 153.70 | 118.96 | 55.67 | 58.10 |
wi9 | −129.30 | −109.27 | −123.04 | −135.49 | −152.85 | −97.02 | −125.01 | −162.71 | −132.91 | −114.35 | −211.17 | −77.91 | −98.97 |
wi10 | −52.32 | 57.16 | −96.49 | −147.66 | −105.03 | 5.49 | −57.61 | −33.90 | −100.15 | −98.34 | −95.28 | −35.94 | −44.19 |
wi11 | 304.85 | 340.06 | 359.10 | 268.74 | 372.54 | 318.73 | 314.04 | 367.75 | 337.62 | 324.41 | 409.87 | 129.89 | 197.51 |
wi12 | −168.27 | −371.09 | −120.45 | 36.67 | −66.37 | −306.44 | −119.78 | −186.34 | −208.51 | −206.46 | −119.42 | −137.74 | −74.97 |
ci0 | −379.01 | −443.49 | −579.10 | −496.55 | −526.51 | −459.50 | −403.43 | −466.95 | −639.39 | −635.76 | −734.34 | −379.69 | −352.66 |
Group | % | K(Mavic 2 Zoom) | K(Mavic Mini 2) | K(Phantom 4) | K(Matrice 300) | K(Mavic 3) | K(Mavic Air 2S) | K(Mavic Air 2) | K(Mavic 2 Pro) | K(Yuneec H520) | K(Yuneec H520E RTK) | K(S900) | K(X6D) | K(Y6) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mavic 2 Zoom | 100.0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mavic Mini 2 | 100.0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phantom 4 | 90.0 | 0 | 0 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Matrice 300 | 100.0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mavic 3 | 100.0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mavic Air 2S | 100.0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mavic Air 2 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
Mavic 2 Pro | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
Yuneec H520 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
Yuneec H520E RTK | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
S900 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
X6D | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
Y6 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
Total | 98.8 | 5 | 10 | 9 | 5 | 11 | 5 | 5 | 10 | 5 | 5 | 5 | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mięsikowska, M. Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions. Sensors 2024, 24, 5663. https://doi.org/10.3390/s24175663
Mięsikowska M. Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions. Sensors. 2024; 24(17):5663. https://doi.org/10.3390/s24175663
Chicago/Turabian StyleMięsikowska, Marzena. 2024. "Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions" Sensors 24, no. 17: 5663. https://doi.org/10.3390/s24175663
APA StyleMięsikowska, M. (2024). Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions. Sensors, 24(17), 5663. https://doi.org/10.3390/s24175663