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Abstract: Detection of unmanned aerial vehicles (UAVs) and their classification on the basis of
acoustic signals recorded in the presence of UAVs is a very important source of information. Such
information can be the basis of certain decisions. It can support the autonomy of drones and their
decision-making system, enabling them to cooperate in a swarm. The aim of this study was to classify
acoustic signals recorded in the presence of 17 drones while they hovered individually at a height
of 8 m above the recording equipment. The signals were obtained for the drones one at a time in
external environmental conditions. Mel-frequency cepstral coefficients (MFCCs) were evaluated from
the recorded signals. A discriminant analysis was performed based on 12 MFCCs. The grouping
factor was the drone model. The result of the classification is a score of 98.8%. This means that on the
basis of acoustic signals recorded in the presence of a drone, it is possible not only to detect the object
but also to classify its model.

Keywords: unmanned aerial vehicle; discriminant analysis; drone classification

1. Introduction

Drones, also known as unmanned aerial vehicles (UAVs), have become one of the
most dynamically developing areas of aviation technology in recent years. Their versatility
and ability to perform a variety of tasks have contributed to a wide range of applications in
many fields and areas of the economy [1–14]. From agriculture and rescue operations to
infrastructure inspection and transportation, drones contribute significantly to the efficiency
and safety of many processes. Drones are widely used in precision agriculture [1,2]. Using
drones, farmers can monitor the conditions of crops, identify farm areas that require
irrigation or fertilization, and assess plant health [3]. Drones generate high-resolution
images and maps, which enable optimization and efficient management of farms, thereby
increasing crop yield. Drones are used to inspect hard-to-reach or dangerous locations such
as high-voltage power lines, pipelines, telecommunication towers, and bridges [4–7]. In
rescue operations, drones can quickly reach disaster sites, detect fires, provide first aid, and
monitor situations in real time [8]. In security, drones are used for surveillance and border
patrol [9,10]. Drones can be used in transport, especially medical transport [11–13], thus
speeding up the delivery process, especially in urban areas with heavy traffic. However,
to take full advantage of drones, it is necessary to effectively address issues related to
autonomy, regulation, security and privacy protection [14].

Drones are equipped with a number of advanced technologies. These solutions not
only increase their functionality but enable their autonomous or remotely controlled op-
eration [15,16]. They include navigation systems for precise position tracking and flight
stability, data analysis and mission planning, sensors and cameras for collecting visual and
topographic data, and real-time data transmission via radio and satellite systems [17]. Arti-
ficial intelligence and machine learning can be applied to boost the autonomy of drones [18].
Machine learning, particularly deep learning, is the foundation of autonomous systems.
Neural networks enable real-time analysis of large sensory data sets, allowing for object
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recognition, navigation in complex environments, and decision-making. The integration
of sensors and the fusion of data obtained from these sensors allow for information to be
obtained, inferences to be made, and specific decisions to be reached, making it possible
for drones to independently map out optimal routes without obstacles [19]. Machine
learning algorithms analyze power consumption patterns and adjust flight parameters
to minimize battery consumption. Drones equipped with appropriate image processing
and data analysis algorithms can autonomously map areas and inspect infrastructure such
as bridges [20], power lines, and buildings without human intervention. Detection and
classification of unmanned aerial vehicles based on acoustic signals could play a key role
in the development of autonomous systems for drones.

A very important direction in the development of drones is the cooperation of drones,
or the so-called “work in a swarm”. Here, it is important to avoid collision, recognize
neighboring objects, detect the directions of approaching objects, achieve full autonomy of
flight, and map out the path in real time. Acoustic systems can be useful for this particular
application, as they can boost the autonomy of the drone. Using acoustic signals, it is
possible to detect drones in natural environments even at a distance of 1 km and to indicate
their exact distances, thus enhancing drone detection systems [21]. If it is possible to detect
the direction of an incoming object acoustically, which is still being researched, acoustic
sensors could resolve collision problems and enable drones to cooperate in a swarm. In
addition, the classification of environmental signals in the presence of drones could improve
their decision-making and autonomy.

When the drone is the carrier of the acoustic sensor, its noise may constitute a problem.
To deal with this problem, it is necessary to discard the redundant components of the carrier
from the signals and thus obtain the signals from the environment. This study carried out
an acoustic analysis based on the acoustic signals obtained in the presence of various drones
in order to classify the drones according to their UAV models. Following this classification,
it may be possible to separate the noisy components of the drones from the useful signals.
This, in turn, will make it easier to obtain signals from the environment, which will not
only enable more accurate applications of drones in various fields—e.g., ecology (listening
to birds), precision agriculture (acoustic observation of plantations), rescue systems, voice
control of drones [22–24]—but will allow drones to cooperate.

Acoustic classification of UAVs can be valuable in Unmanned Ground Vehicle (UGV)-
UAV cooperation in scenarios where direct communication is not possible or in environ-
ments where GNSS (Global Navigation Satellite System) signals are unavailable [25]. In
such cases, the ability of UGVs to identify and interact with UAVs using acoustic signals
would be a robust alternative, enhancing operational effectiveness in challenging conditions.

Despite the many advantages of drones, their use also comes with some challenges,
such as regulation, security, and privacy protection [26–28]. The dynamic development of
drone technology requires appropriate and safe legal regulations. The widespread use of
drones can lead to privacy violations; thus, it requires proper regulation and protective
measures. Detection of drones plays a very important role in security. A variety of sensing
techniques have been proposed for drone detection, including acoustic, optical, radar
detection systems and passive radiofrequency sensing [29]. Detection of small-sized drones
can be very challenging [30]. Deep learning techniques, particularly the You Only Look
Once (YOLO) algorithm, have been extensively explored and have shown promising results
in UAV detection [31]. Privacy protection may be provided by acoustic sensors that can
detect and classify objects at different heights and distances [21,32–34]. Acoustic systems for
drone detection and classification may significantly boost security and privacy protection
as well as the autonomy of drones.

The aim of this paper is to perform acoustic analysis and discriminant function analysis
of acoustic signals recorded in the presence of UAVs hovering at a height of 8 m above the
recording equipment in external environmental conditions. Seventeen different UAVs were
used in the experiment. The acoustic analysis included the analysis of the characteristic
frequencies of the background sound levels in the presence of the UAVs. Discriminant



Sensors 2024, 24, 5663 3 of 13

function analysis was used to investigate differences between the UAV models based on the
acoustic signals recorded in the presence of each UAV. This research provides information
on the classification accuracies of UAV models based on acoustic signals.

Drone detection and classification can significantly enhance security, privacy protec-
tion, and the autonomy of drones. This work investigates how acoustic signals acquired
in presence of unmanned aerial vehicles can be classified. The analysis will demonstrate
whether sound signals obtained in the drone regions show significant differences. The
remainder of this article is organized as follows: Section 2 presents the materials and meth-
ods used in this study, the results are shown and discussed in Sections 3 and 4, respectively,
and the conclusions and future steps are presented in Section 5.

2. Materials and Methods

The materials and methods used in this experiment are described in the following
subsections.

2.1. UAVs Used in the Experiment

Seventeen UAVs were used for the experiment. Their structures and models are
presented in Table 1.

Table 1. The UAVs used in the experiment.

UAV Number UAV Structure UAV Model

D1 X4 MATRICE 300
D2 X4 Mavic 3
D3 X4 Mavic Air 2S
D4 X4 Mavic Air 2
D5 X4 Mavic Mini 2
D6 X4 Mavic 2 Pro
D7 X4 Mavic 2 Pro
D8 X4 Mavic 3
D9 X4 Phantom 4
D10 X4 Mavic 2 Zoom
D11 X4 Mavic Mini 2
D12 X6 Yuneec H520
D13 X6 Yuneec H520E RTK
D14 X6 S900 1

D15 X6 X6D 1

D16 X6 Y6 1

D17 X4 Phantom 4
1 Non-commercial construction of UAV.

Twelve of the drones used in the experiment have an X4 structure (four rotating
propellers) while five have an X6 structure (six rotating propellers). Several drones of the
same models were used in the experiment. Drones D5 and D11 are two different drones of
the model Mavic Mini 2, drones D6 and D7 are two different drones of the model Mavic
2 Pro, drones D9 and D17 are two different drones of the model Phantom 4, and drones
D2 and D8 are two different drones of the model Mavic 3. Each drone was observed
separately while hovering at a height of 8 m above the recording equipment. The X4 UAVs
are presented in Figure 1. The X6 UAVs are presented in Figure 2.
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Figure 1. The X4 UAVs used in the experiment (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7; 

(h) D8; (i) D9; (j) D10; (k) D11; (l) D17. 
Figure 1. The X4 UAVs used in the experiment (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7;
(h) D8; (i) D9; (j) D10; (k) D11; (l) D17.
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Figure 2. The X6 UAVs used in the experiment (a) D12; (b) D13; (c) D14; (d) D15; (e) D16. 
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Recordings of acoustic signals in the presence of UAVs took place in four different 

places: in two Polish cities, Kielce and Gdańsk, and in two places in the vicinity of the city 
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shown in Figure 3. 
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Figure 2. The X6 UAVs used in the experiment (a) D12; (b) D13; (c) D14; (d) D15; (e) D16.

2.2. Measurement and Recording of Acoustic Signals

Recordings of acoustic signals in the presence of UAVs took place in four different
places: in two Polish cities, Kielce and Gdańsk, and in two places in the vicinity of the
city of Gdańsk. The recordings were taken separately for the seventeen UAVs. During the
recording, the UAV hovered at a height of 8 m directly over the recording equipment, as
shown in Figure 3.

Sensors 2024, 24, 5663 5 of 13 
 

 

  

 

(a) (b)  

   
(c) (d) (e) 

Figure 2. The X6 UAVs used in the experiment (a) D12; (b) D13; (c) D14; (d) D15; (e) D16. 

2.2. Measurement and Recording of Acoustic Signals 
Recordings of acoustic signals in the presence of UAVs took place in four different 

places: in two Polish cities, Kielce and Gdańsk, and in two places in the vicinity of the city 
of Gdańsk. The recordings were taken separately for the seventeen UAVs. During the re-
cording, the UAV hovered at a height of 8 m directly over the recording equipment, as 
shown in Figure 3. 

 
Figure 3. Measurement of acoustic signal. (a) Real environmental conditions; (b) illustration. Figure 3. Measurement of acoustic signal. (a) Real environmental conditions; (b) illustration.



Sensors 2024, 24, 5663 6 of 13

Recordings were taken with Olympus LS-11 digital recorder and Norsonic 140 sound
analyzer. The recording equipment was placed 1.7 m above the ground. For each UAV, five
(5) one-minute-long recordings were taken with Olympus LS-11 at a frequency of 44.1 kHz.
Five recordings were also taken for each UAV using Norsonic 140 sound analyzer.

The measurement schedule, including dates, places, weather conditions, and the UAVs
recorded that day, is presented in Table 2.

Table 2. Measurement schedule: places, dates, weather conditions, and the UAVs [35].

Day Date Place Conditions UAVs

Day 1 15 March 2023 Kielce

Temperature: 5 ◦C
Air Pressure: 1014 hPa

Humidity: 51%
Wind: 22 km/h

D1, D2

Day 2 15 April 2023 Gdańsk

Temperature: 10 ◦C
Air Pressure: 1015 hPa

Humidity: 78%
Wind: 25 km/h

D3, D4, D5, D6

Day 3 16 April 2023 Dębogórze,
vicinity of Gdańsk

Temperature: 6 ◦C
Air Pressure: 1022 hPa

Humidity: 93%
Wind: 18 km/h

D7, D8, D9

Day 4 17 April 2023 Dębogórze,
vicinity of Gdańsk

Temperature: 7 ◦C
Air Pressure: 1030 hPa

Humidity: 80%
Wind: 22 km/h

D10, D11, D12, D13

Day 5 18 April 2023 Łapalice,
vicinity of Gdańsk

Temperature: 8 ◦C
Air Pressure: 1033 hPa

Humidity: 90%
Wind: 25 km/h

D14, D15, D16, D17

2.3. Acoustic Analysis of Signals

Acoustic analysis of signals obtained using a Norsonic 140 sound analyzer consisted
of frequency analysis of characteristic high background sound levels (peaks) and analysis
of A-weighted sound levels obtained in the presence of the unmanned aerial vehicles.

2.4. MFCC Extraction from Recordings

Twelve Mel-Frequency Cepstral Coefficients (MFCCs) were extracted from record-
ings of signals in the presence of UAVs obtained with Olympus LS-11 recorder. MFCCs
were used because of their efficient classification in previous experiments in which dis-
criminant function analysis was applied to analyze sounds recorded in the presence of
UAV [33]. These coefficients are also efficient in recognition systems where they provide
high recognition accuracy.

2.5. Discriminant Analysis of MFCC

Discriminant function analysis of the 12 MFCCs was performed to investigate the
differences between the UAV models. The UAV models were taken as the grouping
variables and the MFCCs as the independent variables.

The discriminant analysis consisted of the discrimination stage and the classification
stage. It was performed using STATISTICA software version 13.3 [36]. In the discrimination
stage, the maximum number of discriminant functions evaluated was equal to the number
of discriminant variables minus one. A canonical analysis was used to determine the
successive functions and their canonical roots. The standardized coefficients were esti-
mated for each discriminant function. The contribution of the variable to the discrimination
between groups becomes greater as the standardized coefficients become larger. Chi-square
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tests with successive roots removed were investigated. The coefficient of the canonical
correlation (canonical-R), which ranges between 0 (no association) and 1 (very high associa-
tion), is a measure of the association between the i-canonical discriminant function and the
group. Wilks’ lambda statistic, which ranges between 0 (excellent discrimination) and 1 (no
discrimination), is used to determine the statistical significance of discrimination.

The classification stage followed the determination of the variables that discriminate
the UAV groups. Because there were thirteen model groups, thirteen classification functions
were created according to Equation (1), viz.:

Ki(h) = ci0 + wi1mfcc1 + wi2mfcc2 + . . . + wi12mfcc12 (1)

where h is the UAV considered as a group (mavic2zoom, mavicmini2, phantom4, ma-
trice300, mavic3, mavicair2s, mavicair2, mavic2pro, yuneech520, yuneech520ertk, s900,
x6d, y6), the subscript i denotes the respective group, ci0 is a constant for the i-th group,
wij is the weight of the j-th variable in the computation of the classification score for the
i-th group, and mfccj is the observed Mel-frequency cepstral value for the respective case.
The classification functions were used to determine to which group each case most likely
belongs. A case was classified as belonging to the group for which it had the highest
classification score, or more precisely, for which Ki(h) assumed the highest value. The
classification matrix was used to present the number of cases that were correctly classified
and the number that were misclassified.

3. Results

The following results of the acoustic analysis and discriminant function analysis of
signals detected in the presence of the UAVs in external environmental conditions were
obtained in the experiment.

3.1. Results of Acoustic Analysis

The A-weighted sound levels of the UAVs obtained with the Norsonic 140 sound
analyzer in external environmental conditions are presented in Figure 4:
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The background sound levels of the UAVs recorded with the Norsonic 140 sound
analyzer in external environmental conditions are presented in Figure 5.

In Figure 5, the background sound levels obtained in the absence of UAVs in envi-
ronmental conditions of the city of Kielce (BG) are also presented. The characteristic peak
of the BG appeared at 25 Hz. The acoustic analysis showed that the X4 model resulted in
smaller A-weighted and background sound levels than the X6 model. Characteristic peaks
of the UAVs and their frequencies, according to Figure 5, are presented in Table 3.
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Table 3. The characteristic frequencies of peaks (ˆ—normal, ˆ—high) of the UAVs.

UAV D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

12.5 Hz ˆ

16 Hz ˆ ˆ

20 Hz ˆ ˆ ˆ

25 Hz ˆ ˆ ˆ

31.5 Hz ˆ ˆ ˆ

40 Hz ˆ ˆ

50 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

63 Hz ˆ ˆ ˆ ˆ ˆ

80 Hz ˆ ˆ ˆ

100 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

125 Hz ˆ

160 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

200 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

250 Hz ˆ ˆ

315 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

400 Hz ˆ ˆ ˆ ˆ ˆ

500 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

630 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

800 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 kHz ˆ ˆ ˆ ˆ ˆ

1.25 kHz ˆ ˆ ˆ

1.6 kHz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2.5 kHz ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 kHz ˆ ˆ ˆ ˆ ˆ
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According to Table 3, the presented peaks and their associated frequencies characterize
the acoustic background obtained in the presence of the drones. The background sound
levels are a combination of the UAV signals and the surrounding sounds. Maximum large
peaks, marked in red in Table 3, show very high and easily visible peaks. Same models of
drones showed similar characteristic frequencies. For example, the pair D2 and D8 showed
characteristic peaks at 50 Hz, 160 Hz, 315 Hz, and 630 Hz; the pair D5 and D11 showed
characteristic peaks at 315 Hz and 630 Hz; the pair D9 and D17 showed characteristic peaks
at 50 Hz, 160 Hz, 200 Hz, 315 Hz, 500 Hz, and 800 Hz; and the pair D6 and D7 showed
characteristic peaks at 50 Hz, 100 Hz, 200 Hz, 400 Hz, and 630 Hz. The most common
characteristic frequencies for the UAVs were 50 Hz, 200 Hz, and 315 Hz.

3.2. Results of Discriminant Function Analysis

Discriminant function analysis was performed with 12 MFCCs as the independent
variables and the UAV models as the grouping variables. The analysis showed significant
main effects used in the model (Wilks’ lambda: 0.0000009; approx. F(144, 540) = 15.34;
p < 0.00001). Eleven discriminant functions (Root0, Root1, Root2, Root3, Root4, Root5,
Root6, Root7, Root8, Root9, and Root10) were created. Chi-square tests performed at the
canonical stage with successive roots removed are presented in Table 4.

Table 4. Chi-square tests with successive roots removed.

Roots Removed Canonical R Wilks’ Lambda Chi-Square p-Value

0 0.984 0.0000 995.17 0.00000
1 0.968 0.0000 749.98 0.00000
2 0.948 0.0004 551.43 0.00000
3 0.907 0.0044 387.49 0.00000
4 0.868 0.0251 263.53 0.00000
5 0.774 0.1015 163.55 0.00000
6 0.695 0.2537 98.08 0.00000
7 0.543 0.4903 50.96 0.00162
8 0.475 0.6951 26.01 0.05395
9 0.304 0.8971 7.76 0.55816
10 0.106 0.9884 0.83 0.93388

According to Table 4, chi-square tests with successive roots removed were signifi-
cant for all discriminant functions used in the model (R = 0.984; Wilks’ lambda = 0.0000;
p < 0.00000). The removal of the first discriminant function resulted in a high canonical-
R between groups and discriminant functions (R = 0.968). The removal of the second,
third, fourth, fifth, sixth, seventh, and eight discriminant functions also resulted in a
high canonical-R.

After the canonical stage and derivation of discriminant functions with 12 MFCC
features that mostly discriminate between groups, the classification stage followed. The
coefficients of the classification functions were determined. The classification functions
were used to establish to which group each case most likely belongs. The classification
matrix was obtained to show the number of cases that were correctly classified and those
that were misclassified.

The coefficients of the classification functions obtained for the groups are presented in
Table 5.

The results of classification of the UAV model groups using the classification functions
K(h) are presented in Table 6.

The value five in Table 6 means that for five considered records of the UAV model,
five were correctly classified as belonging to the considered group using the respective
classification function K(h). The value 10 means that for 10 considered records of the UAV
model, 10 were correctly classified. The value 9 means that for 10 considered records,
9 were correctly classified and 1 was misclassified. The value zero (0) means that no record
was classified as belonging to the considered group using the function K(h). The Total
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row (besides the first column) contains the number of all cases classified under the given
function K(h). The value 11 means that for 10 considered records of the UAV model, 10 were
correctly classified and 1 record was additional and misclassified. The percentage values
are the average values of correctly classified cases.

Table 5. The coefficients of classification functions.

ci K(Mavic
2 Zoom)

K(Mavic
Mini 2)

K(Phantom
4)

K(Matrice
300)

K(Mavic
3)

K(Mavic
Air 2S)

K(Mavic
Air 2)

K(Mavic
2 Pro)

K(Yuneec
H520)

K(Yuneec
H520E RTK) K(S900) K(X6D) K(Y6)

wi1 78.68 72.36 125.46 131.42 116.42 83.64 83.56 84.21 130.48 134.29 128.93 72.83 85.57
wi2 −27.42 −52.07 −64.47 −70.11 −48.30 −45.95 −24.60 −33.13 −70.16 −69.48 −60.50 −64.23 −45.68
wi3 136.73 101.03 96.68 70.82 119.72 116.44 139.50 140.17 103.73 96.45 147.69 84.23 85.31
wi4 −140.46 −208.73 −176.03 −94.83 −150.06 −200.34 −152.54 −188.17 −183.64 −182.19 −151.99 −160.93 −139.35
wi5 188.23 246.56 279.98 253.03 247.08 234.93 187.79 209.62 303.74 303.28 321.99 185.94 208.90
wi6 −66.20 109.61 −123.52 −221.46 −151.74 38.25 −78.20 −3.50 −93.66 −107.68 −183.84 15.65 −76.86
wi7 −67.45 −112.55 −99.88 −43.51 −74.61 −103.67 −65.22 −81.71 −92.31 −103.93 −135.60 −29.11 −56.70
wi8 55.20 −20.30 125.69 122.23 94.47 45.06 58.55 44.72 133.24 153.70 118.96 55.67 58.10
wi9 −129.30 −109.27 −123.04 −135.49 −152.85 −97.02 −125.01 −162.71 −132.91 −114.35 −211.17 −77.91 −98.97
wi10 −52.32 57.16 −96.49 −147.66 −105.03 5.49 −57.61 −33.90 −100.15 −98.34 −95.28 −35.94 −44.19
wi11 304.85 340.06 359.10 268.74 372.54 318.73 314.04 367.75 337.62 324.41 409.87 129.89 197.51
wi12 −168.27 −371.09 −120.45 36.67 −66.37 −306.44 −119.78 −186.34 −208.51 −206.46 −119.42 −137.74 −74.97
ci0 −379.01 −443.49 −579.10 −496.55 −526.51 −459.50 −403.43 −466.95 −639.39 −635.76 −734.34 −379.69 −352.66

Table 6. The classification matrix.

Group % K(Mavic
2 Zoom)

K(Mavic
Mini 2)

K(Phantom
4)

K(Matrice
300)

K(Mavic
3)

K(Mavic
Air 2S)

K(Mavic
Air 2)

K(Mavic
2 Pro)

K(Yuneec
H520)

K(Yuneec
H520E RTK) K(S900) K(X6D) K(Y6)

Mavic 2 Zoom 100.0 5 0 0 0 0 0 0 0 0 0 0 0 0
Mavic Mini 2 100.0 0 10 0 0 0 0 0 0 0 0 0 0 0

Phantom 4 90.0 0 0 9 0 1 0 0 0 0 0 0 0 0
Matrice 300 100.0 0 0 0 5 0 0 0 0 0 0 0 0 0

Mavic 3 100.0 0 0 0 0 10 0 0 0 0 0 0 0 0
Mavic Air 2S 100.0 0 0 0 0 0 5 0 0 0 0 0 0 0
Mavic Air 2 100.0 0 0 0 0 0 0 5 0 0 0 0 0 0
Mavic 2 Pro 100.0 0 0 0 0 0 0 0 10 0 0 0 0 0
Yuneec H520 100.0 0 0 0 0 0 0 0 0 5 0 0 0 0

Yuneec H520E RTK 100.0 0 0 0 0 0 0 0 0 0 5 0 0 0
S900 100.0 0 0 0 0 0 0 0 0 0 0 5 0 0
X6D 100.0 0 0 0 0 0 0 0 0 0 0 0 5 0
Y6 100.0 0 0 0 0 0 0 0 0 0 0 0 0 5

Total 98.8 5 10 9 5 11 5 5 10 5 5 5 5 5

Classification of the UAV models was very accurate, as shown by the 100% value
obtained for correctly classified cases, except for the Phantom 4 model, whose accuracy
percentage was 90%. One record from the ten Phantom 4 drones was misclassified as a
Mavic 3 model.

According to Table 6, the classification was accurate (98.8%). Discriminant analysis
showed significant differences between drones of different models but no significant
differences between those of the same models.

4. Discussion

The acoustic analysis yielded higher A-weighted sound levels and background sound
levels for the X6 UAVs than for X4 UAVs. The A-weighted sound levels of the drones with
an X4 structure were above 50 dB(A), while the A-weighted sound levels of the X6 drones
were above 60 dB(A). The highest A-weighted sound level of 75.7 dB(A) was exhibited
by the D14-X6-S900 model. The D1-X4-Matrice 300 model, also showed an A-weighted
sound level above 70 dB(A) value. The background sound levels presented in Figure 5
resulted in peaks that could be characteristic for UAVs hovering at 8 m over the recording
equipment, but also for other sounds in the surroundings. When investigating the BG, the
surrounding factors may have a minor effect on the recordings of UAVs in this experiment.
The characteristic peaks presented in Table 3 were similar for drone pairs of the same
models, viz.: D2 and D8, D5 and D11, D9 and D17, and D6 and D7. The most common
frequencies, which were obtained for almost all the UAV models, were 50 Hz, 200 Hz, and
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315 Hz. To specify the characteristic peaks, more data records of same UAV models need to
be analyzed.

Discriminant analysis based on MFCC showed significant differences between the
different UAV model groups, but no significant differences between UAVs of the same
models. One out of ten records of the Phantom 4 model was incorrectly classified as a
Mavic 3 model, resulting in a 90% classification accuracy for the Phantom 4 group. In
general, the mean classification accuracy for all of the UAV models was 98.8%. This high
classification accuracy shows that UAV models can be classified based on acoustic signals.
An acoustic system can serve as an additive system for other systems, e.g., vision and radar
systems, to detect and classify drones. Previous research on drones shows that acoustic
systems can accurately detect drones even from a distance of 1 km. Some acoustic systems
can detect drones as well as the drone models. Such systems work even at night, enhancing
privacy area protection. In the current study, the drones were observed and analyzed at
four different places, but this had no influence on the classification accuracies.

Future research should focus on extracting features that will provide more accurate
information about drones and obtaining classification scores of UAV models from other
altitudes and distances. The surrounding factors may affect the accuracy of classification
when increasing the distance between the UAV and recording equipment, which will be the
subject of further research. Previous research on drones has shown that the acoustic signals
of selected drones can be used to determine the altitudes and distances at which the drones
are hovering [33]. Other information that can be obtained from drone acoustic signals may
include the structure of the drone (X4 vs. X6 vs. X8 vs. X3) and its loading. Initial listening
tests showed that information about the loading of a model can be obtained from the
acoustic signal. The sound of the same drone with and without loading shows differences
in the sound signal during listening tests. Future research should aim to numerically
confirm the listening tests and obtain information about the structure of the drone and
loading from acoustic signals. Such information obtained from an acoustic signal may
allow us to detect an object, classify it, determine its loading, distance and height, and
understand the nature of the signal. This, in turn, makes it possible to develop an acoustic
sensor for an unmanned acoustic system that can perform the above activities directly
from the unmanned platform. It will therefore be necessary to reject the components of the
sensor carrier and acquire environmental signals. Such an operation is possible only after
the nature of the drone signals has been understood, thus allowing the rejection of carrier
components and the acquisition of environmental signals.

5. Conclusions

The aim of this study was to perform acoustic analysis and discriminant function
analysis of acoustic signals recorded in the presence of UAVs hovering at a height of 8 m
above the recording equipment in external environmental conditions. Seventeen different
UAVs were used in the experiment.

Acoustic analysis was based on A-weighted sound levels and background sound
levels in the presence of the UAVs. The acoustic analysis showed that drones of X4 model
yielded smaller A-weighted and background sound levels than those of X6 model. The
most common frequencies of background sound levels (peaks) obtained for almost every
UAV model were 50 Hz, 200 Hz, and 315 Hz.

Discriminant function analysis showed significant differences between different UAV
models, but no significant differences between the same UAV models. Classification of the
UAV models was 98.8% accurate. Discriminant analysis and MFCC features showed very
accurate classification results for the models.

Future research should evaluate the impact of other hovering distances of UAVs
from the recording equipment on the efficiency of classification and concentrate on the
classification of the structure of the drone (X4 vs. X6 vs. X8 vs. X3).



Sensors 2024, 24, 5663 12 of 13

Funding: This research was funded in whole by National Science Centre, Poland, Grant number:
2022/06/X/ST7/00586. For the purpose of open access, the author has applied a CC-BY public
copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on the website https:
//t47-marzena.s3.kielce.pl/index.html accessed on 27 August 2024 under the terms and conditions of
the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/
accessed on 27 August 2024). Author: Marzena Mięsikowska.
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