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Abstract: Simultaneous localization and mapping (SLAM) is an essential component for smart robot
operations in unknown confined spaces such as indoors, tunnels and underground. This paper
proposes a novel tightly-coupled ranging-LiDAR-inertial simultaneous localization and mapping
framework, namely RLI-SLAM, which is designed to be high-accuracy, fast and robust in the long-
term fast-motion scenario, and features two key innovations. The first one is tightly fusing the
ultra-wideband (UWB) ranging and the inertial sensor to prevent the initial bias and long-term
drift of the inertial sensor so that the point cloud distortion of the fast-moving LiDAR can be
effectively compensated in real-time. This enables high-accuracy and robust state estimation in
the long-term fast-motion scenario, even with a single ranging measurement. The second one is
deploying an efficient loop closure detection module by using an incremental smoothing factor
graph approach, which seamlessly integrates into the RLI-SLAM system, and enables high-precision
mapping in a challenging environment. Extensive benchmark comparisons validate the superior
accuracy of the proposed new state estimation and mapping framework over other state-of-the-art
systems at a low computational complexity, even with a single ranging measurement and/or in a
challenging environment.

Keywords: simultaneous localization and mapping; state estimation; loop closure detection; mapping;
ultra-wideband

1. Introduction

Simultaneous localization and mapping (SLAM) is an essential component for smart
robot operations in unknown confined spaces such as indoors, tunnels and underground [1].
A variety of LiDAR-based SLAM systems have been widely employed due to their ad-
vantages of high resolution, robustness to low-light environments and dense 3D map
ability [2–5]. Due to the rapid development of lightweight and cost-effective LiDAR
technologies, LiDAR-based SLAM systems show great potential applications for small
unmanned platforms with limited computation resources [6].

However, high-accuracy, fast and robust LiDAR odometry and mapping are encoun-
tered three main practical challenging problems [7]. The first one is the point cloud distor-
tion caused by LiDAR’s fast motion, which introduces severe state error in the long-term
scenario. The second one is geometric degeneration in the challenging environment such
as strong-light spaces and straight tunnels, which cause mapping distortions. The third
one is a large number of point clouds generated in real-time, which causes a processing
load on limited onboard computing resources.

Sensor fusion is the most used approach to overcome the first two shortcomings of
the LiDAR in the LiDAR-based system. It has been proven that integrating LiDAR and
other sensors with complementary properties, such as the inertial sensors and cameras, can
improve the state estimation accuracy [8,9]. However, most of these works do not solve the
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computational complexity problem of the LiDAR sensor. To reduce the computation load,
Xu et al. [4] propose a direct method to register the raw points to estimate the state and
build the map without extracting features, which achieves higher accuracy at a much lower
computation load than other state-of-the-art LiDAR-inertial SLAM systems. However, they
assume that the inertial sensor does not have any bias in the initial fusion phase and can
compensate for the point cloud distortion of the moving LiDAR. But, once the inertial
sensor has a bias, the inertial sensor cannot compensate for the point cloud distortion of the
moving LiDAR, and then, inevitably causes the error state estimation. Therefore, when the
state estimation is inaccurate, we cannot correct the bias and experience long-term drift and
the whole SLAM system diverges. Moreover, they do not apply an effective loop closure
detection module, which causes mapping distortion in a challenging environment.

Due to the centimeter-level ranging accuracy, high temporal resolution, and resistance
to the multipath effect of the ultra-wideband (UWB) system [10,11], several works involve
loosely coupling the position results generated from the UWB system into the LiDAR-based
SLAM [12–15]. However, these works require a large number of UWB anchors as support to
calibrate the bias of the system, which may lead to significant errors in position estimation
in environments with poor UWB anchor distribution, thereby affecting the state estimation
of the entire SLAM system.

In this paper, we propose a novel tightly-coupled ranging-LiDAR-inertial simultane-
ous localization and mapping framework, namely RLI-SLAM, designed to achieve high
accuracy, speed, and robustness in the long-term fast-motion scenarios in sparsely or poorly
anchored environments. The main contributions of this paper include the following:

• We tightly fuse the high-accuracy UWB ranging measurements with the inertial sensor,
which can effectively eliminate the initial bias and long-term drift of the inertial sensor.
This allows the point cloud distortions of the fast-moving LiDAR to be effectively
compensated in real-time, whether in the initial phase or the long-term processing,
even with a single anchor’s ranging measurement.

• We introduce an efficient loop closure detection module at a low computational
complexity, utilizing an incremental smoothing factor graph approach. This module
seamlessly integrates into our RLI-SLAM system, enabling high-precision mapping in
challenging environments.

• We conduct extensive benchmark comparisons and validate that, compared with other
state-of-the-art systems, our approach is highly accurate, robust, flexible, and fast
for state estimation and mapping in long-term fast-motion scenarios. Specifically,
there is no limitation on the number of tightly-coupled ranging measurements, and
we add an efficient loop closure detection module that can be seamlessly integrated
into our RLI-SLAM system to improve accuracy. As for flexibility, even without
ranging measurement, we can still use tightly-coupled LiDAR and inertial sensors to
maintain the high-accuracy state estimation. Additionally, our approach has the same
low computational complexity as the fast LiDAR-Inertial odometry (FAST-LIO2) [4]
system, which is the fastest LiDAR-based odometry available.

2. Related Works
2.1. UWB-LiDAR-Inertial Odometry

In recent research, many researchers have attempted to incorporate UWB into LiDAR-
inertial SLAM systems. For instance, in [13], a loosely coupled sensor fusion method is
introduced to diminish LiDAR odometry drift by leveraging positioning data from two rel-
atively independent systems. Conversely, tightly-coupled methods such as those discussed
in [14] merge 2D LiDAR ranging with UWB measurements to mitigate cumulative errors in
the LiDAR data. Although these approaches are effective, they necessitate a substantial
quantity of UWB anchors to create a “coarse” map through ranging measurements that
assist LiDAR in constructing a “fine” map. However, when the number of available UWB
anchors is restricted, the state estimation and mapping could be inaccurate due to the
excessively “coarse” map resulting from a limited number of UWB measurements. In
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recent research, [16] introduces a tightly-coupled sensor fusion method that utilizes factor
graphs to incorporate UWB ranging into the SLAM system. This method can mitigate
cumulative drift with only three anchors’ ranging values, yet its intricate computation
results in a less significant enhancement of the state estimation in accuracy.

2.2. Loop-Closure Detection

In a SLAM system, the primary goal of the loop closure correction is to identify loops
in the robot’s trajectory and rectify them, mitigating the odometry drift caused by noise,
environmental variations, and sensor errors. As shown in [17–19], the local key points
voting method is adopted to carry out sub-linear matching for loop closure detection.
Moreover, different from the local key points method, such as multiview 2D projection
(M2DP) [20], global key descriptors utilize LiDAR scan points, which are known for their
resilience to noisy input. However, these methods encounter challenges during seamless
integration into any LiDAR system, which constrains their applicability.

3. System Architecture

As described in Figure 1, the front-end of our RLI-SLAM system takes LiDAR point
cloud data, UWB ranging measurements, and the inertial sensor data as input to estimate
the prior state. After synchronizing the sensors’ data, the UWB ranging is tightly fused
with the inertial sensor to prevent the initial bias and long-term drift of the inertial sensor.
This allows the inertial sensor to undergo pre-integration processing and provide a prior
state estimation to effectively compensate for the point cloud distortion of the fast-moving
LiDAR in real-time. In the back-end, new scan points from the LiDAR are combined with
the prior estimation to perform the state estimation through using an iterative error state
Kalman filter (IESKF) and registered into an incremental k-d tree (ik-d tree) data structure
to efficiently build a dense map. The resulting loop closure detection measurements
are combined with the state estimation to provide odometry, and to update the global
dense map.

Figure 1. System overview.

4. Methodology

Our system employs inertial sensor measurements and LiDAR measurements as
observations and utilizes IESKF for data fusion. To mitigate the inertial sensor’s initial
bias and long-term drift, as well as to compensate for point cloud distortion caused by the
high-speed LiDAR, we utilize UWB-ranging data to aid LiDAR motion compensation with
minimal computational complexity. Additionally, we have integrated loop closure detection
to achieve high-precision mapping in challenging environments, thereby enhancing system
robustness and accuracy. Detailed explanations will be provided in the following sections.
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4.1. Preliminaries
4.1.1. State Estimates

By utilizing the inertial sensor coordinate system as the body reference coordinate
system and defining its initial frame as the global coordinate system, we can derive the
kinematic model in the global coordinate system.

x = [pT , vT , θT , bT
α , bT

ω, gT ]T , (1)

where x represents the state variable that varies over time, p, v, and θ represent the inertial
sensor’s displacement, velocity, and the Euler angles, respectively, bω and bα represent the
biases of the inertial sensor’s angular and acceleration, respectively, while g represents the
unknown gravity vector in the kinematic model.

We denote the continuous-time accelerations and angular velocities read from the
inertial sensor as α̂ and ω̂, respectively, and express the relationship between the derivatives
of the corresponding error state variables and the observations in the continuous kinematic
model as

δṗ = δv, δḃα = ηbα, δḃω = ηbω, δg = 0

δv̇ = −R(α̂− bα)
∧δθ−Rδbα − ηα + δg

δθ̇ = −(ω̂− bω)
∧δθ− δbω − ηω, (2)

where (a)∧ represents the skew-symmetric matrix of a vector a ∈ R3, R is the direction
cosine matrix of θ, ηα and ηω represent the white noise of the inertial sensor-measured
acceleration and angular velocity, while bα and bω represent the bias for acceleration and
angular velocity, respectively, which are modeled as Gaussian noise and follow a random
walk process characterized by ηbα and ηbω. The discrete motion model derived from
Equation (2) using the sampling period ∆t of the inertial sensor is

δp(t + ∆t) = δp(t) + δv∆t, δbα(t + ∆t) = δbα(t) + ηbα

δbω(t + ∆t) = δbω(t) + ηbω, δg(t + ∆t) = δg(t)

δv(t + ∆t) = δv(t) + (−R(α̂− bα)
∧δθ −Rδbα + δg)∆t− ηv

δθ(t + ∆t) = exp(−(ω̂− bω)∆t)δθ(t)− δbω∆t− ηθ, (3)

The discrete-time state of speed is derived from the time derivative part of speed in
Equation (2). The rotational part can be obtained using the integral formula of angular
velocity. Specifically, by treating the time derivative part of angular velocity in Equation (2)
as a differential equation with respect to δθ and solving it, we can obtain the integral related
to the rotational part.

4.1.2. Synchronization

The time synchronization of sensors within the system has been adapted from the time
synchronization principles documented in [10], with a focus on LiDAR and IMU. Given the
relatively lower frequency of UWB, it often necessitates the interpolation and adaptation of
its data using the higher frequency IMU within scanning intervals, as depicted in Figure 2.
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Figure 2. Synchronization among the sensors.

4.2. UWB-LiDAR-Inertial Odometry
4.2.1. Motion Compensation

Our system utilizes LiDAR sensor data as observation. To effectively utilize the high
frequency of the inertial sensor data, we employ the inertial sensor measurements to
estimate the relative pose of each LiDAR point at the end of the scan. This compensation
effectively mitigates motion offsets of the LiDAR sensor, ensuring swift and accurate
observations for our system’s state propagation and enhancing the system’s robustness.

The estimated rough attitude provided by the inertial sensor allows us to project
points from each sampling moment in the LiDAR scan to align with the moment when the
scan concludes. As a result, all points from every LiDAR scan are considered as points at
the moment when the scan concludes. The process of motion compensation for LiDAR is
as follows:

P̃L = RI
L
−1

(R−1
I (RG

I (R
I
L · PL + PI

L) + ∆TI)− PI
L), (4)

where PI
L and RI

L represent the translation and rotation of the rigidly connected LiDAR to
the inertial sensor, PL refers to a series of poses of LiDAR in the laser coordinate system
before motion compensation, RG

I is the rotation matrix from the inertial sensor coordinate
system to the global coordinate system (the coordinates of the first frame of the inertial
sensor coordinate system), ∆TI is the translation from the position of the inertial sensor
in the global coordinate system at the end of the scan to the current inertial sensor point
position, R−1

I is the inverse of the rotation matrix from the inertial sensor output, and
P̃L represents a series of poses of LiDAR in the LiDAR coordinate system after motion
compensation and distortion correction.

4.2.2. UWB Constraint and Drift Correction

The key challenge in motion compensation within the LIO (Lidar Inertial Odometry)
system lies in accurately projecting lidar points from one scan to the latest pose, which is
the attitude after IMU preintegration. This challenge is closely tied to the quality of the
corresponding attitudes of lidar points at different measurement times. While the state
remains consistent within the IESKF system composed of IMU and LiDAR, short-term
propagation should be accurate. However, both vibrations and movements of the body
can cause temporary offsets in LiDAR, thereby diminishing the quality of corresponding
attitudes at different measurement times and leading to subsequent sustained drift in
the system. Hence, we introduce UWB ranging measurements between UWB nodes and
anchors to augment and fine-tune the initial attitude estimation derived from the inertial
sensor. This serves to strengthen the process of projecting lidar points from one scan to the
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latest pose, ultimately enhancing the accuracy and robustness of the system. It is worth
noting that the world coordinate system in our system aligns with the initial keyframe’s
pose. We can obtain the coordinates of the anchors in the anchor coordinate system by
measuring the relative distances between the anchors and designating one of the anchors
as the origin. By applying a common transformation from the UWB anchor coordinate
system to the world coordinate system, we can determine the coordinates of all anchors in
the world coordinate system. We represent this transformation as follows:

TW
U = (RW

U , pW
U ), (5)

where RW
U and pW

U represent the rotation and transformation of the rigidly connected UWB
to the world, and this transformation can be easily estimated within the state propagation
of the IESKF. The measurement state of UWB at time step j can be described as:

Ui
j = (ai, b, tj, di), i = 1, 2, 3, ..., N, (6)

where i is index of the UWB anchor points, ai represents the global coordinate system
coordinates of the i-th UWB anchor point, b is the offset of the UWB node relative to the
body in the body coordinate system, tj is the time of this measurement state in the system,
di is the distance measurement data between the UWB node and the i-th UWB anchor point.
At time step j, the distance between the node and UWB anchor point i can be described
using the rough pose estimation derived from the inertial sensor:

d(χk, δθ) = pk − (RW
U ai + pW

U )

+Rk−1 exp(δθ)exp(∆t1Log
Rk exp(δθ)

Rk−1 exp(δθ)
)b

−1
2

δv∆t2 + ηd, (7)

where ∆t1 =
tj−tk−1
tk−tk−1

, ∆t2 = tj − tk−1, χk represents the rough pose state estimated by
the inertial sensor at time step k,δv and δθ is the rotational error state of the rough pose
estimated by the inertial sensor in (3), pk is the rough coordinate estimated by the inertial
sensor, ηd is the noise. Therefore, the residual between the distance measurement value of
the i-th UWB anchor point at time step k and its estimated value can be expressed as:

rU(χk, Ui
k) = ∥d(χk, δθ)∥ − di. (8)

This nonlinear optimization requires extremely low computational resources to quickly
and accurately enhance the system’s precision. Furthermore, since it corrects the LiDAR
motion compensation module rather than the entire system, only a small number of
UWB anchor points are needed to achieve this precision improvement, as confirmed by
subsequent benchmark dataset experiments.

4.2.3. Observation Model

To obtain the observation equation, it is necessary to transform the motion-compensated
P̃L from (4) into the global coordinate system:

GP̃L
= TG

L P̃L + ηPL , (9)

where TG
L represents the transformation from the LiDAR coordinate system to the global

coordinate system, P̃L denotes the noise after motion compensation, and the transformed
GP̃L

should ideally lie on a local flat plane (or edge) within the global map. To achieve this,
we employ a k-d tree search to find n nearest points GPi for plane fitting. These points are
fitted into a plane, and we assume GPi to be the true position of GP̃L

in the global map.
Thus, we can construct the residual:
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rL(χk, GP̃L
) =

∥∥∥uT(GP̃L
−GPi )

∥∥∥, (10)

where u represents the normal vector of the fitted plane.
Multiple LiDAR data obtained through motion compensation can be iteratively incor-

porated into our system to obtain the solution and propagate the state.

4.3. Loop Closure Detection

We aim to utilize backend loop closure detection to correct the robot’s state and its
trajectory. The state estimation problem can be formulated as a Maximum A Posteriori
(MAP) problem. We employ factor graphs to model this problem, as they are more suitable
for inference compared to Bayesian networks. To construct the factor graph, we introduce
two types of factors and one variable type. The variable represents the state of the robot at a
specific time and is attributed to nodes in the graph. The two types of factors are odometry
factors and loop closure factors. When the change in the robot’s pose exceeds a user-defined
threshold, a new robot state node x is added to the graph. Utilizing incremental smoothing
and mapping (iSAM2), the factor graph is optimized upon the insertion of new nodes
(depicted in Figure 3). Consequently, our proposed loop closure detection module can
seamlessly integrate into any odometry system. The following sections describe the process
of generating these factors.

Figure 3. Loop detection module factor graph.

4.3.1. Odometry Factor

The computational challenge of calculating and adding factors to the graph for every
odometry frame is significant. To address this, we employ the concept of keyframe selection,
a strategy widely used in the field of visual Simultaneous Localization and Mapping
(SLAM). We use a straightforward yet effective heuristic approach, selecting the odometry
frame Li as a keyframe when the change in the robot’s pose surpasses a user-defined
threshold relative to the previous state xi. The newly stored keyframe Li+1 is then linked
with the new robot state node xi+1 in the factor graph. Any odometry frames that occur
between two keyframes are disregarded. This method of adding keyframes not only strikes
a balance between map density and memory usage but also helps to maintain a relatively
sparse factor graph, which is conducive to real-time nonlinear optimization. In our research,
we have set the thresholds for selecting position and rotation changes for the addition of
new keyframes at 1 m and 10 degrees, respectively.

Suppose we wish to add a new state node xi+1 to the factor graph. The odometry
keyframe associated with this state is Li+1. To reduce computational complexity, we only
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input the pose transformation information from the frontend’s keyframe into the node xi+1.
This yields the relative transformation ∆Ti,i+1 between xi and xi+1, i.e., the odometry factor
connecting these two pose states:

∆Ti,i+1 = TT
i Ti+1 + δ, (11)

where Ti ∈ SE(3) represents the i-th pose transformation in the world coordinate system,
and δ denotes the noise term following a Gaussian distribution.

4.3.2. Loop Closure Factor

Due to the utilization of factor graphs, unlike other laser-based loop closure detections,
the closures designed by us can seamlessly integrate into the odometer systems of nearly
all the laser scanners. For illustrative purposes, we devised and implemented a straightfor-
ward yet effective joint loop closure detection method based on Euclidean distance and the
generation of point cloud descriptors refer to Algorithm 1, specifically utilizing the Scan
Context descriptor (SCD) [21].

The Euclidean distance-based method does not transform the keyframes from the
laser scanner into descriptors as mentioned above. Instead, each newly added keyframe
is inserted into a k-d tree. By setting a predefined search radius and time interval, the
method searches for the indices of neighboring points within the k-d tree, thus obtaining a
set of neighboring points within the radius. This initial estimation is rough and requires
subsequent refinement for higher precision localization, such as using the Iterative Closest
Point (ICP) algorithm, as summarized in Algorithm 2.

Algorithm 1: Loop Closure Detection Based on Point Cloud Descriptors
Input : IDcur: The index of the current keyframe

L: The set of loop closure frame indices
d: Loop closure search radius
T: Loop closure search time difference threshold

1 Function DetectLoopClosureSC:
2 if IDcur ∈ L then
3 return false
4 end
5 if IDcur ∩ L = ∅ then
6 M← MakeAndSaveScancontextAndKeys(IDcur);
7 D ← DetectLoopClosureID(M, IDcur);
8 for each index id in L do
9 if Dtime > T and Ddistance < d then

10 IDpre ← N_ID;
11 end
12 end
13 if D = ∅ or IDpre = IDcur then
14 return false
15 end
16 else
17 return true
18 end
19 end
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Algorithm 2: Loop Closure Validity Check
Input : Index of the current keyframe IDcur

Index of the loop closure keyframe IDpre
Loop detection similarity threshold S

1 Function DetectLoopClosureEffective:
2 Ppre ← Downsampling(LoopFindNearKeyframes(IDpre));
3 Pcur ← Downsampling(LoopFindNearKeyframes(IDcur));
4 IcpScore← IcpAlignment(Ppre, Pcur);
5 if IcpScore < S then
6 return false;
7 else
8 return true;
9 end

It is noteworthy that in previous k-d tree-based proximity search systems, complete
maps or submaps were used for search and matching [5]. In our system, however, lidar
scans are employed as matching objects, corresponding to the observed objects in lidar-
based state estimation. This approach not only maintains accuracy but also significantly
improves matching speed. Although the Euclidean distance-based method is straightfor-
ward and effective, it may degrade when dealing with high-dimensional data, uneven data
distribution, or significant outliers. Therefore, our system additionally incorporates a point
cloud descriptor-based method refer to Algorithm 3). This method describes keyframe
point clouds using an innovative spatial descriptor known as the SCD. The process begins
by partitioning the raw measurements and using a bird’s-eye view (BEV) to project them
into discrete cells. The proximity between two locations is then defined by the similarity
score of the corresponding SCDs. If two SCDs are obtained from the same location, the
descriptors should contain consistent content within a matrix, although there may be dif-
ferences in column order.

Algorithm 3: Loop Closure Detection Based on SCD
Input : Index of the current keyframe IDcur

The set of loop closure frame indices L
Loop closure search radius d
Loop closure search time difference threshold T

1 Function DetectLoopClosureSC:
2 if IDcur ⊆ L then
3 return false
4 end
5 if IDcur ∩ L = ∅ then
6 M← MakeAndSaveScancontextAndKeys(IDcur);
7 D ← DetectLoopClosureID(M, IDcur);
8 for each index id in L do
9 if Dtime > T and Ddistance < d then

10 IDpre ← N_ID;
11 end
12 end
13 if D = ∅ or IDpre = IDcur then
14 return false
15 end
16 else
17 return true
18 end
19 end
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To measure similarity, we use cosine similarity between the two descriptors, which
is particularly effective for dynamic objects or in the presence of partial noise. The cosine
distance is used to calculate the distance between two column vectors l j

c and l j
p in the same

column. The distance between the two descriptors is as follows:

d( fp, fc) =
1

NA

NA

∑
j=1

(1−
l j
c · l

j
p

∥l j
c∥ · ∥l

j
p∥

) (12)

where the subscripts c and p denote the current and past positions, where the descriptor
has dimensions f ∈ RNR×NA , with NA representing the number of columns and NR
representing the number of rows.

Combining these two loop detection methods allows for swift and adaptable correction
of system drift in long-distance scenarios while utilizing minimal computational resources.
This ultimately enhances system accuracy and robustness.

5. Experiments and Result
5.1. Benchmark Dataset

The dataset we utilize, known as M2DGR [22], was collected within the campus of
SJTU and comprises multiple sequences recorded by a ground robot vehicle. This dataset
features a Velodyne VLP-32C LiDAR sensor with a frequency of 10 Hz and a Handsfree
A9 nine-axis inertial sensor with a frequency of 150 Hz. It encompasses various scenes
within the campus environment, including structural buildings, lawns, lakes, and so
forth. The second dataset is sourced from NTU’s campus, referred to as NTU VIRAL [23],
collected using the Ouster OS1-16 first-generation LiDAR sensor at a scanning rate of
10 Hz. Gyroscope and accelerometer measurements are sampled at 385 Hz using a six-axis
VN100 IMU. Data were recorded within the university campus, encompassing both indoor
and outdoor locations, with sensor data captured by drones.

5.1.1. UWB Anchors Configuration

Due to the lack of standardized UWB ranging datasets, in M2DGR, we simulated
UWB ranging information by adding Gaussian noise with a mean of zero and a standard
deviation of 5cm to the ground truth ranging data [24,25]. In our subsequent real-world
experiments, the UWB noise is also modeled as Gaussian noise with a mean of zero and
a standard deviation of 5 cm. For calculating the coordinates of anchors in the anchor
coordinate system, as shown in Figure 4, it only requires setting one anchor as the origin and
another anchor on the y-axis. The coordinates of the third anchor in the anchor coordinate
system can be calculated based on the relative distances between the three anchors. This
design allows for the straightforward calculation of anchor coordinates within the anchor
coordinate system. By using the IESKF to estimate the transformation from the world
coordinate system to the anchor coordinate system, the coordinates of the anchors in the
world coordinate system can be accurately and easily determined.

5.1.2. Accuracy Evaluation

In this section, we compare our system, RLI-SLAM, with other state-of-the-art LiDAR-
based inertial odometry and mapping systems, including adaptive LiDAR odometry and
mapping (A-LOAM) [3], LiDAR inertial odometry via smoothing and mapping (LIO-
SAM) [5], and FAST-LIO2 [4]. In the M2DGR dataset, sequences hall_01 and hall_02 were
obtained indoors by ground robots, while door_01 and door_02 depict transitions from
indoor to outdoor environments, and street_08 was collected during outdoor navigation.
The ATE in the table clearly demonstrates our system’s consistent superiority in accuracy.
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Figure 4. Anchor Coordinate Configuration.

For comprehensive experimentation, we included large-scale scene experiments, in-
volving three sequences with long-distance trajectories, namely street_01, street_02, and
street_04, as shown in Figure 5.

Figure 5. Trajectories of large-scale scene sequences on the map; with red representing the street_01
sequence, green representing the street_02 sequence, and yellow representing the street_04 sequence.

The data reveal significant drift in the street_01 sequence for LIO-SAM, attributable to
back-end factor graph optimization difficulties when handling prolonged and extensive
data. Likewise, due to motion compensation drift in FAST-LIO2’s LiDAR, errors in residual
estimation between planes and points lead to substantial distortion. In street_04, A-LOAM
and FAST-LIO2, which lack loop closure detection modules, both exhibit poor accuracy
due to cumulative drift over extended durations. The distorted global map generated by
FAST-LIO2 is shown in Figure 6a, while the global map after correction by our system is
depicted in Figure 6b. Although LIO-SAM showcases superior accuracy among the three
methods for comparison, our system, leveraging both ranging and loop closure constraints
concurrently, achieves the highest level of accuracy.

We conducted an assessment of UWB anchor point fusion quantities in RLI-SLAM,
and examined how varying the number of fused UWB anchor points affects estimation
drift in our system. We limited the number of fused ranging data to 1, 2, and 3 UWB anchor
points. Additionally, an evaluation was conducted where the number of UWB anchor
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points received by the robot for ranging data was randomized between 0 and 3 to simulate
real-world scenarios. Table 1 demonstrates that an increase in the number of fused UWB
anchor points leads to a gradual improvement in overall accuracy. The result in the table
shows that our system maintains high accuracy even with fewer UWB anchor points or
randomly selected combinations.

Figure 6. In the street_04 sequence, (a,c) represent the global map constructed by FAST-LIO2 and the
local map of its distorted portion, (b,d) depict the global map constructed by our proposed system
and the corrected local map.

Table 1. The absolute trajectory error (ATE, meters) for each sequence, where bold represents the
optimal result.

A-
LOAM

LIO-
SAM

FAST-
LIO2

RLI-
SLAM
(3 anc)

RLI-
SLAM
(2 anc)

RLI-
SLAM
(1 anc)

RLI-
SLAM
(rand)

RLI-
SLAM
(0 anc)

RLI-
SLAM
(3 anc
w/o

LCD)

RLI-
SLAM
(2 anc
w/o

LCD)

RLI-
SLAM
(1 anc
w/o

LCD)

RLI-
SLAM
(rand
w/o

LCD)

hall_01 0.204 0.205 0.219 0.107 0.162 0.172 0.154 0.172 0.092 0.161 0.170 0.153
hall_02 0.271 0.369 0.505 0.132 0.354 0.378 0.398 0.421 0.124 0.347 0.352 0.312
door_01 0.266 0.232 0.399 0.189 0.273 0.294 0.258 0.312 0.257 0.297 0.303 0.293
door_02 0.220 0.177 0.311 0.138 0.273 0.282 0.192 0.291 0.175 0.320 0.391 0.298
gata_01 0.566 0.184 0.164 0.116 0.135 0.145 0.258 0.312 0.257 0.297 0.303 0.293
gata_02 0.420 0.494 0.276 0.274 0.279 0.281 0.292 0.291 0.285 0.298 0.276 0.278
gata_03 0.170 0.101 0.201 0.098 0.113 0.128 0.139 0.121 0.115 0.120 0.191 0.198
street_01 6.355 35.790 281.430 2.805 3.403 3.223 11.721 12.391 4.750 7.379 10.127 8.912
street_02 2.625 3.045 2.240 1.549 2.855 3.291 4.468 4.821 2.000 3.198 3.215 2.986
street_04 3.153 0.822 6.087 0.185 0.303 0.270 0.354 0.791 0.261 0.311 0.391 0.397
street_08 3.185 0.596 0.501 0.178 0.349 0.388 0.302 0.323 0.287 0.441 0.539 0.571

Note: “anc” stands for the number of UWB anchor points, “rand” indicates a random number of UWB anchor
points, and “LCD” indicates loop closure detection.

We also conducted ablation experiments for loop closure detection. According to the
data, it can be observed that in indoor environments such as hall_01 and hall_02, where
there are short-range, irregular movements in a confined space, loop closure detection
introduces a certain negative impact on the overall system performance. However, in
other scenes, particularly in longer trajectories such as street_01, street_02, and street_04, the
removal of loop closure detection significantly affects the accuracy of our system.

In the experiments conducted on the NTU VIRAL dataset, we utilized three UWB
anchors from the dataset as constraints, as shown in Table 2. The data are derived from the
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results presented in the VIRAL-Fusion [26] paper. VIRAL-Fusion employs two LiDARs,
one camera, and three UWB anchors as constraints. As can be seen in Table 2, our method
demonstrates higher accuracy performance. Additionally, our loop closure detection
module further enhances the accuracy. Since VIRAL-Fusion is not open-source, we used
FAST-LIO for comparison, as illustrated in Figure 7, it can be observed that our algorithm
effectively suppresses drift compared to FAST-LIO2, significantly improving the overall
pose accuracy.

Table 2. The absolute trajectory error (ATE, meters) for each sequence, where bold represents the
optimal result.

A-LOAM LIO-SAM FAST-LIO2 VIRAL-Fusion RLI-SLAM RLI-SLAM
(w/o LCD)

eee_01 0.212 0.075 0.131 0.060 0.054 0.063
eee_02 0.199 0.069 0.124 0.058 0.047 0.054
eee_03 0.148 0.101 0.163 0.037 0.069 0.082
nya_01 0.077 0.076 0.122 0.051 0.046 0.055
nya_02 0.091 0.090 0.142 0.043 0.058 0.082
nya_03 0.080 0.137 0.144 0.052 0.046 0.052
sbs_01 0.203 0.089 0.142 0.048 0.047 0.058
sbs_02 0.091 0.083 0.140 0.062 0.049 0.056
sbs_03 0.363 0.054 0.133 0.054 0.048 0.056

Note: “LCD” indicates loop closure detection.

Figure 7. The result data from the sbs_01 Sequence: (a) represents FAST-LIO2, (b) represents RIL-
SLAM. From top to bottom, the figures are the trajectory plot, the individual error plots in the x, y,
and z directions, and the combined error plot for x, y, and z.

5.1.3. Processing Time Evaluation

To evaluate the computational efficiency of our system’s range constraint and loop de-
tection components, we conducted module-specific timing experiments on a PC equipped
with an Intel CPU E3-1275 v5.
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Table 3 details the time consumption breakdown for scan processing. The data reveal
that the UWB optimization section and the loop detection section each require 0.21 ms and
1.71 ms, respectively, constituting a small fraction of the total time. This suggests that these
two computations minimally affect the overall computation time, highlighting our system’s
high computational efficiency in these areas. Our system maintains a high computational
efficiency for real-time localization and map building as a whole.

Table 3. Breakdown of processing time

Module Time (ms)

The Inertial Sensor Preprocessing 2.62
UWB Optimization 0.21
Point Cloud Feature Processing 6.93
State Optimization Estimation 28.72
Building Point Cloud Maps 1.38
Loop Detection 1.71
Total Time 41.57

5.2. Real World Test
5.2.1. Experimental Environment

As shown in Figure 8, the unmanned vehicle used in our experiment is equipped
with a six-axis IMU operating at 200Hz and a 16-line Velodyne LiDAR operating at 20 Hz.
Additionally, we utilized a UWB module with a ranging accuracy of 5cm and a maximum
effective range of 100 m. The experiment was conducted on the second floor of the research
building at BUPT. The space, characterized by a variety of textures and long corridor shapes,
presented a challenging environment for LIO.

Figure 8. (a) Unmanned Vehicle Used in Experiment, (b) UWB Ranging Module, (c) Second Floor of
BUPT Research Building with UWB Module Circled in Red.
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5.2.2. Experimental Analysis

To avoid the influence of loop closure detection on the experiment, we only utilized our
UWB calibration module in the real-world test, without activating the loop closure detection
function. Additionally, to simplify the optimization of anchor coordinates transformation
and further verify the robustness of our system to the number of anchors, only one anchor
point was employed as the constraint for LiDAR motion compensation throughout the
entire experimental process.

From Figures 9 and 10, it can be observed that FAST-LIO2 exhibits significant map
distortion, whereas our system, calibrated solely by a single UWB anchor point, effectively
corrected LiDAR motion drift in a timely manner, resulting in overall better performance.

To complement our experiments, we conducted a series of experiments in the under-
ground parking environment as Figure 11. It was observed that while significant drift
did not occur without UWB, the narrow and elongated layout caused by vehicles in the
parking environment resulted in many minor drifts and overlaps in the map. Our method
demonstrated greater robustness and accuracy in comparison.

Figure 9. (a) Map constructed by FAST-LIO2 (b) Map constructed by RLI-SLAM (c) Trajectory plots
of both methods.
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Figure 10. XYZ Components of Trajectory Estimation for FAST-LIO2 and RIL-SLAM.The red framed
section indicates the part of the drift in FAST-LIO2.

Figure 11. Experimental results from the basement.The (a) shows Fast-lio2, and the (b) shows
our results.

6. Conclusions

In this paper, we introduce RLI-SLAM, a novel tightly-coupled ranging-LiDAR-inertial
SLAM framework. By tightly fusing high-accuracy UWB ranging measurements with
inertial sensor data, our framework effectively mitigates the distortion caused by fast-
moving LiDAR, even with a single ranging measurement. We incorporate an efficient
loop closure detection module using an incremental smoothing factor graph approach,
ensuring high-precision mapping in challenging environments. Benchmark comparisons
demonstrate the superior accuracy of our framework over state-of-the-art systems at low
computational complexity. Our real-world experiments further validate the effectiveness of
our system.

Future work will focus on designing signal waveforms to achieve high-accuracy
ranging and robust communication, paving the way for a joint communication, localization,
and mapping system.

Author Contributions: Conceptualization, R.X. and N.G.; methodology, R.X.; software, R.X.; vali-
dation, R.X., N.G. and X.M.; formal analysis, G.L.; investigation, G.L.; resources, Z.F.; data curation,
X.M.; writing—original draft preparation, R.X.; writing—review and editing, R.X.; visualization, R.X.;
supervision, N.G.; project administration, Z.F.; funding acquisition, Z.F. All authors have read and
agreed to the published version of the manuscript.



Sensors 2024, 24, 5672 17 of 18

Funding: This research was funded by the National Narutal Science Foundation of China under
Grant 62103226.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank Beijing University of Posts and Telecommunica-
tions for their assistance in providing the testing site.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
2. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765. [CrossRef]

3. Zhang, J.; Singh, S. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2174–2181.

4. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
[CrossRef]

5. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 24–30 October 2020; pp. 5135–5142. [CrossRef]

6. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning Dynamically Feasible Trajectories for
Quadrotors Using Safe Flight Corridors in 3-D Complex Environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [CrossRef]

7. Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and Systems;
Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9.

8. Martínez, C.; Campoy, P.; Mondragón, I.; Olivares-Méndez, M.A. Trinocular ground system to control UAVs. In Proceedings of
the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp.
3361–3367. [CrossRef]

9. Mueller, M.W.; Hamer, M.; D’Andrea, R. Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes
for quadrocopter state estimation. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 May 2015; pp. 1730–1736. [CrossRef]

10. Shi, Q.; Zhao, S.; Cui, X.; Lu, M.; Jia, M. Anchor self-localization algorithm based on UWB ranging and inertial measurements.
Tsinghua Sci. Technol. 2019, 24, 728–737. [CrossRef]

11. Zhao, S.; Zhang, X.P.; Cui, X.; Lu, M. A new TOA localization and synchronization system with virtually synchronized periodic
asymmetric ranging network. IEEE Internet Things J. 2021, 8, 9030–9044. [CrossRef]

12. Zhen, W.; Scherer, S. Estimating the localizability in tunnel-like en-vironments using LIDAR and UWB. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4903–4908.

13. Li, K.; Wang, C.; Huang, S.; Liang, G.; Wu, X.; Liao, Y. Self-positioning for UAV indoor navigation based on 3D laser scanner,
UWB and INS. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China,
1–3 August 2016; pp. 498–503. [CrossRef]

14. Zhou, H.; Yao, Z.; Zhang, Z.; Liu, P.; Lu, M. An Online Multi-Robot SLAM System Based on Lidar/UWB Fusion. IEEE Sens. J.
2022, 22, 2530–2542. [CrossRef]

15. Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3D LiDAR inertial odometry and mapping. In Proceedings of 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150.

16. Nguyen, T.-M.; Cao, M.; Yuan, S.; Lyu, Y.; Nguyen, T.H.; Xie, L. LIRO: Tightly Coupled Lidar-Inertia-Ranging Odometry. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 14484–14490. [CrossRef]

17. Steder, B.; Grisetti, G.; Burgard, W. Robust place recognition for 3D range data based on point features. In Proceedings of the 2010
IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 1400–1405. [CrossRef]

18. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D recognition and pose using the Viewpoint Feature Histogram. In Proceedings of
the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2155–2162..
[CrossRef]

19. Bosse, M.; Zlot, R. Place recognition using keypoint voting in large 3D lidar datasets. In Proceedings of the 2013 IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2677–2684. [CrossRef]

http://doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/IROS.2018.8594299
http://dx.doi.org/10.1109/TRO.2022.3141876
http://dx.doi.org/10.1109/IROS45743.2020.9341176
http://dx.doi.org/10.1109/LRA.2017.2663526
http://dx.doi.org/10.1109/IROS.2009.5354489
http://dx.doi.org/10.1109/ICRA.2015.7139421
http://dx.doi.org/10.26599/TST.2018.9010102
http://dx.doi.org/10.1109/JIOT.2021.3055677
http://dx.doi.org/10.1109/ICInfA.2016.7831874
http://dx.doi.org/10.1109/JSEN.2021.3136929
http://dx.doi.org/10.1109/ICRA48506.2021.9560954
http://dx.doi.org/10.1109/ROBOT.2010.5509401
http://dx.doi.org/10.1109/IROS.2010.5651280
http://dx.doi.org/10.1109/ICRA.2013.6630945


Sensors 2024, 24, 5672 18 of 18

20. He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure detection.
In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
Republica of Korea, 9–14 October 2016; pp. 231–237. [CrossRef]

21. Kim, G.; Kim, A. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 4802–4809. [CrossRef]

22. Yin, J.; Li, A.; Li, T.; Yu, W.; Zou, D. M2DGR: A Multi-Sensor and Multi-Scenario SLAM Dataset for Ground Robots. IEEE Robot.
Autom. Lett. 2022, 7, 2266–2273. [CrossRef]

23. Nguyen, T.-M.; Yuan, S.; Cao, M.; Lyu, Y.; Xie, L. NTU VIRAL: A visual-inertial-ranging-lidar dataset, from an aerial vehicle
viewpoint. Int. J. Robot. Res. 2022, 41, 270–280. [CrossRef]
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