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Abstract: A common challenge for exoskeleton control is discerning operator intent to provide
seamless actuation of the device with the operator. One way to accomplish this is with joint angle
estimation algorithms and multiple sensors on the human–machine system. However, the question
remains of what can be accomplished with just one sensor. The objective of this study was to deploy a
modular testing approach to test the performance of two joint angle estimation models—a kinematic
extrapolation algorithm and a Random Forest machine learning algorithm—when each was informed
solely with kinematic gait data from a single potentiometer on an ankle exoskeleton mock-up. This
study demonstrates (i) the feasibility of implementing a modular approach to exoskeleton mock-
up evaluation to promote continuity between testing configurations and (ii) that a Random Forest
algorithm yielded lower realized errors of estimated joint angles and a decreased actuation time than
the kinematic model when deployed on the physical device.

Keywords: exoskeleton mock-up; estimation algorithms; random forest; kinematics; single sensor;
joint angles

1. Introduction

Augmentative exoskeletons are designed to assist an operator by decreasing the effort
required of a user to perform a task. This decrease in exerted effort is often characterized
as a reduction in metabolic cost, muscle activity, or cognitive load [1]. Effort optimization
is a function of synchronization (both in force and timing) between the operator and the
wearable device [2]. Sawicki and Ferris (2017) [3] showed that merely increasing ankle
joint mechanical power via an assistive exoskeleton is not directly proportional to a net
metabolic power decrease, thus demonstrating that appropriate actuation timing (and not
just an arbitrarily applied external joint torque) is necessary to promote fluidity between the
user and robot. Several studies later explored the effect of exoskeleton actuation timing on
the operator’s metabolic cost [4–6], each showing that the timing of joint torque application
is critical in reducing metabolic cost. Additionally, operators have shown task-specific
preferences for the timing and magnitude of exoskeleton actuation [7].

Each of these exoskeletons implements a cyclic torque pattern at the joint of interest,
thus mitigating the controller’s relevance in transitional movements. Due to the limitations
of this approach, understanding and modeling the underlying kinetics and kinematics of
the human body is becoming critical to properly develop the desired trajectories of lower-
limb assistive devices in online applications. Currently, two primary methods of estimating
real-time human dynamics are commonly deployed: joint torque estimation and joint angle
estimation [8]. Joint torques are often estimated using onboard motor currents [9], joint
kinematics [10–12], and ground reaction forces [13], while joint angles have previously been
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estimated using kinematic joint data [14,15], electromyographic signals [16,17], inertial
measurement units [18,19], or a combination of each [20]. Although both approaches are
common throughout the existing literature on human movement prediction, the joint angle
estimation approach more heavily favors synchronizing the motion of the human–robot
system. This approach allows an exoskeleton’s controller to align the assistive device’s
kinematic trajectory with the human operator rather than simply prioritizing the timing
and profile of the applied joint torques. The performance of these joint angle estimation
algorithms is often analyzed in one of two ways: post hoc evaluation using recorded
gait kinematics [15,21] or deployment on a human participant via lab-based exoskeleton
intervention [22,23]. However, both of these testing approaches pose significant limitations.
A post hoc, offline analysis does not allow for a model’s computational performance to be
realized on a physical system. Conversely, the need to test human subjects can limit an
exoskeleton emulator approach by being both time- and labor-intensive.

The variability in sensor configurations, model types, control algorithms, and eval-
uation metrics throughout the joint angle estimation literature often causes difficulty in
effectively comparing model performance for a specific application. As such, the primary
aim of this study was to establish a modular approach to testing and characterizing the
physical manifestation accuracy and delay of joint angle estimation models on a lower-limb
exoskeleton mock-up. As the field of using non-intervention, exoskeleton mock-ups to test
estimation models and control algorithms begins to expand, establishing a consistent and
reliable framework for the testing process and performance metric evaluation is critical
for clear communication across the literature. Such a modular approach would allow for
a decrease in the expended time and effort required to test unique combinations of spe-
cific system components (such as sensor count, model type, controller design, etc.) while
preserving continuity between test configurations, which would allow for a justifiable
comparison of component performances. Additionally, an exoskeleton non-intervention
mock-up approach would allow for the physical manifestation performance of an esti-
mation algorithm to be evaluated without needing to deploy the prototype on a human
subject. The exoskeleton mock-up presented in this study is not intended to be worn by a
human subject but rather serves as an intermediate step between a purely computational
joint angle estimation analysis and a physical deployment of an exoskeleton system on a
human participant.

While previous research has been conducted on the accuracy of joint angle estimations
calculated using a variety of sensor counts and configurations for exoskeleton applica-
tions [21], the question of “how accurate can an estimation model get while being informed
by a single sensor” remains a notable gap in the scientific exoskeleton literature. While
substantial literature exists on real-time pose and joint angle estimation using a reduced
sensor count on the back and lower limbs [24–26], limited research has examined estimating
joint angles with only a single sensor for exoskeleton applications. Furthermore, the studies
that have been conducted have been primarily intended for rehabilitation monitoring
applications and have not yet been used to estimate future joint angles [27–29]. Argent et al.
(2019) and Alemayoh et al. (2023) deployed machine learning approaches to monitor lower
limb joint angles using a single IMU sensor during online applications [27,29]. While there
was brief discussion about the possibility of extending this work to inform an assistive
device, neither study developed models to estimate future joint angles. However, to the
knowledge of the authors, the effect of using a single potentiometer on the ankle to estimate
future joint angles has not yet been explored.

There is a great deal of potential in single-potentiometer-based approaches. Pollard
et al. (2024) [30] demonstrated that future joint angle estimation could be performed
using simple, kinematically governed analytical models. These models can be informed
solely by current and historical ankle joint angles (a parameter that can be reported using
a single potentiometer or encoder at the ankle). These kinematically informed models
reported significantly faster runtimes when compared to Random Forest (RF) machine
learning models. However, they yielded higher estimation errors than the RF models
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across larger estimation horizons. As such, the second aim of this study was to deploy the
aforementioned modular approach and characterize the physical manifestation accuracy
and delay of two joint angle estimation models—an RF machine learning model and
an analytical, kinematics-based model—informed solely by sagittal-plane ankle angle
kinematics derived from a single sensor. These simple, single-sensor models will be
able to serve as baseline comparators for other joint angle estimators tested within this
modular configuration, thus demonstrating the baseline efficacy of simple estimation
models deployed in a physical application while using a limited sensor array.

Because the RF model has previously been shown to demonstrate a lower offline esti-
mation error compared to the kinematically informed model [30], we hypothesized that the
RF model would likewise demonstrate a smaller realized estimation error on the physical
exoskeleton mock-up system when compared to the kinematic extrapolation algorithm. We
also hypothesized that the kinematic extrapolation algorithm would demonstrate a shorter
delay in realizing the estimated joint angles in the mock-up testbed than the RF model.

2. Materials and Methods
2.1. Testing Modules

The proposed testing approach seeks to modularize the exoskeleton mock-up testbed,
allowing any “exchangeable” or “modifiable” component to be categorized into one of
five distinct categories: sensor configuration, the joint angle estimation model, exoskeleton
mock-up mechanics, controller architecture, and performance metrics, as seen in Figure 1.
Each of the five modules is described in detail below.
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Figure 1. An outline of the modular approach to joint angle estimation and exoskeleton mock-
up testing. Each module can be replaced or modified independently when evaluating alternative
testing configurations.

1. The sensor configuration and processing module refers to all aspects of sensor selec-
tion, count, placement, and filtering. This module describes both the sensor array
onboard the exoskeleton mock-up and the sensors used to collect human kinematic
and/or kinetic data (which will serve as an input to the joint angle estimation module).
This human subject data can either be pre-recorded or collected in real time as the
exoskeleton mock-up is being tested (as seen in Figure 2). Both configurations mitigate
the complexities of deploying the mechanical prototype on a human subject.

2. The joint angle estimation model module encompasses all processes of converting
filtered sensor data into an estimated joint angle, regardless of the approach taken (i.e.,
statistical, analytical, machine learning, model-based simulation, etc.). A predictive
joint angle estimation model seeks to estimate a joint’s future position, rather than esti-
mating the joint’s current position, so that an exoskeleton has sufficient time to actuate
alongside the operator (rather than lagging behind the operator’s intended motion).

3. The exoskeleton mock-up mechanics module refers to both the structural design and
the actuation method of the physical mock-up.

4. The controller architecture module describes the process by which the exoskeleton
mock-up is controlled to actuate to a desired, estimated joint angle.

5. The performance metrics module is the broadest category and does not have a direct
impact on the behavior of the test setup. However, this module has been included to
provide further clarity when comparing different systems. Just within a single review
on kinematic estimation and prediction models [31], at least five unique metrics
were used to characterize the performance of the reviewed models (including mean
absolute error, mean squared error, mean relative error, root-mean-squared error, and
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normalized root-mean-squared error), causing comparisons between model types
to become more convoluted than simply comparing two numbers. Additionally,
deploying joint angle estimation models on a physical system may require additional
metrics to fully characterize the performance, such as computational delays and the
model’s tendencies to lead or lag behind the desired joint angle estimations.
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Figure 2. An illustration of the two methods by which an exoskeleton mock-up can be informed via
arbitrary sensors and a detached operator. (A) Pre-recorded kinematic/kinetic data can be used to
conduct an offline performance analysis of the testbed. (B) Human subject kinematic/kinetic data
can be recorded simultaneously as the mock-up is being tested in an online performance analysis of
the testbed. Both the sensor on the exoskeleton mock-up (in purple) and the sensors on the human
subject (in green) are accounted for in the sensor configuration and processing module. As this study
explores the effect of using a single sensor to inform an exoskeleton mock-up (Section 2.3), a limited
sensor count is illustrated above.

This modular approach was used as the framework for assembling an exoskeleton
mock-up testbed and deploying and evaluating two different joint angle estimation models.

2.2. Participants

Twenty healthy individuals (9 males, 11 females; age: 22.6 ± 4.3 years; height:
173.1 ± 10.2 cm; body mass: 69.2 ± 11.7 kg) participated in an experiment performed in
the Auburn University Biomechanical Engineering (AUBE) Laboratory. The data recorded
for each participant would later be used to conduct an offline performance analysis of the
mock-up testbed, as outlined in Figure 2A. Willing participants provided informed con-
sent before participating in the study, as approved by the Auburn University Institutional
Review Board (no. 17-096 MR 1705).

2.3. Sensor Configuration and Processing

Each participant was instrumented with 79 retroreflective motion capture markers, fol-
lowing the point cluster technique developed and outlined by Andriacchi et al. (1998) [32].
Motion capture data were collected using a 10-camera Vicon system and Nexus software
(Version 2.6.1; Vicon Motion Systems Ltd., Oxford Industrial Park, Oxford, UK) while
subjects walked on a single belt treadmill for 30 s. Participants were asked to set their
self-selected walking speed on the treadmill at a comfortable pace that could be maintained
for the duration of the 30 s walking trial. Otherwise, participants were provided with
minimal instructions and feedback during the walking trial to elicit natural gait patterns.
After data collection was completed, motion capture data were post-processed in Visual3D
(C-Motion Inc., Germantown, MD, USA) using a 6 Hz Butterworth filter. Subsequently,
the sagittal-plane ankle angles of each participant’s walking trials were extracted after
modeling the ankle joint as having three degrees of freedom without consideration for
translational movement [33].

To continue to investigate the effects of including only a single sensor on the exoskele-
ton mock-up, an absolute magnetic encoder (as in [34]) was selected to be on board the
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testbed. This potentiometer was integrated into the testbed hardware (discussed in detail
in Section 2.5) and measured the exoskeleton mock-up’s sagittal-plane ankle angle in real
time (whereas the pre-recorded motion-capture-based data would represent the operator’s
underlying gait kinematics). The potential to align these two kinematic trajectories is the
primary advantage of deploying a joint-angle-estimation-based model.

2.4. Joint Angle Estimation Models

Two joint angle estimation models, a kinematically governed extrapolation model and
an RF machine learning-based model, were deployed to predict joint angles at an estimation
horizon thzn = 100 ms into the future, a measure that has been commonly deployed in the
literature in future joint angle estimation for exoskeleton applications [15,21,30,35]. This
estimation horizon length was selected to ensure that the models would remain predictive
in nature, even after necessary computational estimation delays (test) and actuation times.
Both estimation models were informed solely by the three most recently recorded operator
ankle angles at a given time (denoted θi, θi−1, and θi−2). The following two subsections
describe how each model developed future joint angle estimations.

2.4.1. Kinematically Governed Extrapolation Model

Based on a simplified version of the average angular acceleration model by Pollard et al.
(2024) [30], the kinematically governed extrapolation model is defined by the analytical,
constant acceleration kinematic equation, given by

θ̂ = θi + ωithzn +
1
2

αithzn
2, (1)

where ωi is the current average angular velocity and αi is the current average angular
acceleration, each given by

ωi =
θi − θi−1

∆ti
, (2)

and. . .
αi =

ωi − ωi−1

∆ti
=

θi − 2θi−1 + θi−2

∆ti
2 , (3)

where ∆ti is the period of the recorded data (i.e., the time elapsed between recorded joint
angle datapoints). As is evident from these equations, the three most recently recorded
operator ankle angles are numerically differentiated to develop average angular velocities
and accelerations for each instance. The future joint angle is estimated by assuming that
the angular acceleration will remain constant over the estimation horizon.

Additionally, to prevent numerical differentiation from yielding unrealistic or exag-
gerated kinematic quantities, the average angular velocity and angular acceleration were
constrained to physically feasible kinematic values for level ground and healthy gait (i.e.,
ω ∈ [−296.9, 247.7] deg/s and α ∈ [−7059.6, 4336.5] deg/s/s) [36]. This constraint does
not completely correct for the error introduced by numerically differentiating discrete data
points, but it does seek to mitigate the effect of extreme outliers.

2.4.2. Random Forest Machine Learning Model

The second model developed in this study was a subject-independent RF machine
learning model. An RF regression algorithm develops estimations based on the majority
performance of a collection of individual binary decision trees. A subject-independent
model structure was selected so that a singular, governing model could be deployed to
estimate joint angles, similar to the kinematic extrapolation model (rather than developing a
unique, subject-dependent model for each participant, as in [30]). The RF estimation model
was developed using the scikit-learn Python library with nestimators = 5 and depth = 10.

The RF machine learning model was trained on the sagittal-plane ankle angles of
10 randomized participants’ gait trials. The model was trained by relating a sliding win-
dow of the three most recent joint angle data points (a 1 × 3 vector [θi−2, θi−1, θi ]) to a
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participant’s actual joint angle at thzn = 100 ms into the future. After training, the data from
these 10 randomized participants were set aside to ensure that only unseen data would be
used to test the model when deployed in the modular test configuration.

2.5. Exoskeleton Mock-Up Mechanics

A detached (no operator), aluminum-frame ankle exoskeleton mock-up was adapted
and manufactured based on an open-source design developed by Bryan et al. (2020) [34]
and was suspended within an aluminum extrusion t-slot frame, as shown in Figure 3. The
exoskeleton mock-up was designed to have one degree of freedom in the sagittal plane
about its representative ankle joint, allowing for both plantarflexion and dorsiflexion about
the ankle joint (measured via a singular potentiometer; Section 2.3). A metal cable was
routed from a 5 V Hitec continuous-rotation servo motor on the superior aspect of the mock-
up to the effective “heel” on the inferior posterior aspect of the mock-up. This cable passed
through two rotating conduits on the posterior aspect of the mock-up, aiding in active
plantarflexion by functioning as a representative gastrocnemius (calf muscle) and Achilles
tendon. An elastic band (measured kspring = 44.7 ± 3.5 N/m) was affixed to the front of the
mock-up to assist with passive dorsiflexion. Two Arduino Uno microcontrollers, located on
the exoskeleton mock-up’s frame, were used to communicate between the potentiometer,
servo motor, and computer-based software (which included both the joint angle estimation
models and the controller) developed within the Robot Operating Software ROS2 (VMWare
Workstation 16 Pro, Ubuntu 20). The Arduino Unos communicated with the ROS-based
models and controller via serial communication at 9600 Bd.
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Figure 3. (A) Oblique view and (B) side view of the ankle exoskeleton mock-up and frame, based
on [34]. The two Arduino Uno microcontrollers (green) on the frame allowed for communication
between the singular potentiometer on the ankle (red), the servo motor (blue), and computer-based
test software (not shown). The posterior metal cable (orange) and anterior elastic band (purple) aided
in plantarflexion and dorsiflexion of the ankle joint, respectively.

2.6. Controller Architecture

Once the estimation model develops a future joint angle estimation, that estimation
is immediately communicated to the exoskeleton mock-up’s controller. Subsequently, the
ROS-based controller communicates with the continuous motor to directly induce plan-
tarflexion (by increasing the tension in the metal cable) or to indirectly induce dorsiflexion
(by decreasing the tension in the metal cable and allowing the elastic band to passively
unstretch). Position control of the motor would be a simple solution, since a desired future
joint angle position was just estimated. However, a continuous servo motor is agnostic to
its absolute rotational position, making this approach unfeasible.
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A proportional velocity controller, therefore, was defined to control the servo motor
deployed on this exoskeleton mock-up. When the servo motor is controlled, it must be
informed by a single value (ranging from 0◦ to 180◦) that dictates both the speed and
direction of the motor (0◦ = rotating the motor counterclockwise at full speed, 180◦ = rotat-
ing the motor clockwise at full speed, and 90◦ = no rotation), rather than being informed
by a desired angular position. As such, a relationship needed to be defined between the
allowable motor input values and the exoskeleton mock-up’s angular positional error,
governed by. . .

e = θ̂ − θmockup, (4)

where θ̂ is the desired future joint angle estimation and θmockup is the current exoskeleton
mock-up angle.

Firstly, the minimum and maximum bounds of the positional error needed to be
evaluated to allow the angular positional errors and the available motor input values to
be mapped to one another. These bounds were defined as the functional range of motion
(ROM) for each participant during their walking trial, given by

ROM = θmax,dorsi f lexion − θmin,plantar f lexion, (5)

where θmax,dorsi f lexion is the maximum ankle angle achieved by the participant during the
walking trial (occuring during peak dorsiflexion) and θmin,plantar f lexion is the minimum ankle
angle achieved (occuring during peak plantarflexion). Analyzing a worst-case scenario, if
the mock-up’s angular positional error is +ROM◦ (i.e., the mock-up is currently maximally
dorsiflexed but desires to be maximally plantarflexed), the servo motor should quickly
plantarflex the joint to correct for this error (and vice versa if the angular positional error is
−ROM◦). These worst-case angular positional errors can then be mapped to the maximum
velocities of the servo motor, assuming a linear relationship between the extremes, as
shown in Figure 4 below.
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Although a proportional controller gain was not explicitly stated, the slope of the
relationship depicted in Figure 4 demonstrates the “effective” controller gain that was
used in this study. This controller gain was established on a subject-specific basis due to
the variability between participant ROMs. If an angular positional error greater than the
participant’s range of motion were to be calculated, such as e > +ROM◦ or e < −ROM◦

(potentially because of an erroneous joint angle estimation value), the mapped value
would simply be mapped as the maximum or minimum allowable servo motor input.
This manually established, piecewise linear relationship between the positional error and
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the servo motor input describes the simple proportional velocity controller by which the
exoskeleton mock-up of this study was governed.

2.7. Deploying the Joint Angle Estimation Models on the Mock-Up Testbed

After each of these modules were fully defined, two modular configurations were
deployed to evaluate the performance of an exoskeleton mock-up testbed informed by
either a kinematically governed model or an RF model (see Figure 5 below).
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Figure 5. The physical manifestation performance of two joint angle estimation models (a kinemati-
cally informed analytical model and an RF machine learning model) was evaluated by deploying
the modular testing approach on an exoskeleton mock-up testbed. Besides the model type, other
modular parameters remained the same between tests.

The joint angle estimation models and exoskeleton mock-up testbed were tested on
the sagittal-plane ankle kinematics of the remaining 10 participants that were not used
to train the RF model. For each test participant, the models’ estimated ankle angles and
the exoskeleton mock-up’s realized ankle angles were recorded as the controlled system
attempted to track the participants’ future ankle kinematics. The “actual” participant ankle
angle, the models’ estimated joint angle at an estimation horizon thzn = 100 ms into the
future, and the current angular position of the exoskeleton mock-up were all published
simultaneously in ROS2 during data collection. The recorded testbed data were analyzed
using the following performance metrics.

2.8. Performance Metrics

To characterize the performance of the emulator mock-up system, a benefit may arise
from defining a few different metrics to quantify various aspects of the system’s time
response and the magnitude of the positional error. While there are several different
methods commonly used to characterize model performance, five distinct metrics were
used in this study, each of which will be defined here, and their benefits and limitations
will be thoroughly discussed throughout the remainder of this article. Due to the variability
in previous reporting measures [31], presenting these five metrics as the standard when
reporting exoskeleton mock-up performance will allow the field to coalesce around a
defined set of metrics and promote consistency across the literature. These five metrics are
as follows: the model error, the realized error, the actuation time, the phase delay, and the
hypothetical no-lag error. Each error metric below represents the error between specific
testbed output angles and the participants’ “ground truth” joint angles recorded using
optical motion capture, and each temporal metric represents a delay associated with the
estimation and actuation of the exoskeleton testbed.

2.8.1. Model Error

The model error describes the average error between a joint angle estimation model’s
estimated future joint angles (θ̂) and the actual future joint angles realized by the participant
during data collection (θactual) that are temporally synonymous with the estimation horizon.
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This offline error was evaluated for both the kinematically governed model (RMSEK,model)
and the RF model (RMSERF,model).

2.8.2. Realized Error

The realized error seeks to describe the average error between the mock-up’s realized
joint angles (θmockup) and the actual future joint angles realized by the participant during
data collection (θactual) that are temporally synonymous with the estimation horizon. This
metric represents the compounded error of the joint model/mock-up system, characterizing
how erroneous the actualized joint angles on the exoskeleton mock-up are compared to the
actual kinematics of the participants. This positional error was again evaluated for both the
kinematic extrapolation model (RMSEK,realized) and the RF model (RMSERF,realized). While
the realized error metric describes how erroneous the exoskeleton mock-up’s realized
angular positions were relative to the underlying human kinematics, the metric does not
differentiate whether the mock-up’s realized positions were incorrect altogether or if the
shape of their trajectory was accurate yet simply temporally lagging behind the human’s
trajectory. This inability to quantify the direction of the error (temporal error vs. magnitude
error) is a significant limitation of the root-mean-square error metric that will be addressed
with the inclusion of the following three performance metrics.

2.8.3. Actuation Time

The actuation time (tactuate) represents how long the exoskeleton mock-up takes to
actuate to a desired angular position once an estimation model makes a future joint angle
estimation. Feedback error is introduced throughout the actuation process due to factors
such as having only a singular positional sensor to represent the current position or using
a passive elastic band to induce dorsiflexion. This feedback error causes the exoskeleton
mock-up angular position curve to both temporally lag behind the desired estimated joint
angle curve (because of the time required to actuate the device) and erroneously misshapen
(because of the feedback error when trying to actuate to the desired angle). This creates
difficulty in defining the actuation time of the system, as the estimated ankle angle curve
and the realized mock-up ankle angle curve are not simply similar curves with a lagged
phase shift between them.

As such, a cross-correlation technique was deployed to estimate the phase shift be-
tween the joint angle estimation angles (θ̂) and the realized mock-up ankle angles (θmockup)
(similar to phase shift estimators discussed by Stoica et al. [37]). The cross-correlation be-
tween the two curves was documented as they incrementally shifted past one another. The
actuation time was thus estimated as the phase shift required to maximize the correlation
between the joint angle estimation curve and the realized mock-up angle curve.

2.8.4. Phase Delay

Ideally, the process of estimating future joint angles and subsequently actuating to
those desired angles would precede actual human motion. However, as there is often great
difficulty in completing these control processes quickly enough, the phase delay (tphase)
is representative of how lagged the realized mock-up joint angles are behind the actual
human kinematics. The phase delay was calculated similarly to the actuation time: by
estimating the phase delay as the phase shift required to maximally correlate the actual
joint angles realized by the participant during data collection (θactual) and the mock-up’s
realized joint angles (θmockup).

2.8.5. No-Lag Error

Now that the phase delays have been defined, one last error metric can be defined:
the no-lag error. The no-lag error is an error metric that characterizes the magnitude of the
positional error of the realized mock-up angles by assuming that the error associated with
the temporal delay was minimized. This metric is important in characterizing the “best-
case scenario” positional error for the mock-up when informed by different model types.
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Therefore, the no-lag error of the exoskeleton mock-up, informed by both the kinematic
(RMSEK,nolag) and RF model (RMSERF,nolag), was calculated to characterize the unbiased
shape of the mock-up’s realized angular position with respect to the underlying human
kinematic trajectory. The no-lag error was calculated by evaluating the root-mean-square
error between the exoskeleton mock-up’s realized angles and the actual joint angles realized
by the participant when the two trajectories were maximally correlated.

2.8.6. Statistical Analysis

Each of the performance metric datasets was first tested for normality using the
Shapiro–Wilk test. Upon determining that each was normally distributed, post hoc paired
t-tests were performed to compare the effect of model type on the error and temporal
performance metrics, as follows:

• One-tailed paired t-tests were performed to test for directional differences between
joint angle estimation model types in terms of model errors, realized errors, and
actuation times.

• Two-tailed paired t-tests were performed to test for bidirectional differences between
joint angle estimation model types in terms of phase delays and no-lag errors.

A Type I error rate of α = 0.05 was used when performing each of the statistical tests.

3. Results
3.1. Performance Metric Evaluation

Figure 6 provides the results of the post hoc paired t-tests that were performed
to compare the effect of the joint angle estimation model type on each of the perfor-
mance metrics. Each of the error metrics (Figure 6A) was found to differ significantly
between model types, as the RF joint angle estimation model was found to have per-
formed with a significantly lower model error (RMSERF,model = 4.14 ± 0.82◦), realized error
(RMSERF,realized = 5.63 ± 1.10◦), and no-lag error (RMSERF,nolag= 5.39 ± 0.88◦) when com-
pared with the kinematically governed model (RMSEK,model = 8.18 ± 2.11◦; RMSEK,realized
= 6.77 ± 1.27◦; RMSEK,nolag= 6.43 ± 0.94◦). Conversely, the RF model only performed
with a significantly lower actuation time (tRF,actuation = 116 ± 17.1 ms) when compared
with the kinematically governed model (tK,actuation = 131 ± 11.9 ms), while model type was
found to have no significant effect on the phase delay of the exoskeleton mock-up system
(tRF,phase = 21.0 ± 20.8 ms; tK,phase = 27.0 ± 24.1 ms).
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3.2. Visual Inspection of Exoskeleton Mock-Up Testbed Performance

In addition to evaluating the defined performance metrics, the average estimated joint
angles (θ̂) and average realized mock-up angles (θmockup) were plotted against the average
actual joint angles during data collection (θactual) at each percentage of the gait cycle to
provide a visual representation of how the exoskeleton mock-up was influenced by each
of the two joint angle estimation models. As depicted in Figure 7, the error between the
θmockup curve and the θactual curve visually represents the RMSErealized error metric, while
the temporal shift between the θ̂ and θmockup curves and between the θactual and θmockup
curves visually represents the tactuation and tphase temporal metrics, respectively.
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Figure 7. Visual representation of the average estimated (θ̂) and realized (θmockup) testbed joint angles
for the (A) kinematically governed extrapolation model and (B) RF model. Each estimated and
realized curve is overlaid on top of the averaged actual participant ankle angle curve (θactual) as a
function of the gait cycle percentile.

Note that Figure 7 does not visually illustrate the RMSEmodel performance metric.
Instead, the estimated joint angles are aligned temporally with when they were calcualted,
not aligned temporally at the estimation horizon alongside the actual joint angles they
were estimated to represent. As such, both Figures 7A and 7B clearly depict θ̂ curves that
precede the θactual curves, simply because the θ̂ curves were estimated thzn = 100 ms before
the θactual curves.

Figure 8 illustrates the results of the cross-correlation technique used to characterize
the tphase and RMSEnolag performance metrics. Figure 8A,B illustrate the uncorrelated
θ̂ and θactual curves of each model, as shown prior in Figure 7. However, Figure 8C,D
show the same curves after they have shifted to produce the maximum cross-correlation
of the θ̂ and θactual curves. This necessary temporal shift to maximally cross-correlate and
the remaining error between the θ̂ and θactual curves after shifting characterize the tphase
and RMSEnolag performance metrics, respectively. The tactuation metric was characterized
similarly to the process depicted in Figure 8, shifting to induce maximum cross-correlation
between the θ̂ and θmockup curves instead.
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Figure 8. Representation of the cross-correlation technique used to characterize the tphase and
RMSEnolag performance metrics. The estimated and actual ankle angle curves of each model (A,B)
were shifted incrementally to maximize the cross-correlation between the curves (C,D). The temporal
difference between the uncorrelated curves and the maximally correlated curves of each model
(i.e., how much the two curves needed to be shifted to maximally correlate) represents the tphase
metric, while the root-mean-square error between the now maximally correlated curves represents
the RMSEnolag metric.

4. Discussion
4.1. Results and Hypotheses Discussion

This study sought to establish and deploy a modular approach to testing the physical
manifestation characteristics of joint angle estimation models on an exoskeleton mock-up
testbed. This modular approach provides a methodological framework for future studies
so that the physical manifestation characteristics of an exoskeleton testbed can be analyzed
as a function of specific sensor configurations, joint angle estimation models, exoskeleton
mock-up designs, or controller architectures. Modularizing this test configuration assists
in analyzing the effects of a single design parameter by mitigating the variability in the
other modules. As the field of off-board, non-intervention exoskeleton mock-up testing
begins to grow, this approach seeks to promote the uniformity of testing conditions and
performance quantification.

To test the viability of this modular approach, two different joint angle estimation
model modules (a kinematically governed model and an RF model) were deployed along-
side otherwise identical modules. The primary hypothesis of this study posited that the
RF model would demonstrate a lower realized error between the exoskeleton mock-up
and the actual human kinematics than the kinematic extrapolation model would. This
hypothesis was confirmed by analyzing several error measures, specifically the realized
error and the no-lag error performance metrics, as the RF model performed with both a
significantly lower RMSErealized and RMSEnolag than the kinematically governed model
(Figure 6A). Confirmation of this hypothesis indicates that, at least for this test configu-
ration, a lower model error (as shown by the RMSEmodel results of this study and by the
offline analysis performed in [30]) correlates to a lower realized error on a physical mock-up
system. Interestingly, it should be noted that, even after temporally aligning the estimated
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and actual joint angle curves and thereby mitigating the positional error due to temporal
differences, the RMSEnolag was not substantially lower than the RMSErealized of each model
(Figure 6A). This indicates that the realized positional error of each model, RMSErealized,
can be attributed to an inability to follow the actual kinematic trajectory of the participants
more so than an inability to actuate at a proper time. This finding is important for this
testbed configuration because it prioritizes an immediate need to decrease model error or
improve the control law, even before reducing delays associated with the actuation system.

The second hypothesis of this study stated that the joint angles estimated by the kine-
matic extrapolation model would be physically realized more quickly on the exoskeleton
mock-up testbed than joint angles estimated by the RF model. However, this hypothesis
was rejected when comparing testbed actuation times, as tK,actuation was shown to be signifi-
cantly larger than tRF,actuation (Figure 6B). This is likely because the kinematically governed
extrapolation model’s estimations are highly erroneous with rapid changes in direction (as
is evident at the local minimums and maximums in the ankle angle plots in Figure 7A).
Because these kinematically governed estimations are substantially more erroneous than
the RF estimations at these extremes, the exoskeleton mock-up must actuate for longer to
try to reach these desired angular positions. Subsequently, the tphase performance metric
was calculated to explain whether this increase in actuation time was meaningful for an ex-
oskeleton application. Even though the tactuation metric varied significantly between model
types, no significance was found between tK, phase and tRF, phase (Figure 6B). This finding
likely indicates that the longer tK,actuation was effectively mitigated by the kinematically
governed model calculating joint angle estimations faster than the RF model (reported as
the model runtime in [30]). Effectively, for this testbed configuration, these two sequential
processes (estimating a future joint angle and subsequently actuating to it) were found to
not vary significantly between model types. Even still, the exoskeleton mock-up lagged
behind the actual participant gait trajectories when informed by both the kinematic extrapo-
lation and RF models. This temporal lag indicates that the exoskeleton mock-up was unable
to actuate quickly enough to precede the underlying human motion even though the joint
angle estimation models were estimating future angles at thzn = 100 ms into the future.
This finding, in conjunction with the finding from the first hypothesis, emphasizes the
need to expand the methodology of this study to longer estimation horizons (thzn > 100 ms)
while improving single-sensor estimation model performance at these horizons in order to
(1) follow the trajectory of the underlying human kinematics less erroneously while simul-
taneously (2) allowing sufficient time for the exoskeleton mock-up to actuate to prevent the
system from lagging behind the operator’s intended motion. Achieving improved model
performance at larger estimation horizons would provide the exoskeleton mock-up with
additional time to actuate, thus potentially preventing the mock-up from lagging behind
the operator’s intended kinematics.

Reducing model error at longer estimation horizons is likely most achievable by
altering the sensor configuration and model type. However, one of the primary aims of
this study was to analyze the performance of an exoskeleton testbed informed by joint
angle estimation models using only a single sensor configuration. So, while modifying
this modular testbed system to include a larger sensor array may improve performance
and will likely be the primary focus of several future studies, the current, single-sensor
configuration serves a valuable role as a baseline comparator for more complex future
testbeds. Even still, this single-sensor system may be sufficient for some gait assistance
applications. A primary concern with this current exoskeleton mock-up and its associated
joint angle estimation models was the erroneous joint angles realized by the controlled
testbed, with root-mean-squared errors in the range of 6.77 ± 1.27◦ and 5.63 ± 1.10◦ for
the kinematic extrapolation and RF models, respectively. However, Fournier Belley et al.
(2016) [38] demonstrated that operators of robotic ankle orthotics were only able to detect
robotic movement errors at a threshold of 5.31 ± 2.12◦. Therefore, an exoskeleton mock-up
informed by one of these single-sensor joint angle estimation models would likely perform
near the boundary of human error perception. Therefore, exploring the effects of a more
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mature exoskeleton prototype controlled via a single sensor on an operator may help
answer additional questions about the joint angle estimation models’ performance, such as
“how accurate is accurate enough?”

4.2. Limitations and Future Work

To the knowledge of the authors, this was the first study that explored the physical
manifestation performance of joint angle estimation models informed by a single sensor.
Because of this, however, several limitations to this study need to be addressed. First
and foremost are the nonrepresentational boundary conditions of this study. While an
exoskeleton mock-up is beneficial for testing the physical manifestation response of joint
angle estimation models without the need for human subject intervention, the mock-up
testbed does not fully represent the operator/exoskeleton complex. Most significantly,
antagonistic muscle contraction, lower limb inertia, ground reaction forces, and opera-
tor/exoskeleton interaction forces are not present in this mock-up testbed. Not including
these boundary conditions in the mock-up may mitigate extrapolating these results to an
online exoskeleton prototype application. Modeling these boundary conditions in a future
iteration of the exoskeleton mechanics module would allow the mock-up to better represent
deployment on a human operator. However, even without accounting for these boundary
conditions, the exoskeleton mock-up configuration is still capable of quickly providing
valuable information about a system’s temporal and error performance metrics that can be
used in rapid exoskeleton prototyping.

Several limitations arose regarding the mechanical and control architecture of this
testbed system, including both the actuation technique and the control law. While most
exoskeleton prototypes only provide plantarflexion assistance [39], many of them deploy
a motor on the joint of interest to provide direct torque assistance, rather than provid-
ing indirect torque assistance by linearly actuating a moment arm. The linear actuation
technique deployed in this study, alongside the passively dorsiflexing elastic band, may
have contributed to the inaccuracy of the realized joint angles, as providing actuation
through several consecutive components allows feedback error to compound when trying
to control the system. Likewise, later iterations of this testbed should seek to optimize the
mock-up’s joint-rotation sensor, as the encoder used in this study was selected based on
prior exoskeleton manufacturing literature [34] and not because of a comparative, quanti-
tative analysis of available sensor systems. Additionally, a simple, proportional velocity
controller was deployed on this testbed because of the previously unknown behavior of the
exoskeleton mock-up’s dynamics. This naïve controller design must be optimized in future
studies to mitigate the undesirable oscillatory actuation of the mock-up, as is evident in
Figure 7. Although these results serve as a baseline for future controller designs, future
studies should incorporate the recorded testbed dynamics into the controller’s architecture
to further decrease the realized error of the system.

Additionally, extending these joint angle estimation models to different actions and
populations may pose some limitations. As discussed briefly in Pollard et al. (2024),
the simple analytical-based estimation models presented in this study may yield higher
errors if used in applications where rapid changes in joint angle are present (such as
running or changes in direction) because they are inherently extrapolative in nature (i.e.,
they assume that rapid changes in direction will not occur over the estimation horizon).
As such, additional work needs to be performed to characterize these analytical models’
performance under different actions to understand their viability outside of level-ground
walking applications. The training regime of the RF models may also pose limitations
as each model was developed on a subject-specific basis, thereby limiting the models’
generalizability to a general population. While this subject-specific training regime may
not be limiting for military or rehabilitative applications that are tailor-designed for a
specific operator, evaluating the performance of subject-generic models for generalizable
applications should be explored in future studies using this methodological framework.
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Finally, although the averaged estimated and realized joint angle curves presented
in Figures 7 and 8 are smooth upon visual inspection, each individual trial was relatively
noisy compared to these averaged curves. As such, the maximum correlation method used
to characterize the actuation and phase delays of the system was identified as a potential
limitation. This method has been commonly deployed to estimate the temporal lag of non-
uniform curves. However, as implemented in this study, if the estimated or realized joint
angles during a single gait cycle became highly erroneous and noisy, maximally correlating
these two curves to characterize tactuate (or correlating the actual and realized curves to
characterize tphase) may yield meaningless results, as maximally correlating two curves with
low signal-to-noise ratios may improperly align the signals. While visual inspection of the
correlation shifts encouraged the authors that this limitation did not significantly impact the
results of this study, this method should be noted as a potential limitation for future studies
that may seek to characterize the actuation and phase delays of a system with substantially
noisy results. Future studies can mitigate this potential limitation by deploying more
accurate joint angle estimation models or better-performing control algorithms that yield
realized joint angle curves that more closely match the kinematics of the operator.

5. Conclusions

This study successfully demonstrated the feasibility of implementing a modularized
approach to joint angle estimation and exoskeleton mock-up testing. The exoskeleton
mock-up was developed to serve a role in the rapid testing of estimation models, sensor
arrays, and control algorithms and in the rapid prototyping of exoskeleton mechanics and
actuation techniques. The results of testing kinematically governed and RF estimation
models, which were informed by a single potentiometer at the ankle, indicated that the RF
model physically manifested its estimations more accurately and more quickly than the
kinematically governed extrapolation model on a physical exoskeleton mock-up. Although
it remains unknown if these single-sensor models performed accurately enough to be
deployed on a more mature exoskeleton prototype (that could be worn by human subjects),
the simplicity of the exoskeleton mock-up testbed explored in this study allows these results
to serve as a foundational baseline for subsequent studies that will seek to increase the
joint angle estimation models’ accuracy, improve the controllability of the mock-up, and
decrease the actuation delays of the system.

Author Contributions: Each author listed on this manuscript contributed significantly to the develop-
ment of this study. Each author’s contributions are noted as follows: Conceptualization: R.S.P., S.M.B.,
M.C.S.J. and M.E.Z.; Methodology: R.S.P., S.M.B. and M.E.Z.; Software: R.S.P. and S.M.B.; Validation:
R.S.P., S.M.B., M.C.S.J. and M.E.Z.; Formal Analysis: R.S.P., S.M.B. and M.E.Z.; Investigation: R.S.P.,
S.M.B. and M.E.Z.; Resources: R.S.P. and S.M.B.; Data Curation: R.S.P. and S.M.B.; Writing—Original
Draft Preparation, R.S.P. and S.M.B.; Writing—Review and Editing: M.C.S.J. and M.E.Z.; Visualization:
R.S.P. and S.M.B.; Supervision: M.E.Z.; Project Administration: M.E.Z.; Funding Acquisition: M.E.Z.
and M.C.S.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the U.S. Army Combat Capabilities Development
Command (DEVCOM) under Grant W15QKN-17-9-1025-RPP-10 MOB 17-08. APPROVED FOR
PUBLIC RELEASE (PR2024-568).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Auburn University (Protocol No.
17-096 MR 1705) for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the human-subject-derived nature
of the dataset.



Sensors 2024, 24, 5673 16 of 17

Acknowledgments: The authors would like to thank David Hollinger for his assistance and guid-
ance throughout this project, specifically with regard to conceptualization, data visualization, and
software approaches.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pinto-Fernandez, D.; Torricelli, D.; Sanchez-Villamanan MD, C.; Aller, F.; Mombaur, K.; Conti, R.; Vitiello, N.; Moreno, J.C.; Pons,

J.L. Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28,
1573–1583. [CrossRef]

2. Kirkwood, G.L.; Otmar, C.D.; Hansia, M. Who’s Leading This Dance?: Theorizing Automatic and Strategic Synchrony in
Human-Exoskeleton Interactions. Front. Psychol. 2021, 12, 624108. [CrossRef] [PubMed]

3. Sawicki, G.S.; Ferris, D.P. Mechanics and energetics of level walking with powered ankle exoskeletons. J. Exp. Biol. 2008, 211,
1402–1413. [CrossRef]

4. Ding, Y.; Panizzolo, F.A.; Siviy, C.; Malcolm, P.; Galiana, I.; Holt, K.G.; Walsh, C.J. Effect of timing of hip extension assistance
during loaded walking with a soft exosuit. J. NeuroEng. Rehabil. 2016, 13, 87. [CrossRef]

5. Galle, S.; Malcolm, P.; Collins, S.H.; De Clercq, D. Reducing the metabolic cost of walking with an ankle exoskeleton: Interaction
between actuation timing and power. J. NeuroEng. Rehabil. 2017, 14, 35. [CrossRef]

6. Young, A.J.; Foss, J.; Gannon, H.; Ferris, D.P. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans
Wearing a Hip Exoskeleton. Front. Bioeng. Biotechnol. 2017, 5, 4. [CrossRef] [PubMed]

7. Ingraham, K.A.; Remy, C.D.; Rouse, E.J. The role of user preference in the customized control of robotic exoskeletons. Sci. Robot.
2022, 7, eabj3487. [CrossRef] [PubMed]

8. Young, A.J.; Ferris, D.P. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Trans. Neural Syst.
Rehabil. Eng. 2017, 25, 171–182. [CrossRef]

9. Liang, C.; Hsiao, T. Admittance Control of Powered Exoskeletons Based on Joint Torque Estimation. IEEE Access 2020, 8,
94404–94414. [CrossRef]

10. Zhang, H.; Ahmad, S.; Liu, G. Torque Estimation for Robotic Joint With Harmonic Drive Transmission Based on Position
Measurements. IEEE Trans. Robot. 2015, 31, 322–330. [CrossRef]

11. Dinovitzer, H.; Shushtari, M.; Arami, A. Accurate Real-Time Joint Torque Estimation for Dynamic Prediction of Human
Locomotion. IEEE Trans. Biomed. Eng. 2023, 70, 2289–2297. [CrossRef]

12. Liang, W.; Wang, F.; Fan, A.; Zhao, W.; Yao, W.; Yang, P. Extended Application of Inertial Measurement Units in Biomechanics:
From Activity Recognition to Force Estimation. Sensors 2023, 23, 4229. [CrossRef]

13. Liu, Y.; Shih, S.-M.; Tian, S.-L.; Zhong, Y.-J.; Li, L. Lower extremity joint torque predicted by using artificial neural network during
vertical jump. J. Biomech. 2009, 42, 906–911. [CrossRef]

14. Fang, Z.; Woodford, S.; Senanayake, D.; Ackland, D. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles:
A Systematic Review. Sensors 2023, 23, 6535. [CrossRef]

15. Coker, J.; Chen, H.; Schall, M.C.; Gallagher, S.; Zabala, M. EMG and Joint Angle-Based Machine Learning to Predict Future Joint
Angles at the Knee. Sensors 2021, 21, 3622. [CrossRef]

16. Bi, L.; Feleke, A.G.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for
human-robot collaboration. Biomed. Signal Process. Control 2019, 51, 113–127. [CrossRef]

17. Xiong, D.; Zhang, D.; Zhao, X.; Zhao, Y. Deep Learning for EMG-based Human-Machine Interaction: A Review. IEEE/CAA J.
Autom. Sin. 2021, 8, 512–533. [CrossRef]

18. Huang, Y.; He, Z.; Liu, Y.; Yang, R.; Zhang, X.; Cheng, G.; Yi, J.; Ferreira, J.P.; Liu, T. Real-Time Intended Knee Joint Motion
Prediction by Deep-Recurrent Neural Networks. IEEE Sens. J. 2019, 19, 11503–11509. [CrossRef]

19. Sharma, A.; Rombokas, E. Improving IMU-Based Prediction of Lower Limb Kinematics in Natural Environments Using Egocentric
Optical Flow. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 699–708. [CrossRef] [PubMed]

20. Wang, Y.; Cheng, X.; Jabban, L.; Sui, X.; Zhang, D. Motion Intention Prediction and Joint Trajectories Generation Toward Lower
Limb Prostheses Using EMG and IMU Signals. IEEE Sens. J. 2022, 22, 10719–10729. [CrossRef]

21. Hollinger, D.; Schall, M.C.; Chen, H.; Zabala, M. The Effect of Sensor Feature Inputs on Joint Angle Prediction across Simple
Movements. Sensors 2024, 24, 3657. [CrossRef] [PubMed]

22. Lee, T.; Kim, I.; Lee, S.-H. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a
Lower-Limb Exoskeleton Robot Using a Neural Network. Sensors 2021, 21, 2807. [CrossRef] [PubMed]

23. Agarwal, P.; Yun, Y.; Fox, J.; Madden, K.; Deshpande, A.D. Design, control, and testing of a thumb exoskeleton with series elastic
actuation. Int. J. Robot. Res. 2017, 36, 355–375. [CrossRef]

24. Sy, L.; Raitor, M.; Del Rosario, M.; Khamis, H.; Kark, L.; Lovell, N.H.; Redmond, S.J. Estimating Lower Limb Kinematics using a
Reduced Wearable Sensor Count. arXiv 2020, arXiv:1910.00910. http://arxiv.org/abs/1910.00910. [CrossRef]

25. Sy, L.W.; Lovell, N.H.; Redmond, S.J. Estimating Lower Body Kinematics using a Lie Group Constrained Extended Kalman Filter
and Reduced IMU Count. arXiv 2021, arXiv:2103.11393. http://arxiv.org/abs/2103.11393. [CrossRef]

https://doi.org/10.1109/TNSRE.2020.2989481
https://doi.org/10.3389/fpsyg.2021.624108
https://www.ncbi.nlm.nih.gov/pubmed/33679541
https://doi.org/10.1242/jeb.009241
https://doi.org/10.1186/s12984-016-0196-8
https://doi.org/10.1186/s12984-017-0235-0
https://doi.org/10.3389/fbioe.2017.00004
https://www.ncbi.nlm.nih.gov/pubmed/28337434
https://doi.org/10.1126/scirobotics.abj3487
https://www.ncbi.nlm.nih.gov/pubmed/35353602
https://doi.org/10.1109/TNSRE.2016.2521160
https://doi.org/10.1109/ACCESS.2020.2995372
https://doi.org/10.1109/TRO.2015.2402511
https://doi.org/10.1109/TBME.2023.3240879
https://doi.org/10.3390/s23094229
https://doi.org/10.1016/j.jbiomech.2009.01.033
https://doi.org/10.3390/s23146535
https://doi.org/10.3390/s21113622
https://doi.org/10.1016/j.bspc.2019.02.011
https://doi.org/10.1109/JAS.2021.1003865
https://doi.org/10.1109/JSEN.2019.2933603
https://doi.org/10.1109/TNSRE.2022.3156884
https://www.ncbi.nlm.nih.gov/pubmed/35245198
https://doi.org/10.1109/JSEN.2022.3167686
https://doi.org/10.3390/s24113657
https://www.ncbi.nlm.nih.gov/pubmed/38894447
https://doi.org/10.3390/s21082807
https://www.ncbi.nlm.nih.gov/pubmed/33923587
https://doi.org/10.1177/0278364917694428
https://doi.org/10.1109/TBME.2020.3026464
https://doi.org/10.1109/JSEN.2021.3096078


Sensors 2024, 24, 5673 17 of 17

26. Hossain, M.S.B.; Choi, H.; Guo, Z. Estimating lower extremity joint angles during gait using reduced number of sensors count via
deep learning. In Fourteenth International Conference on Digital Image Processing (ICDIP 2022); Xie, Y., Jiang, X., Tao, W., Zeng, D.,
Eds.; SPIE: Bellingham, WA, USA, 2022; p. 59. [CrossRef]

27. Argent, R.; Drummond, S.; Remus, A.; O’Reilly, M.; Caulfield, B. Evaluating the use of machine learning in the assessment of joint
angle using a single inertial sensor. J. Rehabil. Assist. Technol. Eng. 2019, 6, 205566831986854. [CrossRef]

28. Bonnet, V.; Joukov, V.; Kulic, D.; Fraisse, P.; Ramdani, N.; Venture, G. Monitoring of Hip and Knee Joint Angles Using a Single
Inertial Measurement Unit During Lower Limb Rehabilitation. IEEE Sens. J. 2016, 16, 1557–1564. [CrossRef]

29. Alemayoh, T.T.; Lee, J.H.; Okamoto, S. Leg-Joint Angle Estimation from a Single Inertial Sensor Attached to Various Lower-Body
Links during Walking Motion. Appl. Sci. 2023, 13, 4794. [CrossRef]

30. Pollard, R.S.; Hollinger, D.S.; Nail-Ulloa, I.E.; Zabala, M.E. A Kinematically-Informed Approach to Near Future Joint Angle
Estimation at the Ankle. IEEE Trans. Med. Robot. Bionics 2024, 6, 1125–1134. [CrossRef]

31. Belal, M.; Alsheikh, N.; Aljarah, A.; Hussain, I. Deep Learning Approaches for Enhanced Lower-Limb Exoskeleton Control: A
Review. IEEE Access 2024, 99, 1. [CrossRef]

32. Andriacchi, T.P.; Alexander, E.J.; Toney, M.K.; Dyrby, C.; Sum, J. A Point Cluster Method for In Vivo Motion Analysis: Applied to
a Study of Knee Kinematics. J. Biomech. Eng. 1998, 120, 743–749. [CrossRef] [PubMed]

33. Charlton, W.; Tate, P.; Smyth, P.; Roren, L. Repeatability of an optimized lower body model. Gait Posture 2004, 20, 213–221.
[CrossRef]

34. Bryan, G.M.; Franks, P.W.; Klein, S.C.; Peuchen, R.J.; Collins, S.H. A hip–knee–ankle exoskeleton emulator for studying gait
assistance. Int. J. Robot. Res. 2021, 40, 722–746. [CrossRef]

35. Sun, N.; Cao, M.; Chen, Y.; Chen, Y.; Wang, J.; Wang, Q.; Chen, X.; Liu, T. Continuous Estimation of Human Knee Joint Angles by
Fusing Kinematic and Myoelectric Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2446–2455. [CrossRef]

36. Nester, C.J.; Hutchins, S.; Bowker, P.P. Shank Rotation: A Measure of Rearfoot Motion During Normal Walking. Foot Ankle Int.
2000, 21, 578–583. [CrossRef]

37. Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Prentice Hall: Upper Saddle River, NJ, USA, 2005.
38. Fournier Belley, A.; Bouffard, J.; Brochu, K.; Mercier, C.; Roy, J.S.; Bouyer, L. Development and reliability of a measure evaluating

dynamic proprioception during walking with a robotized ankle-foot orthosis, and its relation to dynamic postural control. Gait
Posture 2016, 49, 213–218. [CrossRef]

39. Hussain, F.; Goecke, R.; Mohammadian, M. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and
manufacturing methods. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1375–1385. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1117/12.2643786
https://doi.org/10.1177/2055668319868544
https://doi.org/10.1109/JSEN.2015.2503765
https://doi.org/10.3390/app13084794
https://doi.org/10.1109/TMRB.2024.3408892
https://doi.org/10.1109/ACCESS.2024.3414175
https://doi.org/10.1115/1.2834888
https://www.ncbi.nlm.nih.gov/pubmed/10412458
https://doi.org/10.1016/j.gaitpost.2003.09.004
https://doi.org/10.1177/0278364920961452
https://doi.org/10.1109/TNSRE.2022.3200485
https://doi.org/10.1177/107110070002100709
https://doi.org/10.1016/j.gaitpost.2016.07.013
https://doi.org/10.1177/09544119211032010
https://www.ncbi.nlm.nih.gov/pubmed/34254562

	Introduction 
	Materials and Methods 
	Testing Modules 
	Participants 
	Sensor Configuration and Processing 
	Joint Angle Estimation Models 
	Kinematically Governed Extrapolation Model 
	Random Forest Machine Learning Model 

	Exoskeleton Mock-Up Mechanics 
	Controller Architecture 
	Deploying the Joint Angle Estimation Models on the Mock-Up Testbed 
	Performance Metrics 
	Model Error 
	Realized Error 
	Actuation Time 
	Phase Delay 
	No-Lag Error 
	Statistical Analysis 


	Results 
	Performance Metric Evaluation 
	Visual Inspection of Exoskeleton Mock-Up Testbed Performance 

	Discussion 
	Results and Hypotheses Discussion 
	Limitations and Future Work 

	Conclusions 
	References

