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Abstract: This study investigates the application of an eNose (electrochemical sensory array) device
as a rapid and cost-effective screening tool to detect increasingly prevalent counterfeit electronic
cigarettes, and those to which potentially hazardous excipients such as vitamin E acetate (VEA) have
been added, without the need to generate and test the aerosol such products are intended to emit. A
portable, in-field screening tool would also allow government officials to swiftly identify adulterated
electronic cigarette e-liquids containing illicit flavorings such as menthol. Our approach involved
developing canonical discriminant analysis (CDA) models to differentiate formulation components,
including e-liquid bases and nicotine, which the eNose accurately identified. Additionally, models
were created using e-liquid bases adulterated with menthol and VEA. The eNose and CDA model
correctly identified menthol-containing e-liquids in all instances but were only able to identify
VEA in 66.6% of cases. To demonstrate the applicability of this model to a commercial product,
a Virginia Tobacco JUUL product was adulterated with menthol and VEA. A CDA model was
constructed and, when tested against the prediction set, it was able to identify samples adulterated
with menthol 91.6% of the time and those containing VEA in 75% of attempts. To test the ability of
this approach to distinguish commercial e-liquid brands, a model using six commercial products
was generated and tested against randomized samples on the same day as model creation. The CDA
model had a cross-validation of 91.7%. When randomized samples were presented to the model on
different days, cross-validation fell to 41.7%, suggesting that interday variability was problematic.
However, a subsequently developed support vector machine (SVM) identification algorithm was
deployed, increasing the cross-validation to 84.7%. A prediction set was challenged against this
model, yielding an accuracy of 94.4%. Altered Elf Bar and Hyde IQ formulations were used to
simulate counterfeit products, and in all cases, the brand identification model did not classify these
samples as their reference product. This study demonstrates the eNose’s capability to distinguish
between various odors emitted from e-liquids, highlighting its potential to identify counterfeit and
adulterated products in the field without the need to generate and test the aerosol emitted from an
electronic cigarette.

Keywords: electronic cigarettes; nicotine; sensory array; menthol; vitamin E; chemometrics; volatile
organic compounds (VOC); counterfeit detection; tobacco

1. Introduction

In the evolving landscape of nicotine delivery systems, electronic cigarettes (e-cigarettes)
have emerged as a controversial yet prevalent alternative to traditional tobacco prod-
ucts. Initially conceived as a smoking cessation aid and a safer alternative to combustible
cigarettes, e-cigarettes have gained immense popularity, particularly among younger de-
mographics [1]. However, this burgeoning market has also given rise to an alarming trend:
the proliferation of counterfeit e-cigarettes [2,3]. These illegitimate products undermine
public health initiatives and pose significant health risks to consumers [2,3].

The importance of addressing the issue of counterfeit e-cigarettes cannot be overstated.
We have seen the global impact of illicit trade in cigarettes and can expect similar lasting
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impacts from the trade of counterfeit e-cigarettes [4]. Firstly, these counterfeit products
often ignore regulatory standards and prudent quality controls, leading to the possibility
of more user exposure to hazardous materials such as lead, a constituent of inexpensive
soldering joints, and inconsistent nicotine levels. This variability can exacerbate health risks,
including nicotine addiction and respiratory disease. Furthermore, counterfeit e-cigarettes
may become a conduit for potentially dangerous modifications and adulteration [3].

Secondly, the rise of counterfeit e-cigarettes undermines efforts of public health officials
to monitor, evaluate and regulate the e-cigarette industry, and legitimate manufacturers
seeking to improve the safety of their products are harmed when counterfeit products flood
the market and reduce consumer confidence.

Lastly, counterfeit e-cigarettes create unfair market competition for legitimate manufac-
turers and distributers, potentially leading to financial and job losses, while simultaneously
evading taxation [4]. One may be unsympathetic concerning the problems faced by reg-
ulated e-cigarette manufacturers while acknowledging that an underground market in
counterfeits of their products poses even more risk to public health.

Currently, methods to detect counterfeit tobacco products rely on inductively coupled
plasma-optical emission or mass spectrometry, gas chromatography, and X-ray fluorescent
spectrometry, which all require extensive sample preparation and are generally unsuitable
for use in the field [5].

This paper aims to provide a framework for the detection of counterfeit e-cigarettes
using electronic nose sensor arrays coupled with chemometrics. Our assessment focused
on the MSEM 160 e-Nose sensor, which was developed for detecting and sampling gases,
volatile organic compounds (VOCs), and other airborne chemicals. It is compact and
portable as well as consistent with field deployment for analyzing e-liquids. The MSEM
160 features targeted gas sensors for hydrogen sulfide, ammonia, and hydrocarbons along
with a sensor array designed for VOCs and other odor-inducing compounds. We eval-
uated the system’s ability to classify e-cigarette brands, aiming for quicker results and
lower costs compared to traditional analytical methods for identifying counterfeited and
adulterated products.

1.1. Vitamin E Acetate

Vitamin E, a fat-soluble antioxidant, is an essential nutrient found naturally in various
foods and used widely in dietary supplements and skincare products. While beneficial
in these contexts, its derivative, vitamin E acetate (VEA), has emerged as a compound of
significant concern when used in e-cigarette e-liquids, particularly those in illicit products.
VEA is used as a thickening agent and seems particularly prevalent in e-liquids containing
tetrahydrocannabinol (THC) [6].

When vaporized by the heating coil of an electronic cigarette and inhaled, thermal
decomposition products of VEA have been linked to e-cigarette or vaping product use-
associated lung injury (EVALI) [7]. Patients with EVALI present with respiratory symptoms
ranging from cough and shortness of breath to severe lung injury requiring hospitalization.

1.2. Menthol

Menthol, a natural compound derived from mint oils, is used for its cooling and
soothing properties in products, ranging from pharmaceuticals to confectioneries. In e-
cigarettes, menthol is deployed in e-liquid formulations as a flavoring and cooling agent,
but like VEA, heating may result in the formation of degradation products with an uncertain
safety profile. Emerging scientific evidence suggests potential health hazards associated
with menthol when inhaled through e-cigarettes, necessitating a critical examination of its
implications [8]. The FDA has moved to ban menthol flavorings in several forms of tobacco
products [3].

One of the primary concerns is the potential for menthol to enhance nicotine addiction.
Studies suggest that menthol may modulate nicotine’s addictive properties, increasing the
frequency of use [9]. The analgesic effects of menthol on nicotine irritation have also been
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demonstrated in humans [10]. This poses significant public health challenges, especially
considering the popularity of menthol flavors among youth and their potential role as a
gateway to sustained nicotine dependency.

Furthermore, the respiratory implications of inhaling mentholated e-liquids are not
well understood. While menthol’s cooling effect may mask the harshness of nicotine and
other chemicals, it may also lead to deeper inhalation and increased exposure to harmful
constituents present in e-liquids [11]. Studies also suggest that menthol smoke induces
more severe lung inflammation [12]. The long-term pulmonary effects of this increased
exposure remain a critical area of concern.

1.3. Gas Sensors

The foundational principle of the electronic nose is based on the biological olfactory
pathway, where the olfactory receptors in the nose bind to odor molecules and send signals
to the brain for odor recognition and differentiation [13]. Similarly, an electronic nose
(Figure 1) comprises an array of sensors designed to respond to various volatile organic
compounds (VOCs) in the air [14,15]. The sensors, which can be made from a range of
materials including polymers, metal oxides, and conducting polymers, generate a signal
pattern from the detected VOCs [16]. This pattern, often referred to as an ‘odor fingerprint’,
is then processed using algorithms and pattern recognition systems, akin to the way the
brain processes smells, to identify, compare, or quantify various odors [17].
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Figure 1. The process for applying of machine learning techniques to gas sensors responses for the
classification for e-liquid brand classification.

The sensors in an electronic nose can detect and analyze the unique chemical signa-
tures in the headspace above the e-liquid. These signatures are influenced by the specific
combinations of propylene glycol, glycerin, flavorings, and nicotine that manufacturers use.
Counterfeits often use lower-quality or different proportions of these ingredients, leading
to an altered chemical composition in the bulk liquid and vapor phase [3]. Illicit products
may also contain undisclosed ingredients. By employing pattern recognition and machine
learning techniques, the e-nose system can compare the chemical signature of a sample
against the known profiles of authentic products. This study explored the ability of such
an approach to distinguish between e-liquids of various compositions with a focus on the
detection of potentially harmful or illegal additions and differentiating brand products
from copies.

2. Materials and Methods
2.1. Sensory Array and Sampling Procedure

The portable environmental monitor MSEM 160 (Sensigent LLC, Baldwin Park, CA,
USA) was utilized to detect and analyze the volatile substances emanating from e-liquids.
This instrument is outfitted with 32 sensors, which include ones for measuring temperature
and humidity (sensors 1–4). It includes a range of metal oxide semiconductor (MOS)
sensors (sensors 5–12) designed for the electrochemical detection of specific chemicals
and other electrochemical detection units tuned to detect hydrogen sulfide (sensor 13),
ammonia (sensor 14), and hydrocarbons (sensor 15). A photoionization (PI) detector is
intended to respond to all volatile organic compounds (total VOCs, sensor 16), and a series
of polymer composite (PCSs) sensors (sensors 17–32) respond to other molecules in the
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vapor phase [18]. Sensor outputs were recorded every second over the sample period [18].
A feature of such sensor arrays is that sensors may respond to a specific chemical or a
related one. While this lack of specificity may be a limitation in some applications, it does
give the instrument the ability to output a range of signals (a pattern or fingerprint) in the
absence of information about the composition of the vapor or gas that is being evaluated.

The instrument was turned on, and the sensors were allowed to equilibrate for at least
45 min before taking measurements. The sample apparatus features a closed-loop system
which consisted of a Chemglass impinger (Vineland, NJ, USA) connected to the MSEM
160 eNose using a 1/8th inch internal diameter Tygon tubing and Luer-loc fittings, which
were both obtained from McMaster-Carr (Elmhurst, IL, USA). Prior to use, impingers were
tripled rinsed with soap and water, dried with clean compressed air, and then placed in a
60 ◦C incubator (MYTEMP 65, Benchmark Scientific Inc., Sayreville, NJ, USA) for at least
15 min. The MSEM 160 eNose sampling flow rate was set to 0.45 L per min (L/min).

2.1.1. E-Liquid Components and Adulterants

To identify the components of the e-liquid and potential adulterants, four models were
generated. Approximately 1.0 g of each e-liquid base was pipetted into a gas impinger. The
headspace of the impinger was sampled for one minute per replicate with a one-minute pre-
and post-purge cycle with ambient air to clean the gas path before and after sampling. 1,
2-Propanediol (PG), glycerol (G), and (-)-nicotine purchased from Sigma-Aldrich (St. Louis,
MO, USA) were used in the e-liquid base creation. The first replicate of each sample set
was used to prime the instrument, and was not included in the data analysis (Figure 2).
Gas and vapor within the headspace was drawn into the internal chamber, where an array
of 32 sensors had the opportunity to interact with the gas or vapor. The electrical output of
each sensor, relative to the baseline, depends on the extent of interaction with molecules in
the headspace.
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Sampling occurs in a closed-loop system, and the internal eNose chamber containing the sensors is
purged before and after sampling.

Model 1: Propylene Glycol and Glycerol

The first model was generated by sampling six replicates each of PG and G. Six
additional replicates of each were generated to assess the predictive rate for each group.

Model 2: Nicotine Addition

A commercially relevant mixture of PG and G (70:30 by weight) was created. To a
portion of this mixture, 5% nicotine was added, resulting in two mixtures: one blank e-
liquid and one containing nicotine. Six replicates of each mixture were sampled to generate
the model. An additional six replicates of each were generated to assess the model’s
predictive capabilities.
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Models 3–5: Menthol and Vitamin E Acetate Adulteration

Using the 70:30 mixture of PG and G created previously, two separate mixtures were
prepared: one containing 1% menthol and the other 10% VEA both purchased from Alfa
Aesar (Lancashire, UK). Twelve replicates of each mixture were sampled using the method
outlined above. Six additional replicates were generated to determine the predictive rate of
the model.

Models 6–8: Menthol and Vitamin E Acetate Adulteration in JUUL

Using the commercial e-liquid extracted from JUUL (JUUL Labs Inc., San Francisco,
CA, USA, Virginia tobacco flavor), two separate mixtures were prepared, one containing 1%
menthol and the other 10% VEA by weight. Six replicates of each mixture were sampled us-
ing the method outlined above. Twelve additional samples were generated for the menthol
mixture and nine were generated for VEA to assess the model’s predicative capability.

These models were used to distinguish between the different adulterants in the e-
liquid samples.

2.1.2. Commercial E-Liquids

Six brands of commercially available electronic cigarettes were studied (Table 1).

Table 1. Commercially available electronic cigarette products evaluated in this study.

Brand Flavor Manufacturer Location Batch Number

Elf Bar Clear (Menthol) Guang Dong QisiTech Co., Ltd. Shenzhen, China EP019125
Hyde IQ Mystery Mix Shenzhen IVPS Technology Co., Ltd. Shenzhen, China TT237802

Juice Head Fresh Mint MH Global LLC Garden Grove, CA, USA 09292201
JUUL Virginia Tobacco JUUL Labs Inc. San Francisco, CA, USA HH15PA14A

NJOY Ace Tobacco NJOY LLC Scottsdale, AZ, USA 2790105 2841
Ignite Tobacco Shenzhen VapeEZ Technology Ltd. Shenzhen, China 0929/2021

E-liquid samples were taken from e-cigarette brands purchased from retailers in the
mid-Atlantic region of the United States. Popular brands were selected for study. An
aliquot of approximately 20 mg of e-liquid was added to a gas impinger. The headspace
of the impinger was sampled for one minute per replicate, with a one-minute pre- and
post-purge cycle to clean the gas path before and after sampling. The first replicate of each
sample set was used as a priming measurement and was not included in the data analysis.
Each brand was sampled 18 times for model generation.

To assess interday variability, this study was repeated on two consecutive days, and
all three days of sampling were compiled for model generation. Nine replicates of each
brand were generated on another day to be used as a prediction set.

Using the e-liquid from Clear Elf Bar and Mystery Mix Hyde IQ, three alterations were
made as detailed in Table 2. Three replicates of each alteration were sampled using the
eNose method described previously. The data were added to a support vector machine
(SVM) model previously used to identify brands.

Table 2. Adulteration of Clear Elf Bar and Mystery Mix Hyde IQ groups and ratios.

Brand Flavor Alteration and Ratio

1:1 Addition of PG to the manufacturer’s e-liquid
Hyde IQ Mystery Mix 1:1 Addition of PG to the manufacturer’s e-liquid

Nicotine concentration increased to 24%

1:1 Addition of PG to the manufacturer’s e-liquid
Elf Bar Clear (Menthol) 1:1 Addition of PG to the manufacturer’s e-liquid

Nicotine concentration increased to 24%
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2.2. Data Analysis

Files containing all sensor outputs generated from the MSEM 160 were loaded into
the Chemometric Data Analysis software (Sensigent LLC, Baldwin Park, CA, USA). The
sensor outputs were filtered with the Savitzky–Golay algorithm to reduce their signal-to-
noise ratio [19,20] and subsequently converted into ∆R/R (change in response (R)/baseline
response) before being loaded for model training [21]. Sensors 1–4 were deselected from
the sensor selection menu, since they measure only temperature and humidity. Using
supervised training techniques, the data were normalized, auto-scaled, and the canonical
discriminant analysis (CDA) algorithm, a type of linear discriminant analysis (LDA), was
applied [22]. The model was then cross-validated using the dataset used to generate the
model. The method files were saved, and prediction sets were added to test validity. For
the training sets based on six commercial e-liquids and their adulterated versions, the SVM
algorithm was also applied [23].

3. Results

Ten models were generated. Details regarding the e-liquid types, algorithm, and
cross-validation results can be found in Table 3.

Table 3. Summary of each model generated and the corresponding cross-validation result.

Model Samples Type Matrix Samples Per Set Total Samples Algorithm CV

1
Glycerol Not Applicable 18

36 CDA 94.4%Propylene Glycol Not Applicable 18

2
Nicotine PG/G Mixture 18

36 CDA 94.4%No Nicotine PG/G Mixture 18

3
Menthol PG/G Mixture 18

36 CDA 94.4%No Menthol PG/G Mixture 18

4
VEA PG/G Mixture 18

36 CDA 97.2%No VEA PG/G Mixture 18

5
Menthol PG/G Mixture 18

36 CDA 100.0%VEA PG/G Mixture 18

6
Menthol JUUL 6

12 CDA 83.3%No Menthol JUUL 6

7
VEA JUUL 6

12 CDA 91.7%No VEA JUUL 6

8
Menthol JUUL 6

12 CDA 100.0%VEA JUUL 6

9

JUUL Not Applicable 18

108 CDA 91.7%

NJOY ACE Not Applicable 18
Ignite Not Applicable 18
Elf Bar Not Applicable 18

Hyde IQ Not Applicable 18
Juicehead Not Applicable 18

10

JUUL Not Applicable 54

324 SVM 84.7%

NJOY ACE Not Applicable 54
Ignite Not Applicable 54
Elf Bar Not Applicable 54

Hyde IQ Not Applicable 54
Juice Head Not Applicable 54

3.1. E-Liquid Components
3.1.1. Propylene Glycol and Glycerol

The first model sought to distinguish between propylene glycol (PG) and glycerol (G)
(Figure 3). Six replicates of each e-liquid base were sampled, resulting in a total of 12 repli-
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cates. The eNose accurately differentiated between the two components, demonstrating its
ability to identify the primary bases used in e-liquid formulations. The cross-validation
accuracy for this model was 94.4%, and it achieved a 100% prediction rate using a validation
set containing six samples of each.
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3.1.2. Nicotine Addition

The second model was designed to detect the presence of nicotine in a commercially
relevant mixture of PG and G (70:30) (Figure 4). A portion of this mixture was spiked with
5% nicotine, and six replicates of each mixture (blank e-liquid and nicotine-containing
e-liquid) were sampled. The eNose successfully identified the presence of nicotine, high-
lighting its capability to detect significant components in e-liquid formulations.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. Score plot in canonical space with auto-scale generated using the chemometric data anal-
ysis software for visualization. n = 36, with 18 replicates per set. This canonical discriminant analysis 
model yielded a cross-validation of 94.4%. 

3.1.3. Menthol and Vitamin E Acetate Adulteration 
The third model aimed to identify adulterants, specifically menthol and VEA, in e-

liquid bases (Figure 5). Using the 70:30 mixture of PG and G, two separate mixtures were 
prepared, containing 1% menthol and 10% VEA, respectively. Twelve replicates of each 
mixture were sampled. The eNose correctly identified menthol-containing e-liquids in all 
instances. However, the identification accuracy for vitamin E acetate was 66.6%, indicat-
ing a need for further refinement in detecting this specific adulterant. 

 
Figure 5. Score plot in canonical space with auto-scale generated using the chemometric data anal-
ysis software for visualization. n = 36, with 18 replicates per set. This canonical discriminant analysis 
model yielded a cross-validation of 94.4% and 97.2% for menthol and VEA, respectively, whereas 
the comparison between menthol and VEA yielded a 100% cross-validation. 

3.1.4. Menthol and Vitamin E Acetate Adulteration in JUUL 
The fourth model aimed to identify adulterants, specifically menthol and VEA, in 

commercial e-liquids (Figure 6). Using Virginia Tobacco JUUL e-liquid, two separate mix-
tures were prepared, containing 1% menthol and 10% VEA, respectively. Six replicates of 
each mixture were sampled. The eNose correctly identified menthol-containing e-liquids 
91.6% of the time and 75% of the time for those containing VEA. 

Figure 4. Score plot in canonical space with auto-scale generated using the chemometric data analysis
software for visualization. n = 36, with 18 replicates per set. This canonical discriminant analysis
model yielded a cross-validation of 94.4%.

3.1.3. Menthol and Vitamin E Acetate Adulteration

The third model aimed to identify adulterants, specifically menthol and VEA, in e-
liquid bases (Figure 5). Using the 70:30 mixture of PG and G, two separate mixtures were
prepared, containing 1% menthol and 10% VEA, respectively. Twelve replicates of each
mixture were sampled. The eNose correctly identified menthol-containing e-liquids in all
instances. However, the identification accuracy for vitamin E acetate was 66.6%, indicating
a need for further refinement in detecting this specific adulterant.
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Figure 5. Score plot in canonical space with auto-scale generated using the chemometric data analysis
software for visualization. n = 36, with 18 replicates per set. This canonical discriminant analysis
model yielded a cross-validation of 94.4% and 97.2% for menthol and VEA, respectively, whereas the
comparison between menthol and VEA yielded a 100% cross-validation.

3.1.4. Menthol and Vitamin E Acetate Adulteration in JUUL

The fourth model aimed to identify adulterants, specifically menthol and VEA, in
commercial e-liquids (Figure 6). Using Virginia Tobacco JUUL e-liquid, two separate
mixtures were prepared, containing 1% menthol and 10% VEA, respectively. Six replicates
of each mixture were sampled. The eNose correctly identified menthol-containing e-liquids
91.6% of the time and 75% of the time for those containing VEA.
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3.2. Commercial Product Testing

The eNose device demonstrated a high level of accuracy in identifying electronic
cigarette brands. Each brand was sampled 18 times for model generation with the first
sample excluded from the analysis to avoid variability due to priming the sampling circuit.
The data analysis involved filtering the sensor outputs with the Savitzky–Golay algorithm,
converting the outputs into ∆R/R, and applying supervised training techniques.

To demonstrate the eNose’s ability to discriminate among commercial products, a
model using six different e-liquids extracted from them was generated. Each brand was
sampled 18 times, and CDA was applied to the dataset. This model yielded a cross-
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validation accuracy of 91.7%, but it only contained data generated on one day (Figure 7).
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Figure 7. A three-dimensional CDA plot generated using the chemometric data analysis software for
visualization. n = 108, with 18 replicates per brand. This CDA model yielded a cross-validation of
91.7%. The yellow highlighting indicates products with only tobacco flavoring, while blue represents
those which also contain menthol, and green represents those with fruit flavorings.

When the dataset was expanded to include data collected on three different days,
with 18 samples of each brand per day (108 samples per day, totaling 324 samples), the
cross-validation accuracy of the CDA model dropped to 41.7%.

A validation set of the six commercial brands was tested by generating nine sam-
ples from each brand, totaling 54 samples. The model correctly predicted 51 out of the
54 samples, resulting in a prediction accuracy of 94.4% (Figure 8).
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Figure 8. A predictive model was constructed using the SVM algorithm. n = 324. The model had
an accuracy of 84.7% through cross-validation. Nine replicates of each brand were measured for a
predication set. The figure above details the correct predictions for each of the brands in the form of a
confusion matrix and yielded a total accuracy of 94.4%.

To address this issue, the SVM algorithm was applied to the same dataset, which
resulted in a substantial improvement in cross-validation accuracy to 84.7%. This indicates
that SVM is more robust and can better account for differences in data collected on different
days. These findings suggest that while CDA can be effective under controlled, single-
day conditions, SVM provides a more reliable approach for models involving interday
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variability, enhancing the eNose’s practical applicability in real-world settings. These
findings are in line with literature suggesting that SVM has high accuracy and tolerance for
irrelevant or redundant data [13].

To simulate counterfeit products, actual product e-liquid formulation ratios were
intentionally altered. The electronic cigarette brand identification model was able to
discriminate these adulterated formulations from the unaltered reference product in all
cases [3] (Figure 9, Table 4).
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Figure 9. A two-dimensional SVM model was created and visualized using the chemometric data
analysis software. n = 324, with 54 replicates per brand collected over three days (18 per day). Plotted
along with the unchanged reference model data are altered sample (denoted as ‘s’) data for Elf Bar
and Hyde IQ. The adulteration that was applied can be matched to the sample numbers using Table 4.

Table 4. Sample alterations and sample number key. Samples 1 and 11 were priming samples (not
included in the prediction set) and thus are not included in the table.

Brands Alteration Sample Number

Hyde IQ
1:1 Addition of PG to the manufacturer’s e-liquid 2–4
1:1 Addition of G to the manufacturer’s e-liquid 5–7

Nicotine concentration increased to 24% 8–10

Elf Bar
1:1 Addition of PG to the manufacturer’s e-liquid 12–14
1:1 Addition of G to the manufacturer’s e-liquid 15–17

Nicotine concentration increased to 24% 18–20

4. Discussion

This study investigated the use of an eNose device as a screening tool for identifying
counterfeit and adulterated electronic cigarette e-liquids. The results demonstrate that the
eNose can differentiate between various e-liquid components and detect specific adulter-
ants, suggesting it may be of use in enforcement, regulatory and commercial settings.

Cross-validation was performed on each set of data to evaluate the performance and
generalizability of predictive models before prediction datasets were added to validate
their accuracy. This is important to mitigate overfitting, provide a robust performance
estimate, and efficiently utilize limited data [24,25].

Following instrument equilibration, samples could be analyzed, and the instrument
readied for reuse in approximately 4 min. Sample preparation was minimal compared to
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techniques more commonly used for counterfeit detection, and it was also amenable to
field applications.

The eNose distinguished between propylene glycol (PG) and glycerol (G) and detected
the addition of nicotine to e-liquid mixtures. These findings highlight the device’s capability
to accurately identify primary components and significant additives in e-liquids under
controlled conditions.

The eNose identified menthol-containing e-liquids reliably, but its identification accu-
racy for VEA was lower, indicating the need for further refinement in detecting this specific
adulterant. The lower accuracy for VEA could be attributed to its less distinctive odor
profile compared to menthol, suggesting that sensor sensitivity needs to be improved or
additional sensors developed. Additionally, elevation of the sample chamber temperature
could increase the vapor pressure of some analytes and result in stronger sensor responses.

The eNose demonstrated high accuracy in identifying electronic cigarette brands
under controlled conditions. However, performance significantly declined when data
from different days were included, highlighting the impact of interday variability. This
could be attributed to drift in the performance of the sensors, which could be alleviated
by a drift compensation algorithm such as domain adaptive extreme learning machines
(DAELM) [26]. Model overfitting is unlikely as each model was cross-validated. The
application of the support vector machine (SVM) algorithm substantially improved model
reliability, making it a preferable choice for longitudinal studies and practical field applications.

The eNose’s performance seems to improve with more potent odors, as demonstrated
in the comparisons between menthol, a substance with a relatively high vapor pressure
and odor, and VEA, which is an essentially odorless, viscous substance with a low vapor
pressure. The discrimination of potent odors may make the E-nose useful for detecting
flavorings in e-liquids when taking a sniff may expose a human or animal to harm (for
example, where the possibility of illicit drug addition exists).

Interday variability significantly affected the model’s performance when using CDA,
highlighting the challenge of maintaining consistent sensor responses over time. The
substantial drop in cross-validation accuracy with the inclusion of data from different days
illustrates the importance of considering temporal factors in model development. The SVM
algorithm’s ability to handle temporal variability more robustly suggests its suitability for
practical applications, ensuring the reliability and consistency of the eNose.

5. Conclusions

This study demonstrates the eNose’s potential as a rapid and cost-effective screening
tool for detecting counterfeit and adulterated e-liquids. The device’s ability to accurately
detect specific e-liquid adulterants and differentiate between e-cigarette products may have
applications in law enforcement, regulatory and commercial settings. However, substantial
interday variability in predictability and the lower ability for detecting low odor additives
indicate areas for further model and hardware refinement. Future research should focus on
improving the eNose’s sensitivity to a broader range of adulterants, addressing temporal
variability, and exploring advanced algorithms to enhance model robustness. Future
studies could incorporate advanced pattern recognition algorithms such as linear ridge
classifier (LRC), 3-order polynomial classifier (PO3), decision tree (DT), random forest (RF),
and multilayer perceptron (MLP) [27]. These efforts should contribute to the development
of reliable and effective screening tools for numerous applications, including maintaining
the integrity of e-cigarette product supply chains for those adults who choose to use them,
and the collection of data to support regulatory decision making to maximize public health.
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