Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques
Abstract
:1. Introduction
2. The Proposed AE-Based Damage Localization Method
2.1. Architecture of the Network
2.2. Methodology Proposal
2.3. Setup of the AE Data Acquisition System
Experimental Procedure
2.4. Sensor Placement and Hardware Selection
2.5. Acquisition of Acoustic Emission Data
2.6. Acoustic Emission Data Preprocessing
2.7. Acoustic Emission Signal to Scalogram Processing
2.8. A Prediction Model for the Crack Localization in the MZ Dental Crown
2.9. Performance Assessment Index
2.10. On-Site Configuration for Experimental Studies
Flaw Generation in a Specimen
3. Results
On-Site Dental Biting Using the Deep CNN Architecture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malkondu, Ö.; Tinastepe, N.; Akan, E.; Kazazoğlu, E. An overview of monolithic zirconia in dentistry. Biotechnol. Biotechnol. Equip. 2016, 30, 644–652. [Google Scholar] [CrossRef]
- Volpato, C.Â.M.; Garbelotto, L.; Fredel, M.C.; Bondioli, F. Application of zirconia in dentistry: Biological, mechanical and optical considerations. In Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment; IntechOpen Limited: London, UK, 2011; Volume 25. [Google Scholar]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Pecho, O.E.; Alessandretti, R. Zirconia as a dental biomaterial. Materials 2015, 8, 4978–4991. [Google Scholar] [CrossRef] [PubMed]
- Luthardt, R.G.; Holzhüter, M.S.; Rudolph, H.; Herold, V.; Walter, M.H. CAD/CAM-machining effects on Y-TZP zirconia. Dent. Mater. 2004, 20, 655–662. [Google Scholar] [CrossRef]
- de Souza Melo, G.; Batistella, E.Â.; Bertazzo-Silveira, E.; Gonçalves, T.M.S.V.; de Souza, B.D.M.; Porporatti, A.L.; Flores-Mir, C.; Canto, G.D.L. Association of sleep bruxism with ceramic restoration failure: A systematic review and meta-analysis. J. Prosthet. Dent. 2018, 119, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Heller, H.; Sreter, D.; Arieli, A.; Beitlitum, I.; Pilo, R.; Levartovsky, S. Survival and success rates of monolithic zirconia restorations supported by teeth and implants in bruxer versus non-bruxer patients: A retrospective study. Materials 2022, 15, 833. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.-H.; Pan, C.-Y.; Liu, P.-H.; Chou, M.M. Fracture resistance of monolithic zirconia crowns in implant prostheses in patients with bruxism. Materials 2019, 12, 1623. [Google Scholar] [CrossRef]
- Spies, B.C.; Balmer, M.; Jung, R.E.; Sailer, I.; Vach, K.; Kohal, R.-J. All-ceramic, bi-layered crowns supported by zirconia implants: Three-year results of a prospective multicenter study. J. Dent. 2017, 67, 58–65. [Google Scholar] [CrossRef]
- Saâdaoui, M.; Khaldoun, F.; Adrien, J.; Reveron, H.; Chevalier, J. X-ray tomography of additive-manufactured zirconia: Processing defects–strength relations. J. Eur. Ceram. Soc. 2020, 40, 3200–3207. [Google Scholar] [CrossRef]
- Liang, X.; Jacobs, R.; Hassan, B.; Li, L.; Pauwels, R.; Corpas, L.; Souza, P.C.; Martens, W.; Shahbazian, M.; Alonso, A. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): Part I. On subjective image quality. Eur. J. Radiol. 2010, 75, 265–269. [Google Scholar] [CrossRef]
- Zhao, Z. Review of non-destructive testing methods for defect detection of ceramics. Ceram. Int. 2021, 47, 4389–4397. [Google Scholar] [CrossRef]
- Quinn, G.D.; Quinn, G.D. Fractography of Ceramics and Glasses; National Institute of Standards and Technology: Washington, DC, USA, 2007; Volume 960.
- Aboushelib, M.N.; Wang, H.; Kleverlaan, C.J.; Feilzer, A.J. Fatigue behavior of zirconia under different loading conditions. Dent. Mater. 2016, 32, 915–920. [Google Scholar] [CrossRef]
- Tanimoto, H.; Arai, Y. The Effect of Voxel Size on Image Reconstruction in Cone-Beam Computed Tomography; 0911-6028; Springer: Tokyo, Japan, 2009. [Google Scholar]
- Pauwels, R.; Araki, K.; Siewerdsen, J.; Thongvigitmanee, S.S. Technical aspects of dental CBCT: State of the art. Dentomaxillofacial Radiol. 2015, 44, 20140224. [Google Scholar] [CrossRef]
- Kumpati, R.; Skarka, W.; Ontipuli, S.K. Current trends in integration of nondestructive testing methods for engineered materials testing. Sensors 2021, 21, 6175. [Google Scholar] [CrossRef]
- Prem, P.R.; Sanker, A.P.; Sebastian, S.; Kaliyavaradhan, S.K. A review on application of acoustic emission testing during additive manufacturing. J. Nondestruct. Eval. 2023, 42, 96. [Google Scholar] [CrossRef]
- Ono, K. Review on structural health evaluation with acoustic emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef]
- Sohaib, M.; Islam, M.; Kim, J.; Jeon, D.-C.; Kim, J.-M. Leakage detection of a spherical water storage tank in a chemical industry using acoustic emissions. Appl. Sci. 2019, 9, 196. [Google Scholar] [CrossRef]
- Suwansin, W.; Phasukkit, P. Deep learning-based acoustic emission scheme for nondestructive localization of cracks in train rails under a load. Sensors 2021, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimkhanlou, A.; Salamone, S. Single-sensor acoustic emission source localization in plate-like structures using deep learning. Aerospace 2018, 5, 50. [Google Scholar] [CrossRef]
- Galanopoulos, G.; Milanoski, D.; Broer, A.; Zarouchas, D.; Loutas, T. Health monitoring of aerospace structures utilizing novel health indicators extracted from complex strain and acoustic emission data. Sensors 2021, 21, 5701. [Google Scholar] [CrossRef] [PubMed]
- Holford, K.M.; Eaton, M.J.; Hensman, J.J.; Pullin, R.; Evans, S.L.; Dervilis, N.; Worden, K. A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview. Prog. Aerosp. Sci. 2017, 90, 1–11. [Google Scholar] [CrossRef]
- Stinchcomb, W.W.; Duke, J.; Henneke, E.; Reifsnider, K. Mechanics of Nondestructive Testing; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- He, K.; Xia, Z.; Si, Y.; Lu, Q.; Peng, Y. Noise reduction of welding crack AE signal based on EMD and wavelet packet. Sensors 2020, 20, 761. [Google Scholar] [CrossRef]
- Kapur, R.A. Acoustic emission in orthopaedics: A state of the art review. J. Biomech. 2016, 49, 4065–4072. [Google Scholar] [CrossRef]
- Olorunlambe, K.A.; Hua, Z.; Shepherd, D.E.; Dearn, K.D. Towards a diagnostic tool for diagnosing joint pathologies: Supervised learning of acoustic emission signals. Sensors 2021, 21, 8091. [Google Scholar] [CrossRef] [PubMed]
- Ossi, Z.; Abdou, W.; Reuben, R.L.; Ibbetson, R.J. Transmission of acoustic emission in bones, implants and dental materials. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 1237–1245. [Google Scholar] [CrossRef]
- Tuntiwong, K.; Phasukkit, P.; Tungjitkusolmun, S. Deep Learning-Based Acoustic Emission Scheme for Nondestructive Localization of Cracks in Monolith Zirconia Dental crown under Load. In Proceedings of the 2023 8th International STEM Education Conference (iSTEM-Ed), Ayutthaya, Thailand, 20–22 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Yang, B.; Guo, J.; Huang, Q.; Heo, Y.; Fok, A.; Wang, Y. Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations. Dent. Mater. 2016, 32, 742–748. [Google Scholar] [CrossRef]
- Ereifej, N.; Silikas, N.; Watts, D.C. Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dent. Mater. 2008, 24, 1289–1295. [Google Scholar] [CrossRef]
- Skalskyi, V.; Makeev, V.; Stankevych, O.; Pavlychko, R. Features of fracture of prosthetic tooth-endocrown constructions by means of acoustic emission analysis. Dent. Mater. 2018, 34, e46–e55. [Google Scholar] [CrossRef]
- Drozdov, O.; Volkov, Y.M. Compact System for Monitoring Acoustic Emission Parameters in Mechanical Testing of Materials. Strength Mater. 2023, 55, 516–524. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Yun, X.; Liu, X.; Fok, A.S.-L. Non-destructive examination of interfacial debonding using acoustic emission. Dent. Mater. 2011, 27, 964–971. [Google Scholar] [CrossRef]
- Cho, N.; Ferracane, J.; Lee, I. Acoustic emission analysis of tooth-composite interfacial debonding. J. Dent. Res. 2013, 92, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.-Y.; Choi, N.-S.; Ferracane, J.; Lee, I.-B. Acoustic emission analysis of the effect of simulated pulpal pressure and cavity type on the tooth–composite interfacial de-bonding. Dent. Mater. 2014, 30, 876–883. [Google Scholar] [CrossRef]
- Kaplan, A.; Gomez, M.P.; Pumarega, M.I.L.; Nieva, N. Characterization of metal/ceramic interfaces in dental materials by acoustic emission. Procedia Mater. Sci. 2015, 8, 683–692. [Google Scholar]
- Ezaki, R.; Mine, A.; Sato, K.; Fukui, K.-i.; Kumada, K.; Yumitate, M.; Ban, S.; Yamanaka, A.; Matsumoto, M.; Van Meerbeek, B. Development of dental inspection method: Nondestructive evaluation of a dentin–adhesive interface by acoustic emission. J. Prosthodont. Res. 2021, 65, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Morscher, G.N.; Han, Z. Damage determination in ceramic composites subject to tensile fatigue using acoustic emission. Materials 2018, 11, 2477. [Google Scholar] [CrossRef]
- Lee, D.-W.; Kim, S.-Y.; Jeong, S.-N.; Lee, J.-H. Artificial intelligence in fractured dental implant detection and classification: Evaluation using dataset from two dental hospitals. Diagnostics 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Rajee, M.; Mythili, C. Dental image segmentation and classification using inception Resnetv2. IETE J. Res. 2023, 69, 4972–4988. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, N.; Wang, Y.; Shen, Y. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy. J. Sound Vib. 2015, 339, 419–432. [Google Scholar] [CrossRef]
- Teolis, A.; Benedetto, J.J. Computational Signal Processing with Wavelets; Springer: Berlin/Heidelberg, Germany, 1998; Volume 182. [Google Scholar]
- Solá-Ruíz, M.F.; Rico-Coderch, A.; Fons-Badal, C.; Verdejo-Solá, B.; Agustín-Panadero, R. Influence of the chemical composition of monolithic zirconia on its optical and mechanical properties. Systematic review and meta-regression. J. Prosthodont. Res. 2022, 66, 193–207. [Google Scholar] [CrossRef]
- ASTM E1106-12; Standard Test Method for Primary Calibration of Acoustic Emission Sensors, 2021. ASTM: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/e1106-12r21.html (accessed on 23 July 2024).
- Nielsen, A. Acoustic Emission Source Based on Pencil Lead Breaking; AAAI Press: Washington, DC, USA, 1980. [Google Scholar]
- Sause, M.G. Investigation of pencil-lead breaks as acoustic emission sources. J. Acoust. Emiss. 2011, 29, 184–196. [Google Scholar]
- ASTM Standard E976-84(88); Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. ASTM: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/e0976-15r21.html (accessed on 23 July 2024).
- Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville (z-lib.org).pdf. Available online: http://alvarestech.com/temp/deep/Deep%20Learning%20by%20Ian%20Goodfellow,%20Yoshua%20Bengio,%20Aaron%20Courville%20(z-lib.org).pdf (accessed on 23 July 2024).
- Kuhn, M. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. Int. J. Intell. Technol. Appl. Stat 2018, 11, 105–111. [Google Scholar]
- Neupane, D.; Kim, Y.; Seok, J. Bearing fault detection using scalogram and switchable normalization-based CNN (SN-CNN). IEEE Access 2021, 9, 88151–88166. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Vandermeulen, W.; Bosch, R.-W.; Snijkers, F. The effect of Vickers hardness indentations on the fracture mode in 8 mol% yttria-stabilised zirconia. J. Mater. Sci. 2015, 50, 2932–2943. [Google Scholar] [CrossRef]
- Meenakumari, C.; Bhat, K.M.; Bansal, R.; Singh, N. Evaluation of Mechanical Properties of Newer Nanoposterior Restorative Resin Composites: An: In vitro: Study. Contemp. Clin. Dent. 2018, 9, S142–S146. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kinjo, T.; Hayashi, Y.; Takemoto, M.; Ono, K.; Hayashi, Y. Wavelet transform of acoustic emission signals. J. Acoust. Emiss. 1996, 14, 69–84. [Google Scholar]
- Lee, C.; Zhang, L.; Morris, D.; Cheng, K.Y.; Ramachandran, R.A.; Barba, M.; Bijukumar, D.; Ozevin, D.; Mathew, M.T. Non-invasive early detection of failure modes in total hip replacements (THR) via acoustic emission (AE). J. Mech. Behav. Biomed. Mater. 2021, 118, 104484. [Google Scholar] [CrossRef]
- Wang, J.; He, X.; Faming, S.; Lu, G.; Cong, H.; Jiang, Q. A real-time bridge crack detection method based on an improved inception-resnet-v2 structure. IEEE Access 2021, 9, 93209–93223. [Google Scholar] [CrossRef]
Sensor S/N | 1st PLB | 2nd PLB | 3rd PLB | 4th PLB | 5th PLB | Average |
---|---|---|---|---|---|---|
B670 | 17.16 | 17.61 | 16.74 | 17.00 | 16.44 | 16.99 |
Parameter | Value |
---|---|
Level of Decomposition | 8 |
The Symmetric Wavelet | sym4 |
Denoising Method | Bayesian |
Threshold Rule | Median |
Noise Estimate | Level Independent |
Parameter | Value |
---|---|
Train/Test | 80/20 |
Optimizer | Adam |
Epoch | 2000 |
Mini batch | 32 |
Iteration per epoch | 54 |
Initial Learning Rate | 0.0001 |
Initial size | 299 × 299 × 3 |
Classes | Recall | Precision | F1 Score | AUC |
---|---|---|---|---|
Incisal | 0.97 | 1 | 0.98477 | 0.9989 |
Palatal | 1 | 0.9901 | 0.99502 | 1 |
Labial | 1 | 0.9901 | 0.99502 | 0.9997 |
Right | 1 | 0.9901 | 0.99502 | 1 |
Left | 1 | 1 | 1 | 1 |
Classes | Predicted True Crack | Predicted False Crack |
---|---|---|
Incisal | 9 | 0 |
Labial | 15 | 0 |
Right | 0 | 1 |
Palatal | 0 | 0 |
Left | 0 | 0 |
Classes | Recall | Precision | F1 Score |
---|---|---|---|
Inciso-labial | 0.96 | 1 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuntiwong, K.; Tungjitkusolmun, S.; Phasukkit, P. Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques. Sensors 2024, 24, 5682. https://doi.org/10.3390/s24175682
Tuntiwong K, Tungjitkusolmun S, Phasukkit P. Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques. Sensors. 2024; 24(17):5682. https://doi.org/10.3390/s24175682
Chicago/Turabian StyleTuntiwong, Kuson, Supan Tungjitkusolmun, and Pattarapong Phasukkit. 2024. "Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques" Sensors 24, no. 17: 5682. https://doi.org/10.3390/s24175682
APA StyleTuntiwong, K., Tungjitkusolmun, S., & Phasukkit, P. (2024). Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques. Sensors, 24(17), 5682. https://doi.org/10.3390/s24175682