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Abstract: Monolithic zirconia (MZ) crowns are widely utilized in dental restorations, particularly
for substantial tooth structure loss. Inspection, tactile, and radiographic examinations can be time-
consuming and error-prone, which may delay diagnosis. Consequently, an objective, automatic, and
reliable process is required for identifying dental crown defects. This study aimed to explore the
potential of transforming acoustic emission (AE) signals to continuous wavelet transform (CWT),
combined with Conventional Neural Network (CNN) to assist in crack detection. A new CNN
image segmentation model, based on multi-class semantic segmentation using Inception-ResNet-v2,
was developed. Real-time detection of AE signals under loads, which induce cracking, provided
significant insights into crack formation in MZ crowns. Pencil lead breaking (PLB) was used to
simulate crack propagation. The CWT and CNN models were used to automate the crack classification
process. The Inception-ResNet-v2 architecture with transfer learning categorized the cracks in MZ
crowns into five groups: labial, palatal, incisal, left, and right. After 2000 epochs, with a learning rate
of 0.0001, the model achieved an accuracy of 99.4667%, demonstrating that deep learning significantly
improved the localization of cracks in MZ crowns. This development can potentially aid dentists in
clinical decision-making by facilitating the early detection and prevention of crack failures.

Keywords: monolithic zirconia dental crown; crack; convolutional neural network (CNN); deep
learning; inception-resnet-v2; acoustic emission (AE); pencil lead breaking (PLB); continuous wavelet
transform (CWT)

1. Introduction

Monolithic zirconia (MZ) crowns have become widely popular as the material of
choice for dental crowns, especially for restoring severely damaged teeth [1–3]. High-
quality aesthetics, biocompatibility, and mechanical strength are recognized attributes of
MZ crowns. As a result, MZ has been gradually replacing conventional ceramic systems as
the favored restorative material. A critical factor in the processing of MZ is the develop-
ment of computer-aided design and computer-aided manufacturing (CAD/CAM). Dental
crowns for root canal-treated teeth and implant prostheses, as well as dental bridges, can
all be fabricated using CAD/CAM technology, which has gained widespread use. As such,
to reduce the chance of failure, it is essential to identify and localize cracks in these crowns
as soon as possible. Furthermore, mechanical loading and structural problems can lead
to crown failures. MZ crowns are fabricated using a multi-step, intricate process that can
result in a variety of surface flaws [4,5], particularly when subjected to extreme stresses
such as those brought on by bruxism [6–8]. Currently, several nondestructive methods are
available for detecting flaws, including direct visualization [9], fiber-optic transillumination,
combined tactile examination [9], radiographic examination, computer tomography [10,11],
and acoustic emission (AE) testing [12]. In clinical evaluations, dental crown removal is
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not feasible, whereas destructive testing methods, such as Vickers indentation and frac-
tography, are limited to laboratory settings [13,14]. The subtle nature of cracks in dental
crowns render such defects challenging to detect, leading to difficulties in diagnosis by
clinicians. Misdiagnosis can result from visual fatigue or judgment errors. Flaws may be
missed if the X-ray beam does not align with the defect, as seen with cone-beam computed
tomography (CBCT), which is prone to streaking artifacts from radiopaque materials [11].
With voxel sizes of 75–400 µm, CBCT often fails to detect finer microcracks [15]. Noise
and interference are nearly unavoidable, and limited resolution may obscure microcracks,
especially in early detection. Micro-computed tomography (micro-CT) often suffers from
artifacts that degrade image quality, and its high resolution requires radiation doses in
SkyScan 1272 workflow of up to 141.4 kVp, far exceeding the clinical CBCT 60–90 kVp [16].
To combat such disadvantages, AE analysis emerges as a potential alternative method. AE
testing is a widely used passive nondestructive testing (NDT) method that evaluates stress
waves generated by cracking within a material [17]. It detects the spontaneous release of
strain energy from microscopic or macroscopic changes, converting it into an electrical
signal for further analysis [18]. These emissions can be released from localized stress con-
centrations, sudden material changes, crack propagation, or other dynamic processes. As a
nondestructive technique, AE testing measures and examines the elastic energy released
during crack formation. AE testing is frequently employed in structural health monitoring
(SHM) to assess the integrity of storage tanks [19,20], railways [21], aircraft parts [22–25],
welding processes [26], medical devices such orthopedic joint prostheses [27,28], and dental
materials [29–33].

SHM therefore offers a more dependable and affordable method for the maintenance
of dental restorations, as it enables early detection and prevention of cracks that may impact
the structural integrity of dental crowns. Accurate fracture localization and analysis are
crucial for improving the routine practical inspections of dental restorations. Noninvasive
techniques in AE technologies, known as modalities, are preferred due to their nondestruc-
tive nature. AE is particularly effective at isolating individual components [19,34]. The abil-
ity of AE testing to monitor real-time debonding kinetics at the tooth-composite/prosthesis
interface offers valuable insights into the effects of interfacial debonding [35–39]. AE
testing can help identify damage progression during fatigue tests by analyzing location,
energy, frequency, and waveform direction [40]. Therefore, we propose that AE testing
can prove to be a superior technology for dental material analysis. High-resolution spatial
signals with denoised information can be used to develop automated diagnostic tools for
dental practitioners to identify and analyze cracks with higher efficiency and accuracy.
Early diagnosis and classification of faults in restorations are essential to improve treat-
ment outcomes and increase the survival rate of dental restorations. At the same time,
artificial intelligence-based methods can provide quick decision-making without human
intervention, and deep learning (DL) holds great potential for the evaluation of zirconia
combined with nondestructive testing–acoustic emission (NDT-AE) [18]. Crack recognition
in dentistry can be challenging and tends to rely heavily on automated diagnostic systems.
This study focuses on identifying cracks on crown surfaces during clinical examination,
with the aim of developing sophisticated techniques for the classification of cracks. A study
by Lee, D.W. et al. showed that the automated CNN architecture using radiographic image
analysis techniques had both limitations and future potential. All three DL algorithms
achieved an AUC of over 0.90 in detecting fractured dental implants, with the automated
Deep Convolutional Neural Network using periapical images outperforming both the
modified VGGNet-19 and GoogLeNet Inception-v3 [41]. The advancement of technology
has led to the development of acoustic emission (AE) detection for restorations, which can
identify the position of cracks. Automated or computerized methods are expected to reduce
manual diagnostic errors and provide precise data for accurate diagnosis and treatment
planning. Current crack detection methods transform AE signals to continuous wavelet
transform (CWT) for more accurate result interpretation. AE-NDT employing CWT images
allows for multi-class classification to precisely identify crack locations, particularly those
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close to adjacent teeth in the oral cavity. This study investigated crack detection at five
vulnerable areas of the crown: incisal (cutting edge), left, right, labial (anterior), and palatal
(posterior) surfaces.

This study utilized the Enhanced Inception-ResNet-v2 model, combining the advan-
tages of the Inception and ResNet models. This model employs multi-scale depth-wise
separable convolution for efficient and fast feature extraction, and includes a feature extrac-
tor to preserve important formation, accelerating convergence and filtering out less relevant
data. The model eliminates redundant parameters to maintain controllable complexity
and reduce computational load. Compared to existing algorithms, Inception-ResNet-v2
demonstrates superior accuracy and stability [42]. For image classification tasks, the
Inception-ResNet-v2 model that is suggested has been shown to be quite effective. The
model handles multiple scales of information from various input images, aiding in diagnos-
ing diseases. By leveraging the combined strengths of Inception and ResNet architectures,
the model enhances training scope, robustness, and depth, achieving superior efficiency
and stability. The Inception-ResNet-v2 model demonstrates higher classification accuracy
than other existing methods, making it an effective tool in machine learning for image
classification problems [43]. This research aimed to enhance crack detection and localiza-
tion in MZ crowns utilizing CWT to generate 2D images from AE signals. These images
were analyzed using CNNs to analyze the AE-CWT patterns, specifically the Inception-
ResNet-v2 architecture. CWT preprocessing was applied to raw AE signals. Images were
processed with AE technology produced by pencil lead breaking (PLB) to classify crack
sites in MZ crowns into one of the five specified categories. CNNs automatically extracted
features through various convolutional layers, addressing the challenges of crack classifi-
cation without manual split regions and feature extraction. Consequently, the extracted
features were expected to yield robust results for subsequent classification. Utilizing the
Inception-ResNet-v2 architecture, the AE-CWT patterns were analyzed to localize and
classify cracks into one of five specified categories. This research aimed to contribute to
the dental field by providing a classification system for cracks in zirconia crowns, thereby
facilitating their identification and management in clinical practice.

This research is organized as follows: the introduction and review of several earlier
studies that used the AE and DL models for the classification of dental material detection
are included in Section 1. The data and methodology utilized in this work are described
in Section 2, with a particular emphasis on the deep learning architecture. The Inception-
ResNet-v2 analysis results are shown in Section 3, accompanied by an assessment of
the effectiveness of the crack classification system. Section 4 presents the discussion. The
conclusion of this study and recommendations for future research are provided in Section 5.

2. The Proposed AE-Based Damage Localization Method

This experiment aimed to classify and localize crack defects in MZ dental crowns
using the AE-CWT transform. The proposed methodology investigated the application of
CWT methods to extract key AE components, combined with the crack feature classification
capabilities of a DL algorithm. AE signals indicative of cracks were initially identified, and
their scalograms were generated using the CWT method. The CWT of a given signal x(t) is
defined by Equation (1) [44,45].

CWTψ
x (a, b) = Ψ

ψ
x (a, b) =

1√
| a |

∫ ∞

−∞
x(t)ψ∗(

t − b
a

)dt (1)

where x(t) is the input signal at time (t), and ψ(t) is the analyzing wavelet, a small, localized
waveform. The scale parameter a adjusts the width of the wavelet function, while the
translation parameter b shifts the wavelet function along the time axis. Both a, b ϵ R and
the term * denote the complex conjugate of the wavelet function.
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2.1. Architecture of the Network

The Inception-ResNet-v2 architecture [42] was employed for MZ crack classification.
This CNN, a variation of Inceptionv3, is 164 layers deep and combines the Inception
architecture with residual connections. The architecture of the network, depicted in Figure 1,
comprised three parts: the Stem (Figure 2a), where the original input was preprocessed
using deep convolutional layers in this portion before entering the Inception-ResNet blocks.
It included nine convolutional layers and two max-pooling layers. The second section
consisted of Inception-ResNet blocks, detailed in Figure 2, and comprised the following
blocks: (1) Inception-ResNet-A (Figure 2b), which featured an inception module with
two 3 × 3 kernels; (2) Inception-ResNet-B (Figure 2c), which incorporated an asymmetric
filter combination using one 1 × 7 filter and one 7 × 1 filter; (3) Inception-ResNet-C
(Figure 2d), which featured a filter combination of one 1 × 3 filter and one 3 × 1 filter,
which were small and asymmetric, with the 1 × 1 convolutions preceding the larger filters.
Reduction modules A and B (Figure 2e,f) enhanced dimensionality to compensate for the
reduction that the Inception blocks initially created. By using asymmetric convolution
splitting, the architecture of the network increased the variety of filter patterns available.
The pooling and softmax layers was included in the prediction layer, which was the
final section. The feature maps of the Stem, Inception-ResNet-A, B, and C modules were
combined by the multi-scale context information fusion module to facilitate the detection of
small cracks. The network design effectively incorporated residual connections to address
deep architecture challenges, and the inclusion of diverse filter patterns enhanced its
representation capabilities.
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2.2. Methodology Proposal

The proposed methodology evaluated the effectiveness of CWT methods for extracting
key AE components and the capability of a DL algorithm for classifying crack features. The
identified AE signals indicative of cracks were transformed into scalograms using the CWT
method. A 2D-CNN model for automated damage detection and localization subsequently
processed these scalograms. Specification: the scalograms served as input for the 2D-CNN,
which employed an Inception-ResNet-v2 architecture to classify and localize cracks. The
overview methodology is visually outlined in the flowchart depicted in Figure 3. In this
study, the architecture referred to as Inception-ResNet-v2 combined elements from the
Inception block and the ResNet structure [42]. This combined architecture was utilized to
classify the CWT images derived from AE data.

2.3. Setup of the AE Data Acquisition System
Experimental Procedure

The experiment was conducted as part of clinical material research aimed at detecting
and analyzing the location of cracks in MZ dental crowns. A comprehensive crack detection
test was arranged to perform AE measurements. The experimental setup was designed to
test surface cracks in MZ crowns composed of five sides and clinically designed for dental
applications. The elemental composition of the MZ crown included the main component
(ZrO2), with proportions of 0.05–1% aluminum. In addition, 3–12% yttria was used as an
alternative stabilizer [46].
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Figure 3. CNN application and methodology: Inception-ResNet-v2 architecture for classifying AE
signals in MZ crown crack detection.

2.4. Sensor Placement and Hardware Selection

AE data acquisition utilized a PicoScope 4262 (Picotech, St Neots, UK), a 16-bit oscillo-
scope equipped with dual channels for digital AE measurement, as shown in Figure 4A. The
AE events were recorded using an AE equipment, model AE B670 (QingCheng, AE Institute
Co., Ltd., Guangzhou, China), as shown in Figure 4B. This resonant AE sensor features
an integrated preamplifier. The design eliminated the need for an additional preamplifier,
simplifying the wiring process. The GI150 sensor is particularly suitable for detecting
flaws and cracks in metallic machinery and monitoring the structural integrity of pipelines,
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pressure vessels, bridges, and other structures of a similar nature. Furthermore, the GI150
can be used with the AE detectors of other manufactures. Before experimentation, the
sensors were calibrated according to ASTM E1106 standards [47] to ensure signal reliability.
AE sensors, provided by QingCheng, AE Institute Co., Ltd., Guangzhou, China, which are
capable of detecting frequencies from 60 kHz to 400 kHz and operating in temperatures
ranging from −20 ◦C to 50 ◦C, were employed. The PicoScope 4262 Data Acquisition
Analog to Digital Converter (ADC), Picotech, St Neots, UK, with a bandwidth of 500 kHz,
was configured with a sampling rate of 1 MS/s. This ADC converted high-frequency waves
in the MZ crown into digital signal data. The data were then stored in a CSV file format
and subsequently transferred to a computer for analysis. A coupling agent facilitated
close sensor contact with the material via a waveguide to ensure effective signal capture.
Calibration involved conducting conventional PLB tests on the MZ dental crown surface to
introduce fracture energy, a method known for generating reproducible AE signals.
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(D) MZ dental crown, and (E) personal computer.

2.5. Acquisition of Acoustic Emission Data

The pencil lead fracture energy was introduced to the MZ crown. The tests utilized the
same AE sensor (GI 150 AE, B670) by carefully breaking a 0.5 mm pencil lead against the
surface of the dental crown at five different areas (the PLB test). The PLB test, also known
as the Hsu–Nielsen pencil lead break [48], is a well-established technique to generate
reproducible AE signals [49]. The PLB test was conducted on the MZ crown specimen
using this consistent source (a Hsu–Nielsen pencil lead break similar to ASTM E976-84) [50]
and the same data handling procedures. Measurements were taken at 500 points across
five areas, totaling 2500 known positions (Hsu–Nielsen sources). In each position, the
pencil lead was intentionally broken at least five times to capture adequate AE signals for
calibration analysis, mainly focusing on the incisal area, as detailed in Table 1 and Figure 5.
Across all classes, the peak amplitude values consistently ranged between 16 and 26 dB,
with average amplitude values approximately centered around 20 dB. The methodology
included the preprocessing and application of an Inception-ResNet-v2 CNN model.
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Table 1. Peak and average amplitudes for the incisal class.

Sensor S/N 1st PLB 2nd PLB 3rd PLB 4th PLB 5th PLB Average

B670 17.16 17.61 16.74 17.00 16.44 16.99
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2.6. Acoustic Emission Data Preprocessing

Subsequently, the oscilloscope, Picoscope 4262, Picotech, St Neots, UK provided the
amplified signal data. These data were subjected to signal processing, which included
denoising using a Bayesian filter. AE data preprocessing involved denoising with a Bayesian
filter, with details of the denoising parameters provided in Table 2. Subsequently, the
denoised signals from crack sites were transformed into 229 × 229 × 3 CWT images
and fed into the Inception-ResNet-v2 architecture for further analysis. Each faulty class
exhibited a distinct frequency pattern. A single dataset consisting of 262,143 data points
was transformed into a scalogram image. Figure 6A displays plots of raw acoustic data
collected from an AE-PBL setup for five faults. Figure 6B shows AE data involving Bayesian
denoising; the other figure represents the CWT-scalogram image.

Table 2. Bayesian denoise parameter setting.

Parameter Value

Level of Decomposition 8
The Symmetric Wavelet sym4

Denoising Method Bayesian
Threshold Rule Median
Noise Estimate Level Independent

Our crack detection experiments were implemented using Python 3.12.5, USA on a
Windows 10 64-bit operating system. The hardware included an Intel Core i9 processor
(Santa Clara, CA, USA) with 10 cores and 20 threads, 128 GB of memory, an Nvidia GeForce
Titan x1, and a Nvidia Tesla K80 and 1 GPU (Santa Clara, CA, USA). Scalogram-based
images were obtained using Python in this work, and MATLAB R2023b, MathWorks, USA
was employed for CNN training and classification. The dataset was randomly partitioned
into 80% training and 20% test datasets for model development and accuracy evalua-
tion [21,51–53]. Transfer learning was applied using a pre-trained Inception-ResNet-v2
model, with the best weights initialized. The training utilized the Adam optimizer with
default parameters, modifying the top layers for a new softmax classification and output
layer tailored to practical categories. In this study, each category contained 500 images
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with equal resolution, totaling 2500 images across five surface crack classes. The dataset
was split into 80% for training (2000 images) and 20% for testing (500 images). Specifically,
400 images were used for training each surface crack category and 100 for testing. The
training model (80% of datasets) was conducted over 2000 epochs using MATLAB R2023b,
MathWorks, USA with an initial learning rate of 0.0001 and a minibatch size of 32. The CNN
parameters were optimized by comparing training accuracy across iterations to achieve the
most robust and accurate model.
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2.7. Acoustic Emission Signal to Scalogram Processing

This tool is invaluable for analyzing signals featuring diverse scale phenomena, from
gradual changes to sudden events. Scalograms in localizing high-frequency, short-duration
events and low-frequency, long-duration events offer superior time and frequency resolu-
tion compared to spectrograms [54]. The CWT technique, integral to generating scalograms,
enhances signal analysis by providing a detailed time-frequency domain, which is es-
sential for fault diagnosis and DL-based fault classification models such as CNNs. A
time-frequency representation of the signal, depicting energy density obtained through the
CWT, is referred to as a scalogram. Scalograms are used to visualize signal components at
different scales, from large to tiny fragments. The MATLAB wavelet toolbox, MathWorks,
USA representation for various surface cracks was generated and is shown in Figure 7a–e.
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2.8. A Prediction Model for the Crack Localization in the MZ Dental Crown

This study customized the Inception-ResNet-v2 model by modifying its fully con-
nected layer. Initially designed for classifying 1000 classes with a fully connected layer
of 1000 nodes, the proposed model added a layer comprising 5 nodes to categorize five
specific classes (incisal, palatal, labial, right, and left). The architecture remained otherwise
unchanged. The output layer employed a softmax activation function to assign proba-
bilities to each class and determine the highest probability as the prediction. The deep
learning framework, Inception-ResNet-v2, optimized for CNNs, processed input images
sized 299 × 299 × 3 pixels from the CWT dataset. A global average pooling layer was
utilized instead of a conventional fully connected layer, with a customized parameter
setting, as specified in Table 3. The output layer of the network classified the fault statuses
of MZ dental crowns into five distinct categories: incisal fault, palatal fault, labial fault,
right fault, and left fault.

Table 3. Parameters setting for the trained Inception-ResNet-v2 model.

Parameter Value

Train/Test 80/20
Optimizer Adam

Epoch 2000
Mini batch 32

Iteration per epoch 54
Initial Learning Rate 0.0001

Initial size 299 × 299 × 3
In the training and testing processes, L1-norm regularization was utilized to avoid overfitting due to excessive
data points and divergence between the cross-entropy loss of training and testing datasets.

2.9. Performance Assessment Index

Four evaluation indices were used to fully evaluate the performance of the network
in this experiment: accuracy, recall, precision, and F1 score. All states were identified
from the crack test results: True Positive (TP), which represents the number of crack-
true side samples correctly identified as crack-true; True Negative (TN), which represents
the number of non-crack-true side samples correctly identified as non-crack-trued; False
Positive (FP), which represents the number of non-crack-true side samples incorrectly
identified as crack-true; False Negative (FN), which represents the number of crack-true
side samples incorrectly identified as non-crack-true. The dataset was randomly divided
into 80% for training and 20% for testing. Classification performance was evaluated
using the following metrics: recall (sensitivity), which represents the number of correct
optimistic predictions divided by the total number of positives; precision, which represents
the proportion of true positives among all positive predictions; overall accuracy, which
represents the number of correctly classified samples, divided by the total number of test
samples; F1 score, which represents the harmonic mean of precision and recall, providing
a balanced measure of accuracy [55]. The confusion matrix and F1 score were employed
to evaluate the classification performance of the proposed scheme. The confusion matrix,
a fundamental tool in classification, provided the basis for calculating metrics such as
precision and recall. Recall was mathematically expressed by Equation (2), while precision
was calculated using Equation (3). The F1 score, which measures classification accuracy by
incorporating both precision and recall, was determined using the formula in Equation (4).

Recall =
TP

FN + TP
(2)

Precision =
TP

TP + FP
(3)
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where TP represents true positives, FP represents false positives, and FN represents
false negatives.

F1 − score = 2 ∗ ( Precision ∗ Recall
Precision + Recall

) (4)

2.10. On-Site Configuration for Experimental Studies
Flaw Generation in a Specimen

The crack system induced by Vickers harness indentations was examined by breaking
specimens along a diagonal indentation [56]. To generate flaws, a MZ dental crown was
kept dry and subjected to a digital microhardness test using a Shimadzu (MHT, HMV-2T,
Kyoto, Japan). A diamond indenter with a load of 19.614 N and a holding time of 20 s was
applied to the labial surface of the specimen and induced crack lines from the indent tips.
Figure 8 displays the effect of the Vickers hardness test.
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Figure 8. Surface before and after indentation: pre-indentation (a) and post-indentation crack
formation (b).

The AE sensor installation on the dental occlusion model, simulating field conditions
for crack detection, is depicted in Figure 9a. The onsite experiment of the AE scheme with
the pre-flawed dental crown under load is shown in Figure 9b. The data collecting module
transformed the AE signals—caused by incisal contact and recorded by the AE sensor—into
digital data. After pre-processing these digital data to eliminate noise, a DL algorithm,
Inception-ResNet-v2, was used to identify flaws in the MZ dental crown.
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3. Results

The performance of the deep CNN architectures for the five-class training was evalu-
ated through supervised classification experiments on the proposed dataset. All models
were trained on the training dataset, and performance was measured on the test set at
2000 epochs. Therefore, all performance metrics were referred to in the unseen test for a
fair comparison. The performance metrics computed included classification total accuracy,
recall, precision, F1-score, and AUC. The baseline experiment, shown in Figures 10 and 11,
involved the Inception-ResNet-v2 model with a target training dataset of crack regions’
images. In this experiment, 80% of the dataset was used for training and 20% for testing,
with 2000 epochs, 313 min, and 27 s used for training.
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Since precision, recall, and the F1-score depend on the positive class, their reported
values are the results among the five classes (“true surface cracked” and “false surface
cracked”). The results for the five training classes using all models are presented in
Table 4, with the confusion matrix for the test set provided in Figure 10. The classifica-
tion performance reaches 100% in all metrics using the Inception-ResNet-v2 models with
data augmentation.

Table 4. The detection metrics obtained from evaluating image classification and crack surface
detection architectures on the test set of the AE-CWT dataset.

Classes Recall Precision F1 Score AUC

Incisal 0.97 1 0.98477 0.9989
Palatal 1 0.9901 0.99502 1
Labial 1 0.9901 0.99502 0.9997
Right 1 0.9901 0.99502 1
Left 1 1 1 1

The confusion matrix in Figure 10 also shows the test performance of the Inception-
Resnet-v2 network using AE-time series transformed into scalograms, with an overall test
accuracy of 99.4%. Table 4 details precision calculations: incisal and left (100%), palatal,
labial, and right (99.01%). The recall values were as follows: incisal (97%), palatal, labial,
right, and left (100%). F1 score: incisal (98.477%), palatal, labial and right (99.502%), and
left (100%). These high values—above 97%—indicate excellent classification results for the
five AE-CWT data types used in the PLB-simulated cracking of MZ dental crowns.

The ROC AUC values were determined based on the complete set of predicted results
shown in Figure 11. The ground truth test values and predicted probabilities on the test
data were input into the function to calculate ROC AUC. The AUC provides an aggregate
measure of performance across all possible classification thresholds.

On-Site Dental Biting Using the Deep CNN Architecture

With a nondestructive single-sensor AE technique, coupled with a waveguide, Figure 12
shows the scalogram of the AE signals identified in the fault of the MZ dental crown under
load conditions. The waveguide and AE sensor were used to locate cracks in the MZ
crown. Prior to implementing the proposed AE sensor scheme under a load, the waveguide
and AE sensor were first employed to localize cracks in the MZ crown, with these crack
locations serving as references (i.e., actual results).

Following the AE parameter setting station, the waveguide is positioned on the MZ
dental crown’s labial (anterior) surface to localize cracks (Figure 9). The suggested AE
sensor technique is implemented under a load while preserving the identical dimensions
and form that the setting station has previously examined. For every AE signal (from the
MZ crown under load), the suggested DL approach locates the flaws in the dental crown
by using the DL-generated probability value with the highest value. The crack localization
results from the proposed DL-based AE sensor scheme are compared against the reference
(actual results from flaw generation), described in Table 5.

Table 5. Confusion matrix of Inception-ResNet-V2 for the real cracked simultaneous test.

Classes Predicted True Crack Predicted False Crack

Incisal 9 0
Labial 15 0
Right 0 1

Palatal 0 0
Left 0 0



Sensors 2024, 24, 5682 15 of 19

Sensors 2024, 24, x FOR PEER REVIEW 15 of 20 
 

 

waveguide and AE sensor were first employed to localize cracks in the MZ crown, with 

these crack locations serving as references (i.e., actual results). 

Following the AE parameter setting station, the waveguide is positioned on the MZ 

dental crown’s labial (anterior) surface to localize cracks (Figure 9). The suggested AE 

sensor technique is implemented under a load while preserving the identical dimensions 

and form that the setting station has previously examined. For every AE signal (from the 

MZ crown under load), the suggested DL approach locates the flaws in the dental crown 

by using the DL-generated probability value with the highest value. The crack localization 

results from the proposed DL-based AE sensor scheme are compared against the reference 

(actual results from flaw generation), described in Table 5. 

Table 5. Confusion matrix of Inception-ResNet-V2 for the real cracked simultaneous test. 

Classes Predicted True Crack Predicted False Crack 

Incisal 9 0 

Labial 15 0 

Right 0 1 

Palatal 0 0 

Left 0 0 

 

Figure 12. Evaluation of twenty-five scalograms using the Inception-ResNet-V2 architecture on an 

onsite dental model. 

Figure 12. Evaluation of twenty-five scalograms using the Inception-ResNet-V2 architecture on an
onsite dental model.

In this research, the F1 score (classification accuracy) of the proposed AE sensor
scheme for onsite localization of cracks in the labio-incisal area is 98%, compared to the
fundamental flaw generation depicted in Table 6.

Table 6. Analyzing image classification and crack surface detection on a test set of twenty data
samples yielded the following detection metrics.

Classes Recall Precision F1 Score

Inciso-labial 0.96 1 0.98

4. Discussion

This research specifically evaluated the Inception-ResNet-v2 architecture to analyze
AE-CWT patterns, with the aim of enhancing crack detection and localization in MZ
dental crowns. This study utilized CWT to generate 2D images from AE signals and
found that the model performed well with minimal training data, provided that the data
collection was well controlled. The results indicate that the model achieved low amplitude
on simultaneous clinical model datasets, possibly due to inter-material bite contact. The
incisal edge of the opposing tooth was restored with nanofilled composite (Filtek Z350,
3M ESPE), following findings by Kim R.J.Y. et al., who reported the highest AE events
in Z350 [57]. The AE signals from biting were generated. Leveraging 2D contour maps
and 3D coefficient projections, CWT of AE signals proved useful in identifying AE signal
characteristics [58,59]. DL models, such as Inception-ResNet-V2, converged quickly and
obtained excellent test results in fewer epochs, with network complexity being a significant
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factor in model accuracy [60]. The ability of the algorithm to detect and localize cracks
with minimal input data and computation made it ideal for demonstrating the value of DL
models in routine inspections, allowing for the automatic diagnosis of cracks in MZ dental
crown structures. In the creation of flaws, limitations on physical clinical crowns with
curvature necessitated the selection of a flat location. In this case, the labial area close to
the edge of the tooth was selected. Accurate fractures in the labial and incisal of the crown
portions were accurately detected by MicroCT (Skyscan 1272 Bruker—source: 100 kV to
100 µA, image pixel size = 11.999896 µm) using a camera pixel size of 8.96 µm. The 3D
reconstruction of the MZ crown was performed with NRecon v2.2.0.6 software (Bruker,
Billerica, MA, USA) after DL algorithm analysis, as shown in Figure 13.
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The evaluation metrics, such as accuracy, precision, recall, and F1 score, were employed
to assess the performance of the model. In the dental model testing, the Inception-ResNet-v2
model achieved 99.4% accuracy and an F1 score exceeding 98%, with minimal false positives
and a perfect precision score of 1, highlighting its effectiveness in accurately predicting
crack surfaces. The model demonstrated exceptional accuracy during the training and
testing phases, with its derived features ensuring top performance. Our approach not only
improved the precision of the model in crack detection and classification but also addressed
the limitations identified in previous studies on dental material analysis. However, the
algorithm could not analyze specific crack features such as breadth, length, and orientation.
Recognizing the current data limitations, we would like to suggest that future research
should focus on diversifying data collection techniques, increasing experimental data,
comparing results to demonstrate the reproducibility and reliability of the PLB method
in our specific application, comparing with other network model methods, implementing
robust cross-validation methods, and exploring real-time clinical applications. These
enhancements would be critical for increasing the versatility of the model across various
clinical contexts and potentially surpassing the performance benchmarks established by
previous research. The potential of the system extends beyond its current application, with
prospects for development into a real-time defect detection system for various surfaces
of zirconia dental crowns and eventual integration into IoT-enabled dental devices. The
capability for early detection and autonomous identification of crack orientation is crucial
for predicting failure causes such as those due to flexural or shear stress, underscoring
the importance of early diagnosis and treatment in preventing crack propagation, both
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of which will ultimately lead to improved patient outcomes. Future research should also
explore the incorporation of uncertainty estimation and incremental learning systems,
which could further refine our approach and enhance the applicability of the model in
diverse clinical settings.

5. Conclusions

This study introduced a novel approach for crack detection and localization in zirco-
nia dental crown structures, utilizing the Inception-ResNet-v2 CNN model. Our method
employed AE data, transformed through CWT, to create time-frequency images for deep
learning analysis. This innovative application of CWT in dental materials marked a signifi-
cant advancement, as it enabled the efficient integration of crack occurrence data into DL
models. The model demonstrated high accuracy in crack detection and localization through
careful hyperparameter optimization, which is a remarkable achievement, considering the
complexities of data collection and the challenges of generating high-quality datasets in
this field.

In conclusion, the findings of this study contribute to the existing knowledge in
dental material classification and diagnosis and set the stage for future innovations in the
field. By integrating AE-NDT testing with advanced DL techniques, we have developed
a powerful tool for the early detection and identification of cracks in dental materials.
The findings from this research have significant potential to influence clinical practice by
offering enhanced diagnostic capabilities and ultimately improving patient care.
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