Human-in-the-Loop Trajectory Optimization Based on sEMG Biofeedback for Lower-Limb Exoskeleton
Abstract
:1. Introduction
2. Hybrid Dynamics Modeling
3. Human-in-the-Loop Motion Planning
3.1. Offline Trajectory Optimization
3.2. HITL Trajectory Optimization
4. Simulation and Experiment
5. Result and Discussion
5.1. Result
5.1.1. Simulation Result
5.1.2. Experimental Result
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
LLE | lower-limb exoskeleton |
HMS | human–machine system |
HITL | human-in-the-loop |
CMA-ES | covariance matrix adaptation evolution strategy |
COM | center of mass |
sEMG | surface electromyography |
DOF | degree of freedom |
HZD | hybrid zero dynamics |
CAN | controller area network |
RMS | root mean square |
GRF | ground reaction forces |
PSO | particle swarm optimization |
Appendix A. Derivation of the Kinematic Model and the Dynamical Model
Nomenclature | Description |
---|---|
li | The length of the i-th link |
lci | The distance from the center of mass of the i-th link to its origin coordinate along |
mi | The mass of the i-th link |
Ii | The rotational inertia of the i-th link with respect to its center of mass |
References
- Sun, Y.; Tang, Y.; Zheng, J.; Dong, D.; Chen, X.; Bai, L. From Sensing to Control of Lower Limb Exoskeleton: A Systematic Review. Annu. Rev. Control 2022, 53, 83–96. [Google Scholar] [CrossRef]
- Díaz, M.A.; Voß, M.; Dillen, A.; Tassignon, B.; Flynn, L.; Geeroms, J.; Meeusen, R.; Verstraten, T.; Babič, J.; Beckerle, P.; et al. Human-in-the-Loop Optimization of Wearable Robotic Devices to Improve Human–Robot Interaction: A Systematic Review. IEEE Trans. Cybern. 2023, 53, 7483–7496. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, K.; Zhang, L.; Wu, X.; Zhang, T.; Li, Q.; Li, X.; Su, C.-Y. Human-in-the-Loop Control of a Wearable Lower Limb Exoskeleton for Stable Dynamic Walking. IEEEASME Trans. Mechatron. 2020, 26, 2700–2711. [Google Scholar] [CrossRef]
- Laffranchi, M.; D’Angella, S.; Vassallo, C.; Piezzo, C.; Canepa, M.; De Giuseppe, S.; Di Salvo, M.; Succi, A.; Cappa, S.; Cerruti, G.; et al. User-Centered Design and Development of the Modular TWIN Lower Limb Exoskeleton. Front. Neurorobotics 2021, 15, 709731. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.F.; McGreavy, C.; Christou, A.; Vijayakumar, S. Human-in-the-Loop Optimization of Exoskeleton Assistance via Online Simulation of Metabolic Cost. IEEE Trans. Robot. 2022, 38, 1410–1429. [Google Scholar] [CrossRef]
- Harib, O.; Hereid, A.; Agrawal, A.; Gurriet, T.; Finet, S.; Boeris, G.; Duburcq, A.; Mungai, M.E.; Masselin, M.; Ames, A.D.; et al. Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free Dynamic Walking. IEEE Control Syst. Mag. 2018, 38, 61–87. [Google Scholar] [CrossRef]
- Wei, Q.; Li, Z.; Zhao, K.; Kang, Y.; Su, C.-Y. Synergy-Based Control of Assistive Lower-Limb Exoskeletons by Skill Transfer. IEEEASME Trans. Mechatron. 2019, 25, 705–715. [Google Scholar]
- Baud, R.; Manzoori, A.R.; Ijspeert, A.; Bouri, M. Review of Control Strategies for Lower-Limb Exoskeletons to Assist Gait. J. NeuroEngineering Rehabil. 2021, 18, 119. [Google Scholar] [CrossRef]
- Li, W.-Z.; Cao, G.-Z.; Zhu, A.-B. Review on Control Strategies for Lower Limb Rehabilitation Exoskeletons. IEEE Access Pract. Innov. Open Solut. 2021, 9, 123040–123060. [Google Scholar] [CrossRef]
- Zhong, X.; Tian, J.; Hu, H.; Peng, X. Hybrid Path Planning Based on Safe A* Algorithm and Adaptive Window Approach for Mobile Robot in Large-Scale Dynamic Environment. J. Intell. Robot. Syst. 2020, 99, 65–77. [Google Scholar] [CrossRef]
- Monteiro, S.; Figueiredo, J.; Fonseca, P.; Vilas-Boas, J.P.; Santos, C.P. Human-in-the-Loop Optimization of Knee Exoskeleton Assistance for Minimizing User’s Metabolic and Muscular Effort. Sensors 2024, 24, 3305. [Google Scholar] [CrossRef] [PubMed]
- Meduri, A.; Shah, P.; Viereck, J.; Khadiv, M.; Havoutis, I.; Righetti, L. Biconmp: A Nonlinear Model Predictive Control Framework for Whole Body Motion Planning. IEEE Trans. Robot. 2023, 39, 905–922. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-Loop Optimization of Exoskeleton Assistance during Walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Nalam, V.; Tu, X.; Li, M.; Si, J.; Huang, H.H. Admittance Control Based Human-in-the-Loop Optimization for Hip Exoskeleton Reduces Human Exertion during Walking. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 6743–6749. [Google Scholar]
- Ingraham, K.A.; Ferris, D.P.; Remy, C.D. Evaluating Physiological Signal Salience for Estimating Metabolic Energy Cost from Wearable Sensors. J. Appl. Physiol. 2019, 126, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Collins, S.H. Optimizing Exoskeleton Assistance for Faster Self-Selected Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 786–795. [Google Scholar] [CrossRef]
- Zheng, S.; Lv, G. A Two-Layer Human-in-the-Loop Optimization Framework for Customizing Lower-Limb Exoskeleton Assistance. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA, USA, 31 May–2 June 2023. [Google Scholar]
- Lv, G.; Xing, H.; Lin, J.; Gregg, R.D.; Atkeson, C.G. A Task-Invariant Learning Framework of Lower-Limb Exoskeletons for Assisting Human Locomotion. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 569–576. [Google Scholar]
- Li, Z.; Li, Q.; Huang, P.; Xia, H.; Li, G. Human-in-the-Loop Adaptive Control of a Soft Exo-Suit with Actuator Dynamics and Ankle Impedance Adaptation. IEEE Trans. Cybern. 2023, 53, 7920–7932. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Chen, Y.; Yu, L.; Yan, Z.; Yang, C.; Zhou, C.; Yang, W. Reducing the Muscle Activity of Walking Using a Portable Hip Exoskeleton Based on Human-in-the-Loop Optimization. Front. Bioeng. Biotechnol. 2023, 11, 1006326. [Google Scholar] [CrossRef]
- Tucker, M.; Cheng, M.; Novoseller, E.; Cheng, R.; Yue, Y.; Burdick, J.W.; Ames, A.D. Human Preference-Based Learning for High-Dimensional Optimization of Exoskeleton Walking Gaits. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 3423–3430. [Google Scholar]
- Tucker, M.; Novoseller, E.; Kann, C.; Sui, Y.; Yue, Y.; Burdick, J.W.; Ames, A.D. Preference-Based Learning for Exoskeleton Gait Optimization. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2351–2357. [Google Scholar]
- Kim, J.; Lee, G.; Heimgartner, R.; Arumukhom Revi, D.; Karavas, N.; Nathanson, D.; Galiana, I.; Eckert-Erdheim, A.; Murphy, P.; Perry, D.; et al. Reducing the Metabolic Rate of Walking and Running with a Versatile, Portable Exosuit. Science 2019, 365, 668–672. [Google Scholar] [CrossRef]
- Lee, G.; Kim, J.; Panizzolo, F.; Zhou, Y.; Baker, L.; Galiana, I.; Malcolm, P.; Walsh, C. Reducing the Metabolic Cost of Running with a Tethered Soft Exosuit. Sci. Robot. 2017, 2, eaan6708. [Google Scholar] [CrossRef]
- Witte, K.A.; Fiers, P.; Sheets-Singer, A.L.; Collins, S.H. Improving the Energy Economy of Human Running with Powered and Unpowered Ankle Exoskeleton Assistance. Sci. Robot. 2020, 5, eaay9108. [Google Scholar] [CrossRef]
- Novoseller, E.R. Online Learning from Human Feedback with Applications to Exoskeleton Gait Optimization; California Institute of Technology: Pasadena, CA, USA, 2021. [Google Scholar]
- Han, H.; Wang, W.; Zhang, F.; Li, X.; Chen, J.; Han, J.; Zhang, J. Selection of Muscle-Activity-Based Cost Function in Human-in-the-Loop Optimization of Multi-Gait Ankle Exoskeleton Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Haufe, F.; Wolf, P.; Riener, R. Human-in-the-Loop Optimization of a Multi-Joint Wearable Robot for Movement Assistance. Proc. Autom. Med. Eng. 2020, 1, 23. [Google Scholar]
- Fang, J.; Yuan, Y. Human-in-the-Loop Optimization of Wearable Robots to Reduce the Human Metabolic Energy Cost in Physical Movements. Robot. Auton. Syst. 2020, 127, 103495. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, W.; Chen, J.; Li, L.; Diao, D. A Self-Adaptive-Coefficient-Double-Power Sliding Mode Control Method for Lower Limb Rehabilitation Exoskeleton Robot. Appl. Sci. 2021, 11, 10329. [Google Scholar] [CrossRef]
- Zou, C.; Huang, R.; Qiu, J.; Chen, Q.; Cheng, H. Slope Gradient Adaptive Gait Planning for Walking Assistance Lower Limb Exoskeletons. IEEE Trans. Autom. Sci. Eng. 2020, 18, 405–413. [Google Scholar] [CrossRef]
- Kamidi, V.R.; Pandala, A.; Fawcett, R.T.; Hamed, K.A. Exponentially Stabilizing and Time-Varying Virtual Constraint Controllers for Dynamic Quadrupedal Bounding. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 3914–3921. [Google Scholar]
- Westervelt, E.R.; Grizzle, J.W.; Koditschek, D.E. Hybrid Zero Dynamics of Planar Biped Walkers. IEEE Trans. Autom. Control 2003, 48, 42–56. [Google Scholar] [CrossRef]
- Hereid, A.; Hubicki, C.M.; Cousineau, E.A.; Ames, A.D. Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization. IEEE Trans. Robot. 2018, 34, 370–387. [Google Scholar] [CrossRef]
- Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Slivkins, A. Introduction to Multi-Armed Bandits. Found. Trends® Mach. Learn. 2019, 12, 1–286. [Google Scholar] [CrossRef]
- Díaz, M.A.; De Bock, S.; Beckerle, P.; Babič, J.; Verstraten, T.; De Pauw, K. An EMG-Based Objective Function for Human-in-the-Loop Optimization. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023; pp. 1–6. [Google Scholar]
- Wagner, J. Regularised Differentiation of Measurement Data in Systems for Healthcare-Oriented Monitoring of Elderly Persons. Ph.D. Dissertation, The Institute of Radioelectronics and Multimedia Technology, Warszawa, Poland, 2020. [Google Scholar]
- Liu, D.-X.; Wu, X.; Du, W.; Wang, C.; Xu, T. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors. Sensors 2016, 16, 1579. [Google Scholar] [CrossRef]
- Lippi, V.; Camardella, C.; Filippeschi, A.; Porcini, F. Identification of Gait Phases with Neural Networks for Smooth Transparent Control of a Lower Limb Exoskeleton. arXiv 2021, arXiv:2107.03746. [Google Scholar]
- Camardella, C.; Porcini, F.; Filippeschi, A.; Marcheschi, S.; Solazzi, M.; Frisoli, A. Gait Phases Blended Control for Enhancing Transparency on Lower-Limb Exoskeletons. IEEE Robot. Autom. Lett. 2021, 6, 5453–5460. [Google Scholar] [CrossRef]
- Lhoste, C.; Küçüktabak, E.B.; Vianello, L.; Amato, L.; Short, M.R.; Lynch, K.; Pons, J.L. Deep-Learning Estimation of Weight Distribution Using Joint Kinematics for Lower-Limb Exoskeleton Control. arXiv 2024, arXiv:2402.04180. [Google Scholar]
- Campbell, E.; Phinyomark, A.; Scheme, E. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity. Sensors 2020, 20, 1613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, G.; Ling, Z.; Li, W.; Cheng, H.; He, B.; Cao, S.; Zhu, A. A Multi-Information Fusion Method for Gait Phase Classification in Lower Limb Rehabilitation Exoskeleton. Front. Neurorobotics 2021, 15, 692539. [Google Scholar] [CrossRef]
- Xu, D.; Wu, Q.; Zhu, Y. Development of a sEMG-Based Joint Torque Estimation Strategy Using Hill-Type Muscle Model and Neural Network. J. Med. Biol. Eng. 2021, 41, 34–44. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Cao, G.-Z.; Li, L.-L.; Diao, D.-F. Interactive Control of Lower Limb Exoskeleton Robots: A Review. IEEE Sens. J. 2024, 24, 5759–5784. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Q.; Chen, B.; Zhao, Z. Design and Voluntary Control of Variable Stiffness Exoskeleton Based on sEMG Driven Model. IEEE Robot. Autom. Lett. 2022, 7, 5787–5794. [Google Scholar] [CrossRef]
- Chen, W.; Lyu, M.; Ding, X.; Wang, J.; Zhang, J. Electromyography-Controlled Lower Extremity Exoskeleton to Provide Wearers Flexibility in Walking. Biomed. Signal Process. Control 2023, 79, 104096. [Google Scholar] [CrossRef]
Parameter | Definition | Value |
---|---|---|
Maximum anteversion angle | ||
Maximum inclination angle | ||
Protection margin | ||
Ground clearance of swing foot | ||
Single-step duration | ||
Single-step length |
Left Hip Joint | Left Knee Joint | Right Hip Joint | Right Knee Joint | |
---|---|---|---|---|
Overall RMS | 0.9986° | 0.7138° | 0.3380° | 0.4964° |
RMS during stable walking | 0.2046° | 0.3195° | 0.2087° | 0.2716° |
Parameter | Gait 1 | Gait 2 | Gait 3 | Gait 4 |
---|---|---|---|---|
T | 1 s | 1 s | 1.2 s | 1.2 s |
D | 0.2 m | 0.3 m | 0.2 m | 0.3 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.-L.; Zhang, Y.-P.; Cao, G.-Z.; Li, W.-Z. Human-in-the-Loop Trajectory Optimization Based on sEMG Biofeedback for Lower-Limb Exoskeleton. Sensors 2024, 24, 5684. https://doi.org/10.3390/s24175684
Li L-L, Zhang Y-P, Cao G-Z, Li W-Z. Human-in-the-Loop Trajectory Optimization Based on sEMG Biofeedback for Lower-Limb Exoskeleton. Sensors. 2024; 24(17):5684. https://doi.org/10.3390/s24175684
Chicago/Turabian StyleLi, Ling-Long, Yue-Peng Zhang, Guang-Zhong Cao, and Wen-Zhou Li. 2024. "Human-in-the-Loop Trajectory Optimization Based on sEMG Biofeedback for Lower-Limb Exoskeleton" Sensors 24, no. 17: 5684. https://doi.org/10.3390/s24175684
APA StyleLi, L. -L., Zhang, Y. -P., Cao, G. -Z., & Li, W. -Z. (2024). Human-in-the-Loop Trajectory Optimization Based on sEMG Biofeedback for Lower-Limb Exoskeleton. Sensors, 24(17), 5684. https://doi.org/10.3390/s24175684