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Abstract: Lower-limb exoskeletons (LLEs) can provide rehabilitation training and walking assistance
for individuals with lower-limb dysfunction or those in need of functionality enhancement. Adapting
and personalizing the LLEs is crucial for them to form an intelligent human–machine system (HMS).
However, numerous LLEs lack thorough consideration of individual differences in motion planning,
leading to subpar human performance. Prioritizing human physiological response is a critical
objective of trajectory optimization for the HMS. This paper proposes a human-in-the-loop (HITL)
motion planning method that utilizes surface electromyography signals as biofeedback for the
HITL optimization. The proposed method combines offline trajectory optimization with HITL
trajectory selection. Based on the derived hybrid dynamical model of the HMS, the offline trajectory
is optimized using a direct collocation method, while HITL trajectory selection is based on Thompson
sampling. The direct collocation method optimizes various gait trajectories and constructs a gait
library according to the energy optimality law, taking into consideration dynamics and walking
constraints. Subsequently, an optimal gait trajectory is selected for the wearer using Thompson
sampling. The selected gait trajectory is then implemented on the LLE under a hybrid zero dynamics
control strategy. Through the HITL optimization and control experiments, the effectiveness and
superiority of the proposed method are verified.

Keywords: lower-limb exoskeleton; human-in-the-loop; motion planning; human–machine system

1. Introduction

Lower-limb exoskeletons (LLEs) are advanced wearable robotic systems that assist
lower-limb movements through integrated mechatronic systems and sensing and control
networks [1–4]. The LLEs can offer rehabilitation training and walking assistance for
individuals with lower-limb dysfunction or those in need of functionality enhancement in a
human–machine interaction manner, presenting a wide range of application prospect [5–7].
Motion planning plays a significant role in LLE control, as it directly impacts human
performance while wearing the exoskeleton. Consequently, motion planning has emerged
as a prominent yet challenging issue in robotics [8,9]. Among the various strategies
employed for motion planning, trajectory optimization is particularly noteworthy. It aims
to generate an optimal motion profile that can be precisely executed by the controller,
thereby ensuring smooth and efficient movement [10–12]. However, most LLEs have not
fully considered the dynamic and the complex motion characteristics of human users in
trajectory optimization [10], leading to subpar human performance [13].

Human-in-the-loop (HITL) optimization has emerged as a promising approach to
address this challenge. The concept of HITL was initially introduced by Collins et al. in
2017 [13]. The HITL optimization involves incorporating human feedback into a certain
decision-making process within the iteration of the optimization algorithm. This approach
functions as a “black box” within a human–machine system (HMS), enabling automatic
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and heuristic personalization of assistance machine tailored to the specific needs of the
user [14,15]. In [13], the HITL optimization was utilized in an ankle exoskeleton to identify
an assistance control strategy aimed at minimizing metabolic cost during walking, the
objective was to search for the optimal torque pattern within a single-gait cycle. The ankle
torque was defined with respect to four independent parameters, and the cost function of
metabolic cost was derived by respiratory data. Then, through the application of derivative-
free optimization using a covariance matrix adaptation evolution strategy (CMA-ES), the
optimal parameter values were iteratively determined. Building on this methodology,
Song et al. [16] employed a similar HITL approach to identify the optimal torque curve
that facilitated the ankle exoskeleton to assist with faster self-selected walking. Gordon
et al. [5] further advanced the field by utilizing musculoskeletal modeling to assess the
simulated metabolic rate in real time, thereby optimizing the assistive torques provided by
a hip exoskeleton. Zheng et al. [17] proposed a two-layer HITL optimization framework
to numerically solve the matching condition and customize LLE assistance for individual
users. This matching condition was used to drive an energy shaping law for the LLE,
ultimately delivering enhanced gait performance. Despite these advancements, Huang
et al. [14] raised concerns regarding the limitations in minimizing human energy costs
through the quantification of metabolic costs. They introduced a reinforcement learning-
based HITL optimization method, which optimized the switching time of gait stages via
policy iterations to provide optimal mechanical energy for the hip exoskeleton. Gregg
et al. [18] conducted an optimization search for a key parameter set of an optimal energy
forming control algorithm. This set included proportionality coefficients related to gravity
and inertia shaping, with the cost function being the square integral of the human joint
torque. Subsequently, the optimal parameter set was identified by exploiting CMA-ES
optimization in a simulated environment. Li et al. [19] extended the application of the
HITL optimization by proposing an adaptive control strategy, aimed at enhancing the
intuitiveness and usability of a soft exo-suit. The cost function was designed to minimize
the tracking position/velocity errors. They further proposed a barrier energy function with
respect to center of mass (COM) and zero moment point in HITL control [3].

The aforementioned studies primarily calculate the cost function for the HITL opti-
mization based on metabolic cost [20]. However, some researchers suggest that human
subjective judgment of preferences can also be integrated into the HITL optimization [21,22].
Tucker et al. [22] conceptualized the concept of dueling bandit problem to address the objec-
tive that cannot be quantitatively measured, and proposed the CoSpar HITL optimization
algorithm. The CoSpar algorithm leverages human preferences as feedback to optimize
gait trajectories. To handle the complexities of high-dimensional optimization driven by
human preferences, the LineCoSpar algorithm was developed as an extension of CoSpar.
Through HITL experiments on exoskeletons, the optimal set of gait parameters such as step
length and step width were determined.

The investigation of optimizing HITL systems using feedback from metabolic
costs [5,13,16,17,23–25], qualitative feedback [26], and walking speed [19] holds signif-
icant importance for the design and enhancement of LLEs [27–29]. However, there remains
a gap in research on gait trajectory planning that simultaneously considers the dynamics of
the HMS and human physiological responses. For instance, the muscle activity-based HITL
optimization was proved to be faster than that based on metabolic cost [20]. This paper
proposes a novel surface electromyography (sEMG)-based HITL motion planning method.
This approach integrates offline trajectory optimization with online trajectory selection,
sEMG signals are utilized as biofeedback and a hybrid dynamical model of the HMS is
deduced and incorporated into the gait trajectory optimization process. The proposed
method is validated on an LLE platform, demonstrating its effectiveness in optimizing gait
trajectories to achieve stable assisted walking while prioritizing human biofeedback. The
main contribution is threefold:

(1) A five-degree-of-freedom hybrid dynamical model of the HMS is derived. Among
them, the continuous and discrete kinetics models are built using the Lagrangian method.
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Subsequently, the state space equation of the hybrid dynamical system is established, which
encapsulates both the continuous and discrete dynamic processes, laying a foundation for
gait trajectory optimization.

(2) The proposed method integrates offline trajectory optimization with online
trajectory selection. Specifically, a direct collocation-based offline trajectory optimization
method is proposed, converting the continuous trajectory optimization problem into a
nonlinear program aimed at minimizing an energy-dependent objective function. This
process results in an optimized gait library, which includes various gait trajectories that
considers dynamic constraints and additional walking constraints in accordance with
the principle of energy optimality.

(3) A sEMG-based HITL optimization method is proposed. The sEMG signals are
utilized as human biofeedback to calculate the cost function through the Thompson
sampling method. This enables the iterative selection of an optimal gait trajectory from
the precomputed gait library, ensuring that the selected trajectory aligns with human
physiological responses.

2. Hybrid Dynamics Modeling

The human–robot interaction system is modeled as a rigid body system, which is
represented by a kinematic tree and shown in Figure 1. Both the human lower limb and
LLE have 12 degrees of freedom (DOFs) [1]. To reveal the dynamical behavior of the HMS
and avoid overcomplication of the dynamical model, the HMS is simplified as a five-link
hybrid dynamical model depicted in Figure 2, the upper body of the human is modeled
as a single rigid link and attached to the torso of the LLE. The human does not provide
actuation and fully follows the LLE, the human masses and inertias are combined in the
corresponding links of the LLE [6]. The five-link hybrid dynamical model is subject to three
assumptions, which is shown as below:

Sensors 2024, 24, x FOR PEER REVIEW 4 of 30 
 

 

 
(a) (b) 

Figure 1. The HMS model. (a) The real HMS. (b) The ideal HMS model. 

 
Figure 2. The simplified five-link hybrid HMS model. 

Based on the beforementioned assumptions, the dynamic equation is based on rigid 
body dynamics modeling. This paper focuses on the forward dynamics modeling for de-
riving the state space equation of the system, combining (A14)–(A18) in Appendix A, the 
equation of the dynamical model of the swing phase is achieved as 

⋅ = +M q Γ τ   (1)

where [ ]1 2 3 4 5
Tτ τ τ τ τ=τ , q  is the generalized angular acceleration, M  is an in-

ertia matrix, Γ  is a superposition of a Coriolis and centrifugal force term C  and a grav-
itational term G  independent of the generalized acceleration and generalized torque. M
, C , and G  are deduced based on the Lagrange equation, note that the mechanical pa-
rameters of the LLE have been presented in our previous work [30], and the mass and 
inertia of human are in proportion integrated into the respective links of the LLE. Human–
machine integration is considered in dynamical modeling, so as to simplify the model and 
make it more applicable to the human who is unable to generate an active joint force of 
lower limb. Among them, Γ  is shown as 

= − ⋅ −Γ C q G   (2)

Then, the dynamical model of the continuous swing phase can be transformed into a 
state space equation, which is addressed as 

Figure 1. The HMS model. (a) The real HMS. (b) The ideal HMS model.



Sensors 2024, 24, 5684 4 of 30

Sensors 2024, 24, x FOR PEER REVIEW 4 of 30 
 

 

 
(a) (b) 

Figure 1. The HMS model. (a) The real HMS. (b) The ideal HMS model. 

 
Figure 2. The simplified five-link hybrid HMS model. 

Based on the beforementioned assumptions, the dynamic equation is based on rigid 
body dynamics modeling. This paper focuses on the forward dynamics modeling for de-
riving the state space equation of the system, combining (A14)–(A18) in Appendix A, the 
equation of the dynamical model of the swing phase is achieved as 

⋅ = +M q Γ τ   (1)

where [ ]1 2 3 4 5
Tτ τ τ τ τ=τ , q  is the generalized angular acceleration, M  is an in-

ertia matrix, Γ  is a superposition of a Coriolis and centrifugal force term C  and a grav-
itational term G  independent of the generalized acceleration and generalized torque. M
, C , and G  are deduced based on the Lagrange equation, note that the mechanical pa-
rameters of the LLE have been presented in our previous work [30], and the mass and 
inertia of human are in proportion integrated into the respective links of the LLE. Human–
machine integration is considered in dynamical modeling, so as to simplify the model and 
make it more applicable to the human who is unable to generate an active joint force of 
lower limb. Among them, Γ  is shown as 

= − ⋅ −Γ C q G   (2)

Then, the dynamical model of the continuous swing phase can be transformed into a 
state space equation, which is addressed as 

Figure 2. The simplified five-link hybrid HMS model.

Assumption 1. The human and LLE are rigidly connected, and the human lacks the ability to
generate an active joint force. They can be considered as a unified whole. The whole HMS is
composed of five links with four revolute joints.

Assumption 2. The HMS is limited to movement in the sagittal plane, which has four joints with
torque inputs, namely the hip and knee joints of both lower limbs, while the ankle joints have no
torque input. The HMS can be modeled as point-legged robots.

Assumption 3. The gait motion of the HMS is characterized by alternating phases of a continuous,
single-support swing phase and an instantaneous, double-support impact phase [6]. The double-
support impact phase encompasses two single-support swing phases before and after transition, and
the process is triggered by the impact between the swinging leg and the ground. This process occurs
instantaneously and complies with the conservation of angular momentum.

The validity of the five-link hybrid model mainly lies in three aspects: (1) treating the
stance leg and swing leg as an integrated system to analyze the dynamic coupling of legs, (2)
considering the underactuated issue of due to the absence of torque input from the stance
leg, and (3) taking into account the abrupt change in velocity when the swing leg contacts
with the ground, thus making the HMS involve both continuous and discrete dynamics.
Developing a state space equation for the HMS is essential for trajectory optimization and
motion control. This section focuses on the dynamics modeling of the five-link hybrid HMS
to establish the state space equation.

Based on the beforementioned assumptions, the dynamic equation is based on rigid
body dynamics modeling. This paper focuses on the forward dynamics modeling for
deriving the state space equation of the system, combining (A14)–(A18) in Appendix A, the
equation of the dynamical model of the swing phase is achieved as

M · ..
q = Γ + τ (1)

where τ =
[
τ1 τ2 τ3 τ4 τ5

]T ,
..
q is the generalized angular acceleration, M is an inertia

matrix, Γ is a superposition of a Coriolis and centrifugal force term C and a gravitational
term G independent of the generalized acceleration and generalized torque. M, C, and G
are deduced based on the Lagrange equation, note that the mechanical parameters of the
LLE have been presented in our previous work [30], and the mass and inertia of human are
in proportion integrated into the respective links of the LLE. Human–machine integration is
considered in dynamical modeling, so as to simplify the model and make it more applicable



Sensors 2024, 24, 5684 5 of 30

to the human who is unable to generate an active joint force of lower limb. Among them, Γ
is shown as

Γ = −C · .
q − G (2)

Then, the dynamical model of the continuous swing phase can be transformed into a
state space equation, which is addressed as

x =

[
q
.
q

]
,

.
x =

[ .
q
..
q

]
= f(x) + g(x)u =

[
col(x1, x2, x3, x4, x5)

M(x)−1 · Γ(x)

]
+ B · u (3)

where
.
x denotes state variables, including generalized velocity and acceleration, f, g are

from the continuous-time and swing-phase dynamics of the dynamic equation of LLE, B is
the input torque mapping matrix, and u is the input driving torque. B and u are defined as

B =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1


, u =


u1
u2
u3
u4
u5

 (4)

Based on Assumption 3, the double-support phase can be modeled as a transient
impact event between the swing foot and ground, with this phase being instantly com-
pleted. Under the assumption of rigid ground, the instantaneous impact process can be
considered to have a coefficient of restitution equal to zero, leading to abrupt changes in
state variables of the dynamic system. Mathematically, this process is characterized by the
state variables encountering a switching surface S and being triggered by an impact map
∆(x). Subsequently, this map projects the state variables into a new state space. The impact
map involves two main steps: first, during the transient impact, the position coordinates of
the HMS remain unchanged, while the generalized velocities undergo a sudden change
due to an instantaneous shift in generalized momentum [6]; second, the two single-support
swing legs interchange their roles instantaneously within this phase.

We assume that on the S, before the impact mapping, the generalized coordinate is q−

and the generalized velocity is
.
q−. After the impact mapping, the generalized coordinate is

q+ and the generalized velocity is
.
q+. Since there is mutual exchange between the stance

leg and swing leg on the generalized coordinates at the impact event, the preimpact q− and
the postimpact q+ satisfy

q+ =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 · q− (5)

The mapping matrix in (5) swaps the generalized coordinates corresponding to each
leg, without altering their actual numerical values, and this mapping matrix preserves the
continuity of joint positions across the impact event, ensuring smooth transitions between
preimpact and postimpact states. Equation (5) describes the process of just swapping
the relevant generalized coordinates between the legs without modifying the position
coordinates. Thus, the continuity of the joint positions is inherently preserved. The velocity
variation between

.
q− and

.
q+ can be calculated from (6) to (10) in accordance with the
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conservation of angular momentum because of impact event. The angular momentum of
the swing leg P−

5 is

k̂ ·
5

∑
i=1

(
(P−

ci − P−
5 )× (mi

.
P
−
ci ) +

.
q−i Ii · k̂

)
= k̂ ·

5

∑
i=1

(
(P+

ci − P+
0 )× (mi

.
P
+

ci ) +
.
q+i Ii · k̂

)
(6)

The angular momentum of the knee joint of the swing leg P−
4 is

k̂ ·
4

∑
i=1

(
(P−

ci − P−
4 )× (mi

.
P
−
ci ) +

.
q−i Ii · k̂

)
= k̂ ·

5

∑
i=2

(
(P+

ci − P+
1 )× (mi

.
P
+

ci ) +
.
q+i Ii · k̂

)
(7)

The angular momentum of the hip joint of the swing leg P−
3 is

k̂ ·
3

∑
i=1

(
(P−

ci − P−
3 )× (mi

.
P
−
ci ) +

.
q−i Ii · k̂

)
= k̂ ·

5

∑
i=3

(
(P+

ci − P+
2 )× (mi

.
P
+

ci ) +
.
q+i Ii · k̂

)
(8)

The angular momentum of the hip joint of the stance leg P−
2 is

k̂ ·
2

∑
i=1

(
(P−

ci − P−
2 )× (mi

.
P
−
ci ) +

.
q−i Ii · k̂

)
= k̂ ·

5

∑
i=4

(
(P+

ci − P+
2 )× (mi

.
P
+

ci ) +
.
q+i Ii · k̂

)
(9)

The angular momentum of the knee joint of the stance leg P−
1 is

k̂ ·
(
(P−

c1 − P−
1 )× (m1

.
P
−
c1) +

.
q−1 I1· k̂

)
= k̂ ·

(
(P+

c5 − P+
4 )× (mi

.
P
+

c5) +
.
q+5 I5 · k̂

)
(10)

The system state of preimpact and postimpact is defined

x− =

[
q−
.
q−

]
, x+ =

[
q+
.
q+

]
(11)

where x− and x+ represent the instantaneous preimpact state and postimpact state, respectively.
Combine (6)–(11), the discrete dynamic equation is expressed as

x+ = ∆(x−) (12)

In all, the state space equation for the five-link hybrid HMS is formulated as

Σ :
{ .

x = f(x) + g(x)u, x /∈ S
x+ = ∆(x−), x ∈ S

(13)

3. Human-in-the-Loop Motion Planning

Gait trajectory planning affects the accuracy, stability, and comfort of the LLEs [31]. In
order to solve the issue of insufficient control drive in HITL motion planning and find the
optimal gait trajectory for wearers, we propose a method that integrates offline trajectory
optimization with online trajectory generation. The offline trajectory optimization utilizes
a direct collocation method based on the derived state space equation of the HMS. This
method is employed to solve for the stability of the gait trajectory. The HITL optimization
is based on Thompson sampling to identify the optimal gait trajectory for the wearers. The
proposed HITL motion planning method is illustrated in Figure 3. The online gait trajectory
planning relies on the gait library obtained from the offline trajectory optimization. sEMG
signals are collected from the subject and used as human feedback for determining the cost
function of the HITL optimization algorithm. The gait parameters of gait trajectory are
updated by Thompson sampling, and the next gait trajectory is selected to perform the next
iteration until an optimal value is found. Considering that the LLE is an underactuation
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system due to the ankle joints are solely controlled by passive components without driving
torque input, and time-varying virtual constraint control method is sufficient and necessary
for time-varying hybrid HMS to realizing stable walking [32]. Then, hybrid zero dynamics
(HZD) control strategy [6,33] is applied to drive the LLE and assist walking according to
the expected gait trajectory. The HZD controller is based on the mixed zero dynamics
theory, appropriate virtual constraints are designed to ensure stable motion of the system.
Based on the generated desired gait trajectory, the HZD controller compares the desired
generalized coordinate qd with the actual generalized coordinate q obtained from the LLE
and output the control torque τexo by referring to the state space equation of HMS, The
output τexo drives the LLE in alignment with the desired trajectory. The human–exoskeleton
interaction torque τh is measured by interaction force sensors mounted on links, which has
a positive correlation with sEMG signals, and can be regarded as an external disturbance in
the control system. This measurement can help achieve a better trajectory tracking control
accuracy by adding it as a feedforward term in the motor current control loop. τh is treated
as disturbances and integrated into the control process to dynamically adjust the generated
torque τexo, ensuring that the movement of the LLE is closely aligned with human motion
intention. This method enhances the robustness and adaptability of the LLE, making the
system more responsive to the feedback of human.
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This paper primarily focuses on the human-in-the-loop (HITL) motion planning. In
this section, we provide a detailed explanation of both the offline trajectory and the HITL
trajectory optimization processes.

3.1. Offline Trajectory Optimization

The direct collocation method is adopted for offline trajectory optimization, which
transforms continuous trajectory optimization into nonlinear programming with finite
multiple decision variables. The transformation process leverages multiple configuration
points for polynomial interpolation approximation, thereby converting the differential
equations into algebraic equations based on the obtained decision variables. Subsequently,
the optimal trajectory can be searched out through nonlinear programming. To meet the
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requirements of high-dimensional planning with multiple constraints, low computational
effort, and excellent convergence capability for gait trajectory planning on the LLEs, direct
collocation proves to be a faster and more efficient way to address these needs [34].

The trajectory optimization issue is generally described by objective function and
constraint function. According to (13), the hybrid dynamical HMS involves the optimization
of numerous continuous-segment trajectories. Due to gait periodicity and leg symmetry
during walking, the dynamical system can be restricted in single-swing phase, thus the
trajectory optimization is simplified to single-segment continuous trajectory optimization.
The gait trajectory optimization of the hybrid HMS is divided into objective function and
constraint function. Based on the principle of energy optimality in the walking process, the
objective function is defined as

J =
∫ T

0
u(t)T · R · u(t)dt (14)

where J is the cost value, R is a quadratic matrix that belongs to a positive-definite matrix.
If the quadratic matrix is a semi positive-definite matrix, it will result in input torque
maintaining the upper limit value in the optimization result, some joints may exhibit
behavior similar to bang-bang control. But a positive-definite matrix benefits the curves of
input torque and state variables to be smooth, thereby the error of approximating the state
trajectory can be reduced by using such smooth curves.

For the constraint functions, the hybrid dynamics equation is the primary constraint
function, determining the feasibility of the gait trajectory for walking. Additionally, con-
straints of swing leg ground clearance, impact map, physiology limit in walking, and
gait parameters are incorporated to restraint the lower-limb motions adaptive to human
physical characteristics. Finally, a gait library containing various gait trajectories is estab-
lished. Based on the objective function and constraint functions, the complete trajectory
optimization problem can be described as

mint0, tF , x(t), u(t) J =
∫ T

0 u(t)T · R · u(t)dt
s.t.

.
x = f(x, u)
x(0) = ∆(x(tF))
u1(t) = 0
q1(t)− q2(t) ≤ −θKmax
q5(t)− q4(t) ≤ −θKmax
θTi f ≤ q3(t) ≤ θTib
−umax ≤ u(t) ≤ umax

P5(tF) = [D 0 0]T

P5v(t) ≥ H(P5h(t))

(15)

where tF is the time when the swing leg contacts with the ground, u1 is the input torque of
ankle joint, θKmax is the protection margin of minor hyperextension of knee joint, θTib is the
maximum inclination angle of upper torso, θTi f is the maximum anteversion angle of upper
torso, umax is the maximum output torque of four joints, P5(tF) is the position at the end of
gait cycle of the swing leg along the generalized coordinates, D is the expected single-step
length, H is the ground clearance constraint function, and P5v and P5h are, respectively, the
vertical and horizonal component of terminal position of the swing leg P5. The objective
function is an energy optimality function. The constraint functions encompass dynamics
equation constraint, impact map constraint, underactuation constraint, prohibition on
excessive extension constraint of the knee joint of the stance leg, prohibition on excessive
extension constraint of knee joint of the swing leg, upper body inclination angle constraint,
upper limit constraint of the output torque, single-step length constraint, and ground
clearance constraint for the swing leg, respectively.

Note that the decision variables in (15) contain infinite dimensional continuous vector
functions, and it is unsolvable. The direct collocation method approximates the continuous
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objective function and constraint function through interpolation, which can be used to solve
this problem, with introducing a discrete representation of the continuous time trajectory
optimization. Correspondingly, the decision variables are transformed into the state and
control variables of the collocation points on the trajectory. This transformation converts
the original trajectory optimization problem into a nonlinear optimization problem that
can be solved using modern optimization tools. As stated in (15), the states and control
variables are approximated as discrete points. The target optimization trajectory is divided
into N interpolation segments, each segment consists of three sampling points: the starting
point, midpoint, and endpoint. The endpoint of one segment serves as the starting point for
the next. The sampling points that connect interpolation segments are called nodes, and the
sampling points that only exist in one interpolation segment are called midpoints. Both mid-
points and nodes are called configuration points, the interpolation function of the dynamic
equation is equal to its real function at these configuration points. This interpolation way
benefits the improvement of approximation accuracy, helps maintain trajectory smoothness
and mitigates the impact of state discontinuities between segments [6]. Consequently, there
are 2N + 1 time sampling points on the target trajectory as shown in (16).

The duration of each interpolation segment is defined as hk = tk+1 − tk. Then, the
states and control variables are also divided into 2N + 1 points listed in (17).

t0, · · · , tk, tk+ 1
2
, tk+1, · · · , tN (16)

x0, · · · , xk, xk+ 1
2
, xk+1, · · · , xN

u0, · · · , uk, uk+ 1
2
, uk+1, · · · , uN

(17)

The quadratic interpolation function is utilized to approximate these sampling points,
in accordance with the Newton–Cotes formula, the integral of the quadratic interpolation
function r(t) within the interval [0, h] is calculated as

W =
∫ h

0 a + bt + ct2dt

= ah +
1
2

bh2 +
1
3

ch3

=
h
6

(
r(0) + 4r(

h
2
) + r(h)

) (18)

Referring to (18), the integral of one segment is expressed as

xk+1 − xk =
1
6

hk

(
f(xk, uk) + 4f(xk+ 1

2
, uk+ 1

2
) + f(xk+1, uk+1)

)
(19)

where f is the hybrid dynamics equation and xk is the system state variable of the k-th
node. xk+ 1

2
represents the state of the system at the midpoint between two discrete time

points tk and tk+1, which can be deduced based on the application of Simpson’s rule for
numerical integration, combined with Taylor series expansion. Thus, xk+ 1

2
fulfills the

constraint relationship with the starting point and endpoint [35] as

xk+ 1
2
=

1
2
(xk + xk+1) +

hk
8
(f(xk, uk)− f(xk+1, uk+1)) (20)

Equations (19) and (20) represent the system dynamics constraints based on the
discrete decision variables, the middle state xk+ 1

2
is consistent with the states at the sur-

rounding nodes, thus enhancing the fidelity of the numerical solution while maintaining
the continuity and smoothness of the trajectory.
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Define the integrand as w(t) = u(t)T ·R · u(t), in a similar way of (18), thus the integral
of the entire gait cycle can be expressed as

∫ tF

t0

w(t)dt ≈
N−1

∑
k=0

hk
6
(wk + 4w

k+
1
2

+ wk+1) (21)

The target function is derived as

J =
N−1

∑
k=0

hk
6
(wk + 4w

k+
1
2

+ wk+1) (22)

Therefore, the original continuous trajectory optimization problem can be transformed
into nonlinear programming as shown below:

mint0,tF , x1···xN , u1···uN J =
N−1
∑

k=0

hk
6
(wk + 4w

k+
1
2

+ wk+1)

s.t. xk+1 − xk =
hk
6

f(xk, uk) + 4f(x
k+

1
2

, u
k+

1
2

) + f(xk+1, uk+1)


x0 = ∆(xF)
u1,k = 0
q1,k − q2,k ≤ −θKmax
q5,k − q4,k ≤ −θKmax
θTi f ≤ q3,k ≤ θTib
−umax ≤ u2∼5,k ≤ umax

P5,k =
[

D 0 0
]T

P5v,k ≥ H(P5h,k)

(23)

Equation (23) can be solved using the fmincon function. The optimized discrete states
and control variables should be restored to the expected continuous trajectory by the same
interpolation method. Finally, the local time variable within the interpolation segment can
be set as

τ = t − tk (24)

Then, the interpolation trajectory is reconstructed as

u(t) =
2
h2

k
·
(

uk · (τ − hk)(τ − hk
2
)− 2uk+ 1

2
· τ(τ − hk) + uk+1 · τ(τ − hk

2
)

)
(25)

The derivative of the state variables for the hybrid dynamics equation is reconstructed
as

.
x(t) = f(x(t), u(t)),
.
x(t) = 2

h2
k

(
f(xk, uk) · (τ − hk

2 )(τ − hk)− f(xk+ 1
2
, uk+ 1

2
) · 2τ(τ − hk) + f(xk+1, uk+1) · τ(τ − hk

2 )
) (26)

And the state variables can be achieved via the integration of the dynamic equations
and shown as
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x(t) =
∫ t

0
.
x(τ)dτ

= xk +


f(xk, uk) ·

τ

hk
+

1
2

−3f(xk, uk) + 4f(x
k+

1
2

, u
k+

1
2

)− f(xk+1, uk+1)

 ·
(

τ

hk

)2

+
1
3

2f(xk, uk)− 4f(x
k+

1
2

, u
k+

1
2

) + 2f(xk+1, uk+1)

 ·
(

τ

hk

)3

 · hk
(27)

We list the gait parameters of the offline and fine-turning gait trajectories to be opti-
mized in Table 1. T and D traverse all values within the specific range, resulting in multiple
optimized gait trajectories that are then compiled into a gait library.

Table 1. Offline gait parameters need to be optimized.

Parameter Definition Value

θTi f Maximum anteversion angle −0.02(rad)
θTib Maximum inclination angle 0.02(rad)

θKmax Protection margin 0.02(rad)
H(d) Ground clearance of swing foot H(d) = −0.024d2 + 0.024(m)

T Single-step duration 1,1.1, 1.2, . . . , 1.5(s)
D Single-step length 0.2, 0.22, 0.24, . . . , 0.4(m)

3.2. HITL Trajectory Optimization

The gait library obtained from offline trajectory optimization generates natural and
energy-efficient walking trajectories, facilitating the HMS in realizing stable walking under
HZD control. However, the gait trajectory that personalizes the specific wearer is not guar-
anteed. Therefore, it is essential to establish appropriate gait parameters to fit physiological
response of HMS during walking. Typically, human physiological response is subjective, its
cost function cannot be measured directly through quantitative metrics but can be analyzed
through biofeedback. Hence, a sEMG-based HITL optimization method is proposed, where
the sEMG signals are utilized as human biofeedback. The HITL optimization involves
the process of identifying the optimal gait trajectory within the gait library that yields
the minimum value of the cost function. Since the Thompson sampling algorithm can
effectively balance exploration and utilization through parameter setting, as well as provide
a probability distribution curve of the cost function value [36], this paper utilizes Thompson
sampling for conducting the HITL optimization.

For the objective function of the Thompson sampling-based HITL optimization, refer-
ring to [37], sEMG signals are used as qualitative feedback to assess user effort of muscle
activity in accordance with the natural energetic optimization law. An objective function
based on sEMG signals is designed as

J =
1
T

∫ T

0

N

∑
i=1

sidt (28)

where J is the maximum objective in optimization, N is the channels of collecting sEMG
signals, si represents the sEMG signals of the i-th channel, and T is the single-step duration.
Assuming that there are trajectories and their corresponding objective function values
follow a Gaussian distribution. The prior distribution of the objective function values for
each gait trajectory is designed as

Ji ∼ N (u0, σ2
0 ) (29)

where Ji is the objective function value of the i-th alternative gait trajectory, and u0 and σ2
0

are the mean and variance of the prior probability distribution, respectively.
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Then, the probability function corresponding to the objective function value of real
gait trajectory is called the likelihood function, which is shown as

P(Ji

∣∣∣ui) = N (ui, σi
2) (30)

where ui and σ2
i are, respectively, the mean and variance of the likelihood function of the

i-th alternative gait trajectory subject to Gaussian distribution.
The posterior and prior probability distributions are congruent to conjugate distribu-

tions, and then the posterior probability distribution can be computed as

P(ui

∣∣∣J1
i , J2

i , · · · , Jn
i ) = N


µ0

σ2
0
+

n
∑

i=1
xi

σi
2

1
σ2

0
+

n
σi

2

,

(
1
σ2

0
+

n
σi

2

)−1


(31)

where J1, J2, · · · , Jn are the feedbacks in HITL. When Ji returns a new value, the posterior
probability is immediately updated. Thompson sampling is then conducted on the posterior
probability distribution, and ultimately a selection decision is made based on the maximum
sampled value through comparison with the sampled values of all alternative trajectories.
This selection decision implies that the optimal gait trajectory for the wearer has been
identified. The selection decision strategy is

at = argmaxkûk, uk ∼ P(uk

∣∣∣r1
i , r2

i , · · · , rn
i ) (32)

where ûk is the sampling value of uk, at is the selection action at t moment.

4. Simulation and Experiment

Firstly, numerical simulation is performed to verify the derived hybrid dynamical
model of the system and the HZD control method. The control simulation model is
established using MATLAB/Simulink 2021: the dynamic mathematical model of the five-
link hybrid system is the controlled object in Simulink, an online trajectory planning
algorithm for a gait library that is generated by the direct collocation method, and an
input–output feedback linearization algorithm based on time-varying virtual constraints
are implemented in MATLAB language.

For the simulation parameters, a gait trajectory with T = 0.5 s and D = 0.4 m is set,
the parameters of the controlled object keep the same as offline optimization, the control
algorithm frequency is set to 500 Hz in consistency with actual deployment frequency, the
coefficients of the PD controller with linearized input–output feedback are set to 10, and the
human–exoskeleton interaction torque is considered as a disturbance with peak-to-peak
value being 10 Nm, this disturbance is applied to the underactuated first joint. The output
H matrix is defined as

H =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, H · q =


q2
q3
q4
q5

. (33)

Then, to further validate the proposed sEMG-based HITL motion planning method
on the LLE prototype, an LLE platform is established and a HITL optimization and control
experiment is conducted.

Figure 4 depicts the LLE prototype deployed with sensing and control networks. The
primary control board model is F28377D, which supports embedded motion planning and
control algorithms, as well as motor drive regulation. The MILE encoder, sEMG sensor,



Sensors 2024, 24, 5684 13 of 30

and pressure sensor are responsible for acquiring joint angle, sEMG signal, and interaction
force, respectively. Communication is facilitated by CAN bus.
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Based on offline optimized gait trajectory for trajectory tracking control, a healthy
subject wore LLE for assisted walking experiments, as shown in Figure 5. Eight lower-limb
muscles were selected to attach sEMG electrodes for data collection, and the electrodes
were secured with bandages to prevent displacement during walking. An emergency stop
switch was installed on the cable, and an experimenter was assigned to monitor the total
power supply of the LLE for safety. Additionally, the crutches used by the wearer were
equipped with an emergency stop button to maintain balance when necessary. It does not
provide driving force during walking. Based on the results of offline trajectory optimization,
gait parameters from the gait library were selected to optimize LLE’s gait and implement
the expected gait trajectory. The HZD control method was applied to achieve trajectory
tracking of LLE. During walking, the subject was instructed to minimize the active force,
and the driving torque of the LLE was the main force. Meanwhile, the joint angle, sEMG
signal, and interaction force were measured by preplaced sensors.
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In the HITL optimization control experiment, the collected sEMG signals of each
gait cycle serve as human feedback for the Thompson sampling algorithm. The posterior
probabilities are updated in accordance with the cost function. Thompson sampling is
utilized to select the next gait trajectory from the gait library until convergence to the
optimal trajectory. The experiment involves multiple periodic trajectories with different
gait parameters. The estimation value of the variance for the Gaussian likelihood function
is set to 1 for each gait trajectory. Additionally, 12 optimized transition gaits are introduced
to enable natural switching between periodic gaits. The number of trials for the Thompson
sampling-based HITL optimization is set to 50.

5. Result and Discussion
5.1. Result
5.1.1. Simulation Result

Based on the simulation experiment, the trajectory tracking control results are dis-
played in Figure 6. We can see that under the influence of a disturbance torque, the tracking
error of the first joint reaches its highest level of 0.5◦; the tracking error of other actuated
joints remains small though there is coupling interference from the disturbed first joint,
with a maximum not exceeding 0.16◦. However, the tracking error in the trajectory of the
upper torso slightly increases, as shown in Figure 6e, because of the fact that the inclina-
tion angle of the upper body trunk does not change significantly during walking. The
simulation allows for the verification of the derived hybrid dynamical model accurately
represents the actual behavior of the system. By comparing the simulation results with the
expected trajectories, the accuracy and validity of the model is assessed. The simulation
result demonstrate that based on the five-link hybrid dynamical model, the combination of
the HZD control algorithm with trajectory optimization can enable stable walking for the
HMS that has underactuated and hybrid dynamic characteristics.

5.1.2. Experimental Result

Each optimized trajectory in the gait library is designated as the required trajectory
for trajectory tracking control. An LLE-based assisted walking experiment is conducted
with gait parameters of T = 1 s and D = 0.2 m. The trajectory tracking results of four joints
are presented in Figure 7, with vertical lines marking the gait cycle number from Gait 0
to Gait 14. There is approximately 13 s of preparatory walking gait before Gait 0. It can
be observed that the tracking error of each joint is less than 0.02◦ during the first 13 s of
preparation gait due to the relatively low walking speed. Then, in the first two walking
gaits, however, the tracking errors are somewhat large, with the maximum tracking errors
not exceeding 6.9◦ for the left hip joint, 4.2◦ for the left knee joint, 1.9◦ for the right hip joint,
and 2.9◦ for the right knee joint. At the end of Gait 4, convergence to a stable walking state
is achieved asymptotically by LLE, with maximum tracking error of each joint being less
than 0.8◦. The root mean square (RMS) value of trajectory tracking is presented in Table 2.
In total, neither the tracking error nor RMS value of each joint angle is less than 1.0◦ in
stable walking state during gait trajectory tracking process.

Table 2. RMS of trajectory tracking.

Left Hip Joint Left Knee Joint Right Hip Joint Right Knee Joint

Overall RMS 0.9986◦ 0.7138◦ 0.3380◦ 0.4964◦

RMS during stable walking 0.2046◦ 0.3195◦ 0.2087◦ 0.2716◦
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Figure 6. Trajectories and error curves of generalized coordinates under HZD control. (a) The
virtual constraint control trajectory of the first generalized coordinate (the inclination angle of
the stance leg shank). (b) The control error of the first generalized coordinate. (c) The virtual
constraint control trajectory of the second generalized coordinate (the inclination angle of stance
leg thigh). (d) The control error of the second generalized coordinate. (e) The virtual constraint
control trajectory of the third generalized coordinate (the inclination angle of the upper torso).
(f) The control error of the third generalized coordinate. (g) The virtual constraint control trajectory
of the fourth generalized coordinate (the inclination angle of the swing leg thigh). (h) The control
error of the fourth generalized coordinate. (i) The virtual constraint control trajectory of the fifth
generalized coordinate (the inclination angle of the swing leg shank). (j) The control error of the
fifth generalized coordinate.

To better evaluate the control efficacy based on the offline optimized gait trajectory,
not only the tracking error, but also the phase portrait with respect to angle and angular
acceleration are observed. The angles of each joint are Savitzky–Golay filtered [38], and
numerical differentiation is performed to obtain the joint angular acceleration. Finally, the
phase portrait of each joint in the walking process is drawn in Figure 8. From Figure 8a,c,e,g,
during the early stages of walking, there is a noticeable disparity between the actual motion
and the expected limit cycle. As for the mid-to-late stages of walking, Figure 8b,d,f,h
indicate that the gait trajectory has undergone several gait cycles and gradually converges
to the expected limit cycle. However, there are still some slightly larger errors in the discrete
dynamic segments of the limit cycle, particularly for the left and right knee joints. This can
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be attributed to the limited bandwidth of the Savitzky–Golay filter, making it challenging
to recover the mutational velocity signals.
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tracking curves and errors of the right hip joint. (d) Trajectory tracking curves and errors of the right
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Figure 8. Phase portrait of walking process assisted by the LLE: (a,c,e,g) are the phase portraits of the
left hip joint, left knee joint, right hip joint, and right knee joint in the early walking process (Gait 1 to
Gait 6), respectively; (b,d,f,h) are the limit cycles of the left hip joint, left knee joint, right hip joint,
and right knee joint in the mid-to-late walking process (Gait 7 to Gait 15), respectively.
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From Figures 7 and 8, it can be concluded that the offline optimization of gait trajec-
tories via direct collocation is achievable and effective for natural and stable walking
on the LLE, and the HMS achieves excellent trajectory tracking performance under the
HZD control.

Then, the sEMG signals from the vastus medialis, vastus lateralis, biceps femoris,
and semitendinosus of both legs are collected and displayed in Figure 9. The intensity
of the sEMG signals exhibits good periodicity, with a consistent trend of variability in
each gait cycle. The sEMG signals from the muscles of the left and right legs demonstrate
similarity during the periodic walk. Therefore, it is feasible to utilize sEMG signals as
human feedback to calculate the cost function for the HITL optimization.

Next, for the HITL optimization control experiments, we utilized the sEMG signals
as biofeedback and four alternate walking trajectories labeled with gait names from the
gait library (listed in Table 3). The obtained results include sEMG signal, value of the cost
function, and the gait switching state. These results for the first 50 s and last 50 s of the
walking experiments are truncated and presented in Figure 10. The long vertical lines of
Figure 9 are used to divide the gait cycle, with comments of gait names and values of the
cost function serving as feedbacks for HITL. Figure 10 illustrates that the gait trajectory
of Gait 2 is ultimately selected in the HITL optimization from 150 s to 180 s, after which
it continues walking without changing the gait trajectory. In fact, the entire optimization
process is completed in approximately 150 s. Furthermore, these cost function values are
constantly utilized to update the posterior probability density distribution, as depicted in
Figure 11. The abscissa of the probability density distribution is a negative expression, since
the negative value of the cost function is taken to be the satisfaction used in Thompson
sampling. In Figure 11, the probability density distribution function of each gait becomes
taller and thinner with increasing iteration numbers. After 50 iterations for the HITL
optimization, the posterior probability density distribution function of Gait 2 (T = 1.0 s,
D = 0.3 m) could achieve the minimum value of the cost function, Gait 2 is selected as
the optimal trajectory in subsequent assisted walking. The posterior mean and variance
are 3.4626 and 0.0476, respectively. In summary, the Thompson sampling-based HITL
optimization method is capable of discerning the distribution of cost function values and
selecting the optimal gait trajectory.
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Figure 9. sEMG of eight channels during LLE assists walking. (a) The sEMG signals from vastus
medialis of the left leg. (b) The sEMG signals from vastus lateralis of the left leg. (c) The sEMG signals
from biceps femoris of the left leg. (d) The sEMG signals from semitendinosus of the left leg. (e) The
sEMG signals from vastus medialis of the right leg. (f) The sEMG signals from vastus lateralis of
the right leg. (g) The sEMG signals from biceps femoris of the right leg. (h) The sEMG signals from
semitendinosus of the right leg.
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Table 3. Candidate gait trajectories.

Parameter Gait 1 Gait 2 Gait 3 Gait 4

T 1 s 1 s 1.2 s 1.2 s
D 0.2 m 0.3 m 0.2 m 0.3 m
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In conclusion, the sEMG biofeedback-based HITL optimization method using Thomp-
son sampling takes less than 180 s to find the optimal gait trajectory for the wearer. The
appropriate gait trajectory that minimizes the energy cost and the ability to walk stably for
the subject is T = 1.2 s and D = 0.3 m. The proposed HITL optimization method is suitable
for cases where there are fewer optional gaits, and its superiority has been demonstrated.

5.2. Discussion

The impact map typically introduces discontinuities in the state variables. Despite
this, the impact map is incorporated into the HMS dynamics modeling in our approach,
which explicitly addresses the discontinuities caused by impacts during the gait cycle. By
integrating hybrid zero dynamics (HZD) control with direct collocation-based trajectory
optimization, our method ensures smooth transitions and robust performance across
impact events. As shown in Figure 8, the gait trajectory gradually converges to the desired
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limit cycle after several gait cycles, the phase transition becomes smoother. Some other
approaches also studied phase transition, neural networks or blended control strategies
were often used to recognize gait phases and manage transitions between control systems
or dynamic models [39–41]. While these methods effectively ensure smooth transitions
during phase changes, the discontinuities introduced by impact events within the gait
cycle were not directly addressed. Lhoste et al. [42] calculated weight distribution as the
ratio of vertical ground reaction forces (GRF) to facilitate transitions between left and right
stance models. In contrast to methods that primarily focus on phase recognition or model
transitions, our approach leverages the impact map to optimize the trajectory, thereby
generating the reference trajectory. The use of impact map provides a unique advantage
by directly addressing impact-induced discontinuities, by combining the impact map
with advanced control and optimization techniques, our approach offers a comprehensive
solution that enhances the stability and smoothness of gait control.
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For the Thompson sampling-based HITL optimization method, we select the intensity
of sEMG signals as human biofeedback in order to calculate the cost function. This decision
is based on that, sEMG signals are easily captured when human muscles generate active
forces, requiring less time for collection compared to using metabolic cost [27]. As shown in
Figure 9, sEMG signals exhibit periodicity in each gait cycle, with weaker signals indicating
weak muscle activity and lower force generation during walking. We believe that a state
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of less active force corresponds to a relatively comfortable condition for humans while
wearing the LLE. Generally, sEMG signals are time-varying and containing significant
intent information [43], enabling the use of sEMG signals in decoding gait-related events
and parameters [44] as well as active torque [45]. There are numerous studies concerning
sEMG-based interactive control for exoskeletons [46], such as Zhu et al. [47] designed a
voluntary control strategy based on sEMG-driven musculoskeletal model for an exoskeleton
robot, joint torque and quasi-stiffness were estimated and used to adjust the degree of
exoskeleton assistance and transfer stiffness. Chen et al. [48] proposed an sEMG-based
admittance control method for an LLE to adjust the auxiliary mode. While the encoding
process is intricate and real-time encoding and control is tremendously challenging. Direct
analysis of sEMG signals ensures real-time performance. Therefore, we have opted for
sEMG as human feedback for HITL optimization purposes.

During the HITL optimization process, as shown in Figure 11, the variation trend of
the posterior probability density distribution function indicates that when the probability
curve appears squat, it signifies lower confidence in the distribution of cost function values
and a larger variance in the posterior probability distribution. Conversely, a steep and thin
probability curve suggests higher confidence in the distribution of cost function values and
a smaller variance. The curves of the posterior probability density distribution function cor-
responding to different gait trajectories vary from squat to tall and thin. After 50 iterations,
Gait 2 is selected as the optimal choice, which aligns with Figure 10b. The experimental
results demonstrate that the entire optimization process can be completed in approximately
150 s. The proposed Thompson sampling-based method requires less time for the opti-
mization process compared to traditional optimization methods, such as those based on
metabolic cost [13] and particle swarm optimization (PSO) algorithms [27]. The optimiza-
tion time required is comparable to that of the HITL optimization based on muscle activity
using Bayesian and CMA-ES approaches [20]. Zhang et al. [13] optimized exoskeleton
assistance during walking by minimizing human energy costs through the HITL opti-
mization, effectively reducing metabolic energy consumption and enhancing exoskeleton
performance. However, this study emphasized energy reduction rather than time efficiency
during the optimization process. Han et al. [27] developed a muscle-activity-based cost
function to optimize multi-gait ankle exoskeleton assistance for the HITL optimization,
employing PSO to determine the optimal muscle weight combination on four lower leg
muscles to compose the cost function with maximum differences, thereby improving the
time efficiency of HIL optimization. Xu et al. [20] addressed the challenges of time efficiency
in the HITL optimization aimed at reducing muscle activity during walking, particularly
for users with limited endurance, and used Bayesian and CMA-ES methods to shorten the
optimization process, the time efficiency was reduced but may compromise other aspects
of optimization, such as precision or adaptability. Our approach combines Thompson
sampling with sEMG signals for online trajectory optimization, primarily focusing on the
optimization time and the selection of gait trajectories. The effectiveness of the proposed
method for the HITL optimization has been demonstrated.

Indeed, the Thompson sampling method is susceptible to becoming stuck in a repeti-
tive pattern once it identifies the optimal choice based on previous feedback. In view of
this, we propose increasing the estimation variance value of the Gaussian likelihood func-
tion. Specifically, the estimated variance should be set several times larger than its actual
value, thereby amplifying the variance of the Gaussian probability density function under
homologous gait. This adjustment aims to flatten the posterior probability distribution
during early iterations and create overlapping posterior probability density functions for
each gait trajectory. As a result, the selection probabilities for each gait trajectory can be
equalized at the initial stage. This Thompson sampling method can be extended to more
alternative gait trajectories for the HITL optimization.

Overall, the proposed sEMG-based HITL motion planning method has been verified
to be effective, demonstrating excellent trajectory tracking performance and requiring
less time to find the optimal gait trajectory. In the future, it is recommended that more
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subjects wearing the LLE be included in trials, and that quantitative evaluation of subjective
and objective feedback can be combined and considered in the cost function of the HITL
optimization algorithm to achieve better personalized results.

6. Conclusions

This paper proposed a HITL motion planning method that combines offline trajec-
tory optimization and online trajectory selection. sEMG signals were used as human
biofeedback. Firstly, a five-DOF hybrid dynamical HMS model was constructed using
the Lagrangian method. Next, the direct collocation method was employed for offline
trajectory optimization based on the energy optimality law, resulting in the acquisition of a
gait library. The Thompson sampling method was then utilized in the HITL optimization
by leveraging the intensity of sEMG signals as the cost function to search for an optimal
appropriate gait trajectory within the gait library. The proposed method was demonstrated
in the HITL optimization and control experiment. The experimental results indicated that:
(1) the optimized gait trajectories within the gait library under HZD control were realizable
and obtained excellent tracking performance for the LLE; (2) selecting sEMG intensity as
human feedback to calculate the cost function value was suitable and feasible, as it enabled
the HITL optimization method based on sEMG biofeedback to identify an appropriate
gait trajectory within 150 s; and (3) this approach could identify an optimal gait trajectory
that not only enhances human performance but also ensures stable walking. As such, it
represents a preliminary solution to personalized motion planning issues.
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Appendix A. Derivation of the Kinematic Model and the Dynamical Model

In order to construct the state space equation for the five-link hybrid HMS, the first
kinematic model and the second dynamical model should be deduced, they are the basis of
the state space equation.

For kinematic modeling, the coordinate system is set between the floating base and
revolute joints. Based on the space vector method, the kinematic model is defined via the
generalized coordinates q as shown in (A1), with three space base vectors î, ĵ, k̂ expressed
in (A2).

q =


q1
q2
q3
q4
q5

 (A1)

î =

1
0
0

, ĵ =

0
1
0

, k̂ =

0
0
1

 (A2)

where q1, q2, q3, q4, q5 are the absolute vertical inclination angles of the links ranging
from one to five, with the right-hand direction along the vertical paper being the positive
direction, as depicted in Figure 2. The inertial parameters of the five-link model are
presented in Table A1.

Table A1. The inertial parameters of the five-link model.

Nomenclature Description

li The length of the i-th link

lci
The distance from the center of mass of the i-th link to its origin
coordinate along î

mi The mass of the i-th link
Ii The rotational inertia of the i-th link with respect to its center of mass

Then, the location of COM of the stance leg and swing leg can be derived with respect
to the predefined parameters. The location of COM of the stance leg shank Pc1 is derived as

Pc1 =

 lc1 sin(q1)− l1 sin(q1)
l1 cos(q1)− lc1 cos(q1)

0

 (A3)

The location of COM of the stance leg thigh Pc2 is

Pc2 =

 lc2 sin(q2)− l2 sin(q2)− l1 sin(q1)
l1 cos(q1) + l2 cos(q2)− lc2 cos(q2)

0

 (A4)

The location of COM of the upper torso Pc3 is

Pc3 =

 lc3 sin(q3)− l2 sin(q2)− l3 sin(q3)− l1 sin(q1)
l1 cos(q1) + l2 cos(q2) + l3 cos(q3)− lc3 cos(q3)

0

 (A5)

The location of COM of the swing leg thigh Pc4 is

Pc4 =

 lc4 sin(q4)− l2 sin(q2)− l1 sin(q1)
l1 cos(q1) + l2 cos(q2)− lc4 cos(q4)

0

 (A6)
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The location of COM of the swing leg shank Pc5 is

Pc5 =

 l4 sin(q4)− l2 sin(q2)− l1 sin(q1) + lc5 sin(q5)
l1 cos(q1) + l2 cos(q2)− l4 cos(q4)− lc5 cos(q5)

0

 (A7)

Assuming that the state variable is

x =

(
q
.
q

)
(A8)

where
.
q is the generalized velocity. The space linear velocity vci of the COM satisfies:

vci =
∂pci
∂x

· .
x (A9)

Then, the vci of the i-th link can be calculated as

vc1 =

 − .
q1(l1 cos(q1)− lc1 cos(q1))

− .
q1(l1 sin(q1)− lc1 sin(q1))

0


vc2 =

 − .
q2(l2 cos(q2)− lc2 cos(q2))− l1

.
q1 cos(q1)

− .
q2(l2 sin(q2)− lc2 sin(q2))− l1

.
q1 sin(q1)

0


vc3 =

 − .
q3(l3 cos(q3)− lc3 cos(q3))− l1

.
q1 cos(q1)− l2

.
q2 cos(q2)

− .
q3(l3 sin(q3)− lc3 sin(q3))− l1

.
q1 sin(q1)− l2

.
q2 sin(q2)

0


vc4 =

 lc4
.
q4 cos(q4)− l2

.
q2 cos(q2)− l1

.
q1 cos(q1)

lc4
.
q4 sin(q4)− l2

.
q2 sin(q2)− l1

.
q1 sin(q1)

0


vc5 =

 l4
.
q4 cos(q4)− l2

.
q2 cos(q2)− l1

.
q1 cos(q1) + lc5

.
q5 cos(q5)

l4
.
q4 sin(q4)− l2

.
q2 sin(q2)− l1

.
q1 sin(q1) + lc5

.
q5 sin(q5)

0



(A10)

The space linear velocity of each link is formulated as in (A10). where vc1, vc2, vc3, vc4, vc5
are the space linear velocities of the 1-st to 5-th links, respectively.

Then, the angular velocity of the COM corresponding to each link is expressed as

ω =


ω1
ω2
ω3
ω4
ω5

 =


.
q1.
q2.
q3.
q4.
q5

 (A11)

where ω is the angular velocity vector, ω1, ω2, ω3, ω4, ω5 are the angular velocities of each
link along with k̂ axis.

The dynamical model can be derived in reference to the Lagrange scheme shown in (A12).

Q =
d
dt

∂L
∂

.
q
− ∂L

∂q
(A12)

where Q is the generalized force, L is the Lagrangian. The input driving torque of each
joint τ has the following relationship with respect to Q:

Q = B · τ· (A13)

where B is a torque mapping matrix. Referring to (A12) and (A13) and the deduced
kinematic model, the driving torque of each joint in the swing phase can be derived as
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τ1 = I1
..
q1 + l12m1

..
q1 + l12m2

..
q1 + l12m3

..
q1 + l12m4

..
q1 + l12m5

..
q1+

lc1
2m1

..
q1 − 2l1lc1m1

..
q1 − gl1m1 sin(q1)− gl1m2 sin(q1)

−gl1m3 sin(q1)− gl1m4 sin(q1)− gl1m5 sin(q1)
+glc1m1 sin(q1) + l1l2m2

..
q2 cos(q1 − q2) + l1l2m3

..
q2 cos(q1 − q2)

+l1l2m4
..
q2 cos(q1 − q2) + l1l2m5

..
q2 cos(q1 − q2) + l1l3m3

..
q3 cos(q1 − q3)

−l1l4m5
..
q4 cos(q1 − q4)− l1lc2m2

..
q2 cos(q1 − q2)− l1lc3m3

..
q3 cos(q1 − q3)

−l1lc4m4
..
q4 cos(q1 − q4)− l1lc5m5

..
q5 cos(q1 − q5)

(A14)

τ2 = I2
..
q2 + l22m2

..
q2 + l22m3

..
q2 + l22m4

..
q2 + l22m5

..
q2 + lc2

2m2
..
q2

−2l2lc2m2
..
q2 − gl2m2 sin(q2)− gl2m3 sin(q2)− gl2m4 sin(q2)

−gl2m5 sin(q2) + glc2m2 sin(q2) + l1l2m2
..
q1 cos(q1 − q2)

+l1l2m3
..
q1 cos(q1 − q2) + l1l2m4

..
q1 cos(q1 − q2) + l1l2m5

..
q1 cos(q1 − q2)

+l2l3m3
..
q3 cos(q2 − q3)− l2l4m5

..
q4 cos(q2 − q4)− l1lc2m2

..
q1 cos(q1 − q2)

−l2lc3m3
..
q3 cos(q2 − q3)− l2lc4m4

..
q4 cos(q2 − q4)− l2lc5m5

..
q5 cos(q2 − q5)

−l1l2m2
.
q1

2 sin(q1 − q2)− l1l2m3
.
q1

2 sin(q1 − q2)− l1l2m4
.
q1

2 sin(q1 − q2)

−l1l2m5
.
q1

2 sin(q1 − q2) + l2l3m3
.
q3

2 sin(q2 − q3)− l2l4m5
.
q4

2 sin(q2 − q4)

+l1lc2m2
.
q1

2 sin(q1 − q2)− l2lc3m3
.
q3

2 sin(q2 − q3)− l2lc4m4
.
q4

2 sin(q2 − q4)

−l2lc5m5
.
q5

2 sin(q2 − q5)

(A15)

τ3 = I3
..
q3 + l32m3

..
q3 + lc3

2m3
..
q3 − 2l3lc3m3

..
q3 − gl3m3 sin(q3)

+glc3m3 sin(q3) + l1l3m3
..
q1 cos(q1 − q3) + l2l3m3

..
q2 cos(q2 − q3)

−l1lc3m3
..
q1 cos(q1 − q3)− l2lc3m3

..
q2 cos(q2 − q3)− l1l3m3

.
q1

2 sin(q1 − q3)

−l2l3m3
.
q2

2 sin(q2 − q3) + l1lc3m3
.
q1

2 sin(q1 − q3) + l2lc3m3
.
q2

2 sin(q2 − q3)

(A16)

τ4 = I4
..
q4 + l42m5

..
q4 + lc4

2m4
..
q4 + gl4m5 sin(q4) + glc4m4 sin(q4)

−l1l4m5
..
q1 cos(q1 − q4)− l2l4m5

..
q2 cos(q2 − q4)− l1lc4m4

..
q1 cos(q1 − q4)

−l2lc4m4
..
q2 cos(q2 − q4) + l4lc5m5

..
q5 cos(q4 − q5) + l1l4m5

.
q1

2 sin(q1 − q4)

+l2l4m5
.
q2

2 sin(q2 − q4) + l1lc4m4
.
q1

2 sin(q1 − q4) + l2lc4m4
.
q2

2 sin(q2 − q4)

+l4lc5m5
.
q5

2 sin(q4 − q5)

(A17)

τ5 = I5
..
q5 + lc5

2m5
..
q5 + glc5m5 sin(q5)− l1lc5m5

..
q1 cos(q1 − q5)

−l2lc5m5
..
q2 cos(q2 − q5) + l4lc5m5

..
q4 cos(q4 − q5)

+l1lc5m5
.
q1

2 sin(q1 − q5) + l2lc5m5
.
q2

2 sin(q2 − q5)− l4lc5m5
.
q4

2 sin(q4 − q5)

(A18)
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