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Abstract: The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant
area of research due to the necessity of monitoring the presence of this gas in a variety of environments.
These include environmental protection, industrial safety and medical diagnostics. Issues related
to certain uncertainties concerning the influence of high humidity on DMS measurements with
resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory
lower detection limit of DMS are the subject of intensive research. This paper presents the results
of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher
sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in
the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using
a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to
the authors’ previous studies contributed to the development of a sensor that is highly sensitive to
1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water
vapour content (90% RH) in the analysed atmosphere.

Keywords: resistive gas sensor; ZnO; dimethyl sulphide; gold nanoparticles; sepiolite; nanoplates;
halitosis

1. Introduction

Dimethyl sulphide (DMS) is one of the volatile organic sulphur compounds (VSCs); it
is present in large quantities in the atmosphere and plays an important role in the global
sulphur cycle [1]. According to studies, about 40% of the total sulphur in the atmosphere
comes from natural emissions, and the ocean is one of the main natural sources of it [2].
In addition, it is present in the aroma produced when certain vegetables are cooked,
particularly cabbage, beetroot and seafood [3], and is widely used in the petrochemical, fuel
and food industries as a food-flavouring additive (e.g., to improve the aroma of beer) and as
an ingredient in perfumes [4]. Dimethyl sulphide is also a biomarker, a product of metabolic
reactions taking place in the human body, and its concentration in exhaled air increases as a
result of disorders in the functioning of, among other things, the liver. Along with hydrogen
sulphide, this marker is responsible for the occurrence of halitosis [5–7]. The association
of metabolic disorders with a specific composition of exhaled air has also contributed to
the development of sensors and electronic noses, with detection levels of DMS and other
biomarkers, as opposed to detection in industry being in the ppb range [8–10]. Therefore,
continuous monitoring of DMS from ppb to ppm levels is necessary for environmental
protection, production safety and also medical diagnosis.

Common detection methods for DMS include gas chromatography (GC), gas chromato-
graphy–mass spectrometry (GC-MS), gas chromatography–flame photometric detector
(GC-FPD) [11,12], proton transfer reaction–mass spectrometry (PTR-MS) [13], atmospheric
pressure chemical ionisation mass spectrometry (AP-CIMS) [14], tunable laser absorption
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spectroscopy (TLAS) [15], ion molecule reaction mass spectrometry (IMR-MS) [16] and
various types of sensors [8,15,17–24]. Depending on the area in which it is applied, DMS
detection has limitations, including unsatisfactory lower detection limits starting at ppb,
sensor poisoning and the need for sample concentration in some methods. These limitations
mean that, e.g., the detection of low concentrations of DMS by gas sensors is not as widely
reported in the literature as other gases. In addition, the humidity aspect of the analysed
atmosphere is often not considered.

Of the numerous detection methods presented, the requirements for the detection
of volatile sulphur compounds, including dimethyl sulphide, can be met by chemical
resistive gas sensors based on metal oxide semiconductors (MOSs) [25]. They offer a
significantly cheaper and simpler alternative to techniques such as gas chromatography
or mass spectrometry. In addition, compared to other types of sensors, their important
advantages include a relatively simple operating principle, the possibility of high sensitivity
(S), compact size, simple design, fast response time and low cost and energy consump-
tion [26,27]. The MOS sensor is the most commonly used sensor type in electronic nose
systems [28]. Furthermore, of particular note is the intensive development of sensors in
which the active layers are made of nanomaterials [29]. Due to the fact that in this type of
sensor, the reactions occurring on the surface of the gas-sensitive layer are mainly crucial
during sensing, nanomaterials in sensing are desirable due to the high surface to volume
ratio of the structures obtained (nanowires, nanoplates, etc.), the possibility to control the
shape and dimension of the structures through the proper selection of the parameters of
the sensor, the almost monocrystalline structure of nanoparticles and the easy coupling of
chemical and physical properties, resulting in even more sensitive sensors with a lower
detection limit (LOD) and better selectivity and stability [30].

Y. Li et al. [20] described a sensor using Co3O4 (cobalt(II, III) oxide) nanosheet-built
hollow spheres containing ultrafine necked grains as the active material. The use of this
p-type semiconductor oxide allowed the sensor to achieve high sensitivity to 125 ppm
DMS (S = 3.0). Jang et al. [23] used flexible chemoresistors based on SnO2 (tin dioxide)
nanosheets functionalised with Pt nanoparticles, obtaining a sensor sensitive as low as
1 ppm DMS (S = 4.84). M. Krawczyk et al. [31] presented the results of DMS detection
using β-Ga2O3 (β-gallium oxide) modified with gold nanoparticles as the active layer. It
was observed that the presence of Au nanoparticles improves the sensitivity of the sensor
(S = 2.0 to 16 ppm DMS) and, in addition, a different response mechanism was observed
than in the case of the unmodified β-Ga2O3 layer.

Key aspects to be considered in the development of MOS gas sensors for DMS detection
are the modification of the active layer composition (e.g., by appropriate selection of the
material and its microstructure), the use of modifying dopants (activators), the selection
of a filter with a suitable microstructural structure and chemical composition and affinity
for the detected compounds. Various improvements are possible due to the huge number
of modification possibilities to both the receptor and actuator parts. This speaks to the
enormous potential of this type of sensor.

The use of zinc oxide in VSC detection deserves special attention. This n-type semi-
conductor has a number of properties that cause this compound to be used in electronics
and photonics. These include, among others, a wide band gap (3.37 eV), low fabrication
cost, chemical and thermal stability, high electromechanical coupling coefficient and high
exciton binding energy [32,33]. In addition, a very important advantage of this oxide,
desirable for sensing techniques, is the possibility of obtaining different morphological
forms, by appropriate selection of the synthesis method and parameters [34–36]. A prelimi-
nary study of improved sensor sensitivity to dimethyl sulphide using ZnO was presented
by the authors in an earlier article [21], where ZnO grains doped with Au nanoparticles
with a sepiolite filter were proposed. It was observed that doping zinc oxide with gold
nanoparticles increased the sensitivity relative to DMS, with the additional sepiolite filter
showing the greatest improvement. Thus, a sensor sensitive to 2 ppm DMS (S = 1.7) was
obtained; however, in contrast to earlier mentioned articles on chemoresistors, the atmo-
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sphere next to the DMS contained 90% relative humidity, since, from the point of view of
medical diagnostics, the presence of water vapour in exhaled air can significantly affect
VSC detection.

In this article, the authors based on the knowledge gained and described previously
present next modifications in terms of developing a DMS sensor with higher sensitivity
and lower detection limit to develop sensors suitable for detecting, e.g., halitosis markers
in exhaled air. Improved performance was achieved by changing the microstructure of
ZnO (from grains to nano- and microplates), increasing the content of gold nanoparticles
as a dopant (from 0.25 wt.% to 0.75 wt.%) and using the proven and previously described
sepiolite-based passive filter [37]. Modification of the ZnO-based layer composition enabled
the development of a sensor highly sensitive to 1 ppm DMS (S = 11.4), achieving an LOD
of as much as 406 ppb, despite the presence of additional high water vapour content (90%
RH) in the analysed atmosphere.

2. Materials and Methods

Zinc oxide was obtained by chemical synthesis. After mixing an aqueous solution of a
precursor containing Zn2+ ions (ZnCl2) and sodium hydroxide (NaOH) and then exposing
the solution to a 120 W microwave field (mf), the following reactions took place for 30 min:

ZnCl2 + 2NaOH → Zn(OH)2↓ + 2NaCl, (1)

Zn(OH)2
mf→ ZnO, (2)

When the reaction was complete, the temperature of the solution was about 85 ◦C
and a white ZnO precipitate was visible at the bottom of the beaker. The precipitate
was washed several times with deionised water and isopropanol and then used to make
gas-sensitive layers.

Gold nanoparticles were obtained by chemical reduction of gold ions in the aqueous so-
lution as described [33], with minor modifications. Low molecular weight polyethyleneimine
(PEI) with an average molecular weight of 10 kDa and the surfactant Triton® X-100 were
used as stabilisers. The prepared solutions were mixed together in such amounts that the
final concentration of ions in the Au3+ solution was 0.5 mM. Ascorbic acid was added to
a solution containing the precursor of gold ions and stabilizers. The reaction produced a
ruby-coloured gold colloidal solution with a gold concentration of 100 ppm.

The doping of the gas-sensitive material with gold nanoparticles was performed by
mixing. The process involved dispersing hexagonal ZnO plates in isopropanol, and then a
colloidal solution of gold nanoparticles was added to the resulting mixture. The content of
gold ions in the solution relative to the weight of zinc oxide was 0.75 wt.%. After thorough
mixing on a magnetic stirrer, the solution was dried at 80 ◦C and then annealed in a furnace
at 450 ◦C for 0.5 h to remove organic residues.

The crystal structure of the hexagonal ZnO nano- and microplates was determined by
X-ray diffraction using a Malvern Panalytical Empyrean XRD X-ray diffractometer. CuKα

radiation was used. Measurements were made by scanning the sample over a range of
θ/2θ angle values.

Microstructure studies of the sensor layer were performed using a SEM SU6600
scanning electron microscope (Hitachi, Hitachinaka, Japan) and an HRTEM Tecnai G2 20
X-TWIN high-resolution transmission electron microscope (FEI Company).

The size distribution of the gold nanoparticles was determined by Dynamic Light
Scattering (DLS). For this purpose, a Nicomp 380ZLS (Particle Sizing Systems, USA) con-
taining a 633 nm laser with a power of 50 mW was used. The time for a single measurement
was 3 min, and the photon-counting frequency of the autocorrelator was approximately
200 kHz. Polymethylmethacrylate (PMMA) cuvettes measuring 40 × 10 × 10 mm were
used in the measurements.

For the sensor structure, an alumina ceramic substrate (96% Al2O3, CeramTec, Plochin-
gen, Germany) with a thickness of 250 µm was used as a structural support element to
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ensure good mechanical stability. The dimensions of a single sensor support structure
were 25.40 × 2.45 × 0.25 mm. The electrodes and heater leads were screen-printed from
gold paste (8846-G, ESL Europe, Reading, UK). A meander-shaped platinum heater for
uniform temperature distribution on the substrate was made from Pt-5545 paste (ESL
Europe, Reading, UK); the platinum meander area was approximately 7.10 mm. The gas-
sensitive layer (pure or doped) was made by screen-printing technology on gold electrodes,
with a thickness of 40 µm. A sepiolite-based passive filter with a thickness of 40 µm and
dimensions of 800 × 1600 µm was also used. The design of the sensors analysed is shown
in Figure 1.
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Figure 1. Sensor design (view shows both sides).

Electrical characterisation of the sensors was performed using the temperature-stimulated
conductance method (TSC) in a synthetic air atmosphere with a relative humidity of 90%
and in a dimethyl sulphide atmosphere with a concentration of 1–10 ppm. The substrate
temperature was controlled cyclically and linearly at a constant rate of 2 ◦/s between
150 ◦C and 750 ◦C by using a platinum heater powered by an E3632A DC power supply
(Agilent Technologies, Santa Clara, CA, USA) in the design. The current flowing through
the gas-sensitive material was recorded during both the rise and fall of temperature. The
sensor layer was DC-polarised using a Keithley 2400 current-voltage source (Keithley
Instruments Inc., Cleveland, OH, USA). Electrical measurements were recorded using a
potentiostat-galvanostat type SI 1287 from Solartron Analytical (Farnborough, UK), using
CorrWare 3.5 h software from Scribner Associates Inc. (Southern Pines, NC, USA).

The sensitivities of all developed sensors to DMS were also determined from the
temperature changes in conductance of the sensors tested. The sensitivity of the sensors (S)
was defined as the ratio of the sensor conductance in the atmosphere containing the gas
to be determined (Ggas) to the conductance in a reference air atmosphere (G90%air) with a
relative humidity of 90%.

3. Results
3.1. Characterisation of Materials

SEM imaging of the resulting zinc oxide showed that exposure of the reaction mixture
to a microwave field, and thus an increase in temperature, led to the formation and
crystallisation of ZnO in the form of plates (Figure 2a,b).



Sensors 2024, 24, 5690 5 of 16

Sensors 2024, 24, x FOR PEER REVIEW 5 of 17 
 

 

3. Results 
3.1. Characterisation of Materials 

SEM imaging of the resulting zinc oxide showed that exposure of the reaction mix-
ture to a microwave field, and thus an increase in temperature, led to the formation and 
crystallisation of ZnO in the form of plates (Figure 2a,b). 

  
(a) (b) 

Figure 2. SEM images of obtained ZnO plates: (a) under ×13,300 magnification; (b) under ×18,000 
magnification. 

The obtained zinc oxide was characterised by the presence in its structure of hexag-
onal plates with different diameters of about 1 µm and thicknesses of about 150 nm. TEM 
analysis of the structures obtained confirmed the hexagonal shape of the crystallites and 
the polycrystallinity of the material (Figure 3a,b). 

  
(a) (b) 

Figure 3. Microstructure of hexagonal ZnO plates: (a) TEM image, (b) selected area electron diffrac-
tion pattern (SAED). 

XRD studies (Figure 4) showed that the crystallographic structure of the obtained 
ZnO corresponds to reference zinc oxide with a hexagonal structure, lattice constants a = 
3.2501 Å, b = 3.2501 Å and c = 5.2071 Å and space group P63mc. 
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The obtained zinc oxide was characterised by the presence in its structure of hexagonal
plates with different diameters of about 1 µm and thicknesses of about 150 nm. TEM
analysis of the structures obtained confirmed the hexagonal shape of the crystallites and
the polycrystallinity of the material (Figure 3a,b).
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XRD studies (Figure 4) showed that the crystallographic structure of the obtained
ZnO corresponds to reference zinc oxide with a hexagonal structure, lattice constants
a = 3.2501 Å, b = 3.2501 Å and c = 5.2071 Å and space group P63mc.
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Figure 4. X-ray diffractogram of the resulting zinc oxide nano- and microplates.

The substructure of the gold nanoparticles was observed using a transmission electron
microscope (TEM). Analysis of the TEM images showed that the gold nanoparticles had a
spherical shape and the average size of the gold nanoparticles, as determined by dynamic
light scattering (DLS), was approximately 13.9 nm (Figure 5a,b).
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The hexagonal nano- and microplates were doped by volume with gold nanoparticles
at 0.75 wt.%. TEM/EDS analysis of the material confirmed the presence of spherical forms
of gold nanoparticles (Figure 6) which were uniformly dispersed on the surface of the
material. When ZnO plates were doped, there was no incorporation of gold into the ZnO
structure. Au was not visible in the X-ray diffractogram, because the amount of gold was
less than 1 wt.% and it was present in very high dispersion.
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Figure 6. Result of EDS elemental analysis; on the right, a TEM image of gold nanoparticles in
doped ZnO.

One of the most promising techniques for improving sensor performance is to create
sensor structures consisting of at least two layers with different electrical and catalytic
properties [38,39]. The layer in direct contact with the electrodes acts as the actual active
layer, while other materials, layered on top of it, act as a filter to modify the sensor
parameters. Such filters may be characterised as either catalytic (active filters) or non-
reactive (passive filters) with respect to the component of the atmosphere to be determined
or interfered with. Due to the specific properties of sepiolite, such as high absorption
capacity (0.42 cm3/g), small channel diameter, large specific surface area (148 m2/g at
ambient temperature, 263 m2/g at 100 ◦C, 60 m2/g at 900 ◦C), this material was used as a
passive filter. Figure 7 shows the surface area of the sepiolite filter before (Figure 7a) and
after printing (Figure 7b).
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As can be seen, this material is characterised by a developed surface with a fibrous
structure, with visible tubes/channels resulting in unique properties. The material analysis
and microstructure of sepiolite was comprehensively presented in the authors’ previous
article [37].

3.2. Electrical Characterisation

The following three types of sensors were fabricated, differing in the composition of
the gas-sensitive layer:

• A gas-sensitive layer in the form of hexagonal ZnO nano- and microplates (ZnO plates);
• A gas-sensitive layer in the form of hexagonal ZnO nano- and microplates doped with

0.75 wt.% gold nanoparticles (ZnO plates/Au(vol));
• A gas-sensitive layer in the form of hexagonal ZnO nano- and microplates doped

with 0.75 wt.% gold nanoparticles, additionally coated with a sepiolite filter (ZnO
plates/Au(vol)/sepiolite).

The sensors were electrically characterised in an atmosphere: with a high water
vapour content of 90% RH and with a high humidity of 90% RH containing DMS in the
concentration range 1–10 ppm.

An analysis of the sensor test results in high humidity atmospheres has revealed that
all the sensors exhibit a notable response to low DMS concentrations. This is evidenced
by the significant increase in their conductance in the presence of DMS compared to their
initial conductance (Figure 8a,b). Doping with gold nanoparticles increased the sensitivity
to the sulphur marker. It should be noted that doping with gold nanoparticles resulted in a
shift of the sensitivity maximum towards the lower temperature (Figure 8c). The highest
sensitivity was obtained when the doped layer was covered with a sepiolite filter.
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Figure 8. Thermal changes in the (a) conductance of ZnO plates/Au(vol) and ZnO plates sensors,
(b) conductance of ZnO plates/Au(vol)/sepiolite and ZnO plates sensors, (c) sensitivity of all
sensors in an atmosphere of 90% relative humidity containing 1 ppm DMS. The vertical dashed lines
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Upon analysis of the impact of sepiolite on sensor conductivity in a high-humidity
environment (without DMS), three distinct ranges of areas emerge (Figure 9). In the low-
temperature range up to approximately 280 ◦C, the conductance of the sensor with a
sepiolite layer is observed to be lower than that of the sensor without sepiolite (Figure 9).
This is due to the fact that water molecules from the environment are adsorbed, thereby pre-
venting adsorption on the surface of the sensor material. In the second range of 280–380 ◦C,
the conductance of both sensors is similar, indicating that water desorbs from both the
surface and bulk of the sepiolite and ZnO. In the range above 380 ◦C, the conductivity of the
sensor with a sepiolite filter is higher than that of the sensor without a filter, suggesting that
the release of water molecules from the nodes of the octahedral lattice system in sepiolite
may be a contributing factor [40,41].
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As previously mentioned, the results described in this paper are a continuation of
research into improving the properties of gas-sensitive resistive sensors relative to DMS,
where the active layer is ZnO doped with gold nanoparticles and a sepiolite filter is used.
It was crucial that measurements were also performed in a high-humidity atmosphere.
Based on previous studies, the authors undertook to modify the microstructure of ZnO
(from grains to hexagonal nano- and microplates) and to increase the content of gold
nanoparticles (from 0.25 wt.% to 0.75 wt.%). Based on the electrical characterisation of all
sensors, there was a significant improvement in the sensitivity of all sensors (Figure 10).

As can be seen, the modification of ZnO microstructure contributed to an increase in
the specific surface area interacting with the sulphur marker, thereby enhancing sensor
sensitivity (ZnO grain → ZnO nano- and microplates). Furthermore, by increasing the
amount of nanogold (0.25 wt.% → 0.75 wt.%) with high affinity to sulphur and high
dispersion in the volume of the sensor material, the DMS-detection capability of the
developed sensor was improved four times despite the lower DMS concentration than
analysed in previous studies. Finally, the combination of both modifications and the use of
a proven sepiolite filter resulted in a notable enhancement in sensitivity to 1 ppm DMS,
despite the high-humidity environment.
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Another important parameter of the aforementioned sensors, from the point of view
of halitosis diagnosis, besides sensitivity, is also the lower detection limit. The dependence
of sensitivity on the concentration of any gas can be defined by the following relation:

S = pn (3)

where p is a partial pressure of gas. The value of the exponent n depends on the type of
sensor material, its microstructure and the type of gas to be detected. In a narrow range of
concentrations, this exponential relationship can be approximated by a linear relationship.
As shown in Figure 11, there is a good linearity between the DMS concentrations and the
sensitivity values and the linear correlation coefficient was very high (0.91–0.94). Thus, the
detection limit in this case was determined from the intersection of the trend line with the
line for which the sensitivity is equal to 1 (Figure 11).
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It is desirable for halitosis marker sensors to have the lowest detection limit. On the
basis of the experiments carried out, it was found that a layer enabling the detection of
dimethyl sulphide at a level of approximately 406 ± 6 ppb could be made with a ZnO
plates/Au(vol)/sepiolite sensor. In addition to the fact that the sensor allowed detection in
aggressive environments (sulphur, humidity), the use of cyclic layer annealing after the
measurements allowed for complete desorption of the measurement residue and reuse of
the sensor.

4. Discussion

The change in conductivity of the gas-sensitive layer in the presence of dimethyl
sulphide is caused by catalytic oxidation reactions of this gas occurring on the surface of
the gas-sensitive material. The mechanism of oxidation of dimethyl sulphide is complex,
but schematically it can be described by the following sum reaction, which is the result of a
series of reactions [20,42]:

CH3SCH3 + 9O− → 2CO2 + 3H2O + SO2 + 9e− (4)

This process depends on the temperature, the type of sensor material, its microstruc-
ture as well as the dopants used. Since it is an oxidation reaction, the adsorption of oxygen
on the surface defects of the oxide semiconductor crystal lattice is therefore crucial [26]. In
the case of the analysed hexagonal nano- and microplates, zinc oxide, the bulk and surface
parameters of this material are closely correlated with the point defects present such as
zinc interstice, oxygen interstice, zinc atoms in interstitial sites, oxygen atoms in interstitial
sites, zinc atoms in place of oxygen and oxygen atoms in place of zinc. There are also
combinations of defects in this oxide, e.g., Schottky pair (anion and cation interstice) and
Frenkel pairs (cation gap and interstitial cation) [33]. The dominant defects in ZnO may
be oxygen vacancies, causing an increase in the concentration of donor levels, although
the literature also reports a dominant role for defects in the form of zinc located in the
interstitial position [43,44]. These defects are the result of processes occurring during the
thermal treatment of ZnO and result in the formation of numerous donor and acceptor
levels in the forbidden gap.

Comparing the temperature changes in the sensitivity of individual sensors towards
DMS with the temperature changes in oxygen pressure [45] above the ZnO surface (Figure 12),
it can be seen that if the atmosphere, in addition to water vapour, contains DMS, oxidation
of this compound occurs intensively in the region when physically adsorbed oxygen is
removed from the surface and chemical adsorption of oxygen begins.
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The oxidation of DMS occurs intensively on centres not directly involved in the
competitive process, i.e., the filling of active centres with oxygen molecules. The maximum
sensitivity to DMS of gold-doped sensors is shown at around 350 ◦C. The exception is
undoped zinc oxide, which only shows maximum sensitivity at about 450 ◦C, i.e., when
zinc oxide-sublimation begins. This demonstrates the lower activity of zinc oxide towards
sulphur compounds.

It is widely acknowledged that the structure of the gas-sensitive material is a significant
factor influencing the interaction mechanism of the sensor material with gases, such as
dimethyl sulphide. Zinc oxide in the form of ZnO nano- and microplates compared to
previously studied ZnO grains [21] is characterised by a higher surface area to volume
ratio, a higher rate of electron and hole diffusion to the surface of nano-sized structures and
surface anisotropy, which is important during chemical sorption of gases [36]. The results
clearly demonstrated that during DMS detection, the change of structure from grains to
nanoplates results in a significant improvement in sensitivity.

Another important factor influencing sensor performance is the doping of the sensor
material. The addition of gold nanoparticles, a noble metal with a high chemical affinity to
sulphur, resulted in a fourfold increase in sensitivity to sulphide compared to an undoped
layer, as evidenced in the literature [46–48]. A distinction can be made between dopants
that cause changes in, e.g., degree of crystallinity of the sensing layer [49] or affecting
the kinetics of reactions occurring on the surface of the sensor material—referred to as
promoters [50]. Improvements in the detection capability of VSCs can be achieved by
two mechanisms: electrical or chemical. In the electro-mechanism, doping results in the
formation of a zinc oxide material with gold nanoparticles on the surface (Figure 6). The
formation of Schottky metal/semiconductor barriers between metallic Au islands and zinc
oxide, which exhibits semiconducting properties, is therefore to be expected. It is known
that the work function of zinc oxide nanostructures is approximately 5.2–5.3 eV [51,52],
while that of gold is 4.68–5.1 eV [53,54]. It can be seen, therefore, that a Schottky barrier
is formed at the interface between the zinc oxide and the gold. Since the Fermi levels of
Au and ZnO must be balanced, the electrons pass from gold into ZnO (Figure 13) [55].
Thus, Au nanoparticles cause local changes in the Fermi level of zinc oxide. As a result
of this process, Au islands become positively charged and an electron-enriched layer is
formed near these islands on the surface of ZnO particles [33]. The increase in electron
concentration results in an increase in the amount of oxygen chemisorbed on the surface
of the sensor material [26]. It was thus observed that the conductance of ZnO nano- and
microplates that had been modified with Au nanoparticles was higher than that of the
unmodified ZnO.
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Au nanoparticles. EVC, EC, EF, EI, EV and Φ denote the vacuum energy, conduction band min-
imum, Fermi level, Fermi level for intrinsic semiconductor, valence band maximum and work
function, respectively.
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In the chemical mechanism, the dopant is treated as an activator of the sensor layer to
catalytically promote chemisorption. Au is also known to promote the catalytic dissociation
of molecular oxygen species which is also known as spillover in catalysis [56,57]. An
increase in the concentration of chemisorbed oxygen on the surface causes a process
of oxygen spillover to the ZnO surface, where oxygen is involved in surface reactions
(Figure 14). These processes result in a change in the surface energy of the material and its
resistivity, while the chemical composition of the dopant remains unchanged [58,59].
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Figure 14. Schematic representation of ZnO surface doped with gold nanoparticles during
DMS detection.

The last of the proposed modifications involved the use of a sepiolite filter. Sepiolite
is a dielectric, and thus no potential barrier is formed at the gas-sensitive layer–sepiolite
interface. Furthermore, is also not catalytically active, so the sepiolite layer should be
considered as a diffusion barrier not only for gas molecules diffusing into the sensing
material, but also affecting the desorption process of reaction products. The layer will
have the greatest effect on molecules with a large dipole moment. Assuming complete
oxidation of dimethyl sulphide (4), water is released on the surface of the sensor layer.
Consequently, sepiolite will have the greatest impact on the diffusion of water formed
during the oxidation of the sulphur markers (Figure 15). Moreover, water molecules are
present in the ambient atmosphere (high humidity) and are embedded in the sepiolite
structure. Water released from the sepiolite at different temperature ranges diffuses not
only into the ambient atmosphere, but also into the gas-sensitive material, causing a change
in its conductivity. In accordance with the findings of the authors of reference [37], the rate
of diffusion of reactants and products from the atmosphere to the surface of the sensor
and vice versa is identical (V1, V4). The filter affects the rate of diffusion, adsorption and
desorption of reactants and products (V2, V3) within a filter (Figure 15).
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Carbon dioxide molecules are also formed as a result of the DMS oxidation reaction.
Their interaction with the filter layer should be neglected as they are molecules without a
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dipole moment. They can interact with adsorbed water molecules, but in a temperature
range close to the ambient temperature [37].

It can be concluded that the obtained sensors allow the detection of dimethyl sulphide
at low concentrations in the presence of high humidity, which is important for the detection
of markers present in exhaled air. In the authors’ opinion, in the case of dimethyl sulphide,
it is necessary to consider next modifications to the composition of the sensor layer in order
to further reduce the detection limit. The direction of the proposed changes is appropriate
and worthy of further consideration.
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