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Abstract: In recent years, artificial intelligence technology has seen increasingly widespread ap-
plication in the field of intelligent manufacturing, particularly with deep learning offering novel
methods for recognizing geometric shapes with specific features. In traditional CNC machining,
computer-aided manufacturing (CAM) typically generates G-code for specific machine tools based
on existing models. However, the tool paths for most CNC machines consist of a series of collinear
motion commands (G01), which often result in discontinuities in the curvature of adjacent tool paths,
leading to machining defects. To address these issues, this paper proposes a method for CNC system
machining trajectory feature recognition and path optimization based on intelligent agents. This
method employs intelligent agents to construct models and analyze the key geometric information in
the G-code generated during CNC machining, and it uses the MCRL deep learning model incorpo-
rating linear attention mechanisms and multiple neural networks for recognition and classification.
Path optimization is then carried out using mean filtering, Bézier curve fitting, and an improved
novel adaptive coati optimization algorithm (NACOA) according to the degree of unsmoothness of
the path. The effectiveness of the proposed method is validated through the optimization of process
files for gear models, pentagram bosses, and maple leaf models. The research results indicate that
the CNC system machining trajectory feature recognition and path optimization method based on
intelligent agents can significantly enhance the smoothness of CNC machining paths and reduce
machining defects, offering substantial application value.

Keywords: CNC system; intelligent elements; process analysis; path optimization; deep learning;
feature recognition

1. Introduction

The rapid advancement of artificial intelligence and machine learning technologies
has established CNC technology as a crucial foundation in the field of intelligent manu-
facturing [1]. These emerging technologies have begun to directly influence the machin-
ing process, enhancing the accuracy of CNC systems, optimizing efficiency, bolstering
competitiveness and sustainability, and significantly improving the quality of produced
workpieces [2,3]. However, in current industrial practice, automated manufacturing heav-
ily relies on data transfer between CNC machines and CAM systems. The machining
programs generated directly by CAM systems typically focus only on the continuity of
tool positions, often neglecting the finer details of the motion process. This can result in
rough tool paths, insufficient smoothness, and sharp corners, thereby adversely affecting
the machining process.
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In the manufacturing process of most mechanical parts, various machining features are
typically involved. Previously, these features had to be manually extracted and specified
using traditional CNC feature recognition methods, which resulted in high labor intensity
and were constrained by factors such as the operator’s skill level and the geometric shape
of the workpiece. Consequently, this approach was limited to analyzing only simple
or specific features. However, with the continuous development and upgrading of the
manufacturing industry, traditional CNC systems have begun to face challenges in feature
recognition. At this juncture, deep learning technology, with its ability to automatically
learn and extract features, has significantly reduced the complexity and difficulty of the
task [4]. Deep learning not only provides more precise feature recognition, benefiting from
its robust data fitting and learning abilities, but it also adapts to more complex patterns
and variations [5]. Its models can dynamically adjust parameters to accommodate new
data or environments, a flexibility constrained in traditional CNC systems. Moreover, deep
learning can handle large-scale data, gaining insights from vast amounts of information,
which enables it to more accurately simulate and predict manufacturing processes, thereby
facilitating intelligent decision-making and optimization.

Path optimization is paramount in modern manufacturing. It can substantially reduce
waste and enhance efficiency and precision, thereby boosting competitiveness and sustain-
ability. Effective path optimization minimizes ineffective reciprocation, ensures smooth and
continuous machine tool movement, reduces wear and tear, extends equipment lifespan,
and lowers energy consumption, thereby achieving green manufacturing [6–8]. Path opti-
mization not only enhances machining efficiency but also significantly improves product
quality. By reducing excessive machine movements and conflicts, unnecessary errors are
avoided, machining precision is increased, and product quality is ensured. Furthermore,
path optimization can flexibly accommodate various complex machining demands, enhanc-
ing the adaptability and flexibility of the manufacturing process and making it a critical
component of modern intelligent manufacturing [9].

Despite significant progress in the aforementioned research, there remains room for
improvement in feature recognition accuracy and the smoothness of path optimization.
Therefore, to enhance production efficiency and product quality, adopting more efficient
and intelligent methods is crucial. To address these challenges, we have developed a novel
feature recognition method and path optimization algorithm. The primary contributions of
this paper are summarized as follows:

a. Introduction of an agent-based CNC system architecture, leveraging artificial intelli-
gence technology to enhance the performance and efficiency of CNC systems.

b. Proposal of a deep neural network integrating multiple neural network models and
linear attention mechanisms for improved feature recognition efficiency.

c. Utilization of four mechanisms to improve the COA in order to enhance the smoothness:

• The honey badger algorithm initializes the coati population, thereby enhancing
the initial population quality and optimization efficiency.

• Information such as the population size, iteration count, and fitness function
is embedded into the improved path update rules, which allows the new rules
to optimize the search process based on the current population status, thereby
improving convergence speed.

• A dynamic multi-population strategy is used to comprehensively explore the
search space and maintain population diversity.

• A gradient descent fitness-guided strategy dynamically adjusts the learning
rate, thereby controlling the magnitude of each path point update for quicker
convergence to the optimal solution.

In this study, we explore a novel method for CNC system process optimization, incor-
porating deep learning into CNC feature recognition and applying optimization algorithms
to trajectory optimization. Our goal is to achieve automatic machining trajectory recog-
nition and utilize artificial intelligence to make the trajectory optimization process more
autonomous and intelligent, thereby enhancing the operational efficiency and precision of



Sensors 2024, 24, 5720 3 of 33

CNC systems to meet the rapid development needs of the manufacturing industry. This
work will contribute to the advancement of CNC technology, providing new pathways for
realizing more intelligent manufacturing.

The remainder of this paper is structured as follows. Section 2 provides a compre-
hensive review of related works on feature recognition and path optimization methods.
Section 3 introduces the agent-based CNC system architecture. Section 4 presents the theory
of machining feature recognition and the improved coati optimization algorithm. Section 5
showcases the experimental results of the deep learning network and path optimization.
Finally, Section 6 concludes this paper.

2. Related Works

In the realm of numerical control, feature recognition and path optimization are two
critical technical aspects. These technologies not only play a pivotal role in enhancing
machining accuracy but also significantly improve the efficiency and automation level
of the machining process. Through feature recognition technology, CNC systems can
automatically identify the geometric features of workpieces, thus formulating more precise
machining strategies. Concurrently, path optimization technology ensures that the tool
moves along the optimal path during machining, minimizing processing time and energy
consumption while enhancing surface quality and machining precision. The integration
of these technologies renders the CNC machining process more intelligent and efficient,
effectively reducing human error and improving product quality and production stability.

2.1. Feature Recognition in CNC Machining Based on Deep Learning

In the digital age, CNC (Computer Numerical Control) machining feature recognition
has become increasingly important. Whether for machining parts or creating complex
workpieces, this technology has significantly enhanced production efficiency and ensured
product quality. It has had a profound impact on various fields, including computer-aided
design (CAD), computer-aided process planning (CAPP), and computer-aided manufac-
turing (CAM). These three domains are crucial stages in modern engineering, design, and
manufacturing, with feature recognition technology playing a vital supporting role in
these tasks.

The CAD system enables users to perform intricate engineering design tasks using
computer technology. The complexity of design primarily arises from the diversity in
workpiece shapes and dimensions. Xu et al. [10] proposed an asynchronous LiDAR-
camera fusion dynamic positioning framework based on deep clustering. By converting
point clouds into distance images and introducing a neural network framework for drone
recognition, they achieved robust positioning and identification of drones. However, this
framework also has certain limitations. While converting point clouds into distance images
improves processing efficiency, it may result in the loss of spatial information, thereby af-
fecting the accuracy of three-dimensional model reconstruction. Deng et al. [11] introduced
an innovative LiDAR-based framework for drone detection, positioning, and tracking.
By combining the distance image projection, LiDAR point cloud depth clustering, and
drone technology, they achieved a novel approach to drone detection. This framework also
demonstrates unique application potential in modern intelligent manufacturing. Zhang
et al. [12] proposed a deep learning network called BrepMFR, designed for feature recog-
nition in B-rep models. This network effectively handles intersecting features of complex
geometric structures. The advantage of this method lies in its ability to automatically
detect intricate features, reducing manual intervention and enhancing design accuracy.
However, a potential drawback of this approach is its high dependency on the quality of
input data and computational complexity, which may limit its scalability in large-scale
industrial applications.

Once the design is completed, the production process must be considered, in which
CAPP plays a crucial role. CAPP encompasses a range of tasks, including determin-
ing material types, defining production steps, and setting machine parameters. In this
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process, feature recognition technology is vital, as it allows for appropriate settings and
optimizations based on the specific features of the workpiece. Wang et al. [13] proposed
DeepFeature, a hybrid learning framework based on Graph Neural Networks (GNNs)
aimed at further enhancing the process planning stage. However, the complexity of GNN
models may require substantial computational resources and specialized knowledge for
effective implementation. Once all the features of the workpiece are accurately identified,
precise machining programs can be generated, thereby optimizing the machining process,
reducing costs, shortening production times, and improving product quality.

In the CAM domain, feature recognition technology can automatically transform de-
sign and process planning into tangible products, truly realizing intelligent manufacturing.
Wu et al. [14] proposed a semi-supervised learning framework that leverages both labeled
and unlabeled data to learn meaningful visual representations, providing a powerful tool
for workpiece feature recognition. The primary advantage of this framework is its ability to
utilize both labeled and unlabeled data, which is particularly valuable when labeled data
are limited.

The aforementioned methods offer promising advancements in feature recognition,
driving automation and efficiency improvements in manufacturing. Although deep learn-
ing provides greater accuracy and flexibility, its complexity and resource demands may
restrict its practical application in certain scenarios. Nevertheless, ongoing progress in
these fields is continually pushing the boundaries of intelligent manufacturing, making
more cost-effective and high-quality production processes possible.

2.2. CNC Machining Path Optimization

In modern manufacturing, the significance of optimizing CNC machining paths is
becoming increasingly prominent. Tool-path optimization techniques greatly enhance
machining efficiency, reduce production costs, and improve product quality. The initial ma-
chining paths generated by CAD/CAM systems are typically formed into G-code based on
design models and predetermined machining strategies. However, in practical applications,
this process may introduce certain errors. Kaigom et al. [15] introduced a novel concept
for developing RDT, which systematically captures robotic dynamics and purposefully
gathers data. Through data analysis, it was discovered that the computational accuracy of
CAD/CAM systems may be limited by current hardware and software conditions, leading
to potential issues with the smoothness of generated tool paths. These problems may cause
the machine to experience sudden stops and restarts during operation, thereby increas-
ing wear and reducing its lifespan. Discontinuous tool paths may also adversely affect
machining accuracy, resulting in inconsistent product quality.

Fang et al. [16] proposed a real-time smoothing algorithm called g-smooth, which
ensures higher-order continuity of tool paths in three-axis hybrid machining. This al-
gorithm addresses the discontinuities in the initial tool paths, enhancing the stability of
machine operations. The primary advantage of Fang’s method is its ability to maintain
tool-path continuity, thereby reducing machine vibration and wear. However, the real-
time nature of this algorithm may impose a computational burden, potentially limiting
its applicability in highly complex machining scenarios. To address the continuity issues
of mixed G01 and G02/03 encoding, Shi et al. [17] proposed a comprehensive tool-path
smoothing method based on a motion overlap strategy, employing a heuristic algorithm
to seek optimal motion parameters that meet the constraints of mixed encoding and ef-
ficiency requirements. However, when dealing with extremely complex geometries, the
heuristic algorithm may converge to suboptimal solutions, thereby affecting overall ma-
chining accuracy. For particularly intricate 3D models, CAD/CAM systems may struggle
to generate an optimal initial machining path. In such cases, the resulting G-code may
exhibit discontinuities or excessive spacing at corners, leading to severe machine vibra-
tion during sharp turns, which negatively impacts machining accuracy and efficiency.
Hua et al. [18] proposed an effective solution by adjusting the discrete curvature at each
tool-tip point to refine the tool-tip position, thereby reducing the maximum curvature
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of the path and effectively mitigating vibration at sharp corners. The main advantage
of Hua’s method lies in its focus on curvature adjustment, particularly in reducing tool
vibration at critical points. Zhang et al. [19] introduced an adaptive tool-path generation
method that employs a dual-head snake algorithm based on the least squares method to
smooth the original part contours, generating tool paths composed of straight lines and arcs.
This method excels in reducing machine vibration, improving accuracy, and enhancing
efficiency. However, its reliance on the least squares method may introduce limitations in
capturing highly complex surface features, potentially affecting the smoothness of the tool
path in such cases.

The aforementioned studies collectively address the issue of tool-path discontinuity,
making the movement paths of tools during machining more fluid. By reducing vibrations
caused by sharp turns, these methods contribute to improved machining accuracy and
efficiency. However, when selecting the most suitable tool-path optimization strategy,
the trade-off between computational complexity and real-time applicability remains a
crucial consideration.

3. Agent-Based CNC System Architecture

In recent years, with the continuous development of the manufacturing industry, CNC
machining technology has played a crucial role in enhancing production efficiency and
machining precision. However, traditional CNC path-planning methods often rely on
preset rules and algorithms, which struggle to adapt to complex and dynamic machining
environments. To address this issue, an agent-based CNC system architecture is proposed,
encompassing the modeling and driving of intelligent CNC. This includes the digital twin
of intelligent CNC and machine tool machining and considers the application of deep
learning technology in feature recognition and path optimization within CNC machining,
providing practical references for achieving intelligent CNC.

3.1. Intelligent Requirements

Intelligent manufacturing systems achieve optimal manufacturing outcomes by in-
tegrating the capabilities of machines, humans, and processes, thereby optimizing the
use of manufacturing resources, adding value to people’s lives and careers, and reducing
waste. Thus, intelligent manufacturing systems hold significant importance in modern
societal development [20]. CNC systems, as the core component of CNC technology, play
a vital role in CNC machining. Intelligent CNC systems offer higher programmability
and flexibility, significantly improving manufacturing quality and efficiency [21]. CNC
machines control the movement and machining processes of machine tools through CNC
systems, executing automated machining based on pre-written program instructions.

The servo system is a critical part of CNC machines, comprising servo motors, drivers,
and feedback devices. It is crucial for coordinating the trajectory accuracy between multiple
feed axes and ensuring contour precision [22]. Digital twin technology is a potential
solution for enhancing automation and advancing toward intelligent manufacturing [23].
By utilizing data collected from sensors, digital twin technology can monitor the operational
status of CNC machines and servo systems in real time and generate their real-time digital
models. Feature recognition is a key issue in intelligent manufacturing, enabling the
extraction of valuable geometric information from solid models and achieving seamless
digital connectivity from design to manufacturing [13]. For identified defective paths,
optimization algorithms are employed to enhance path quality.

In traditional manufacturing modes, design and manufacturing are separate, with
tool-path defects only fed back after manufacturing flaws are detected, requiring extensive
effort to adjust and redesign the model. This paper proposes a new workflow, as shown in
Figure 1. The red dashed box indicates the newly added workflow. After the CAM system
generates the initial tool trajectory, feature recognition and optimization are performed to
generate high-quality, smooth paths for subsequent manufacturing.
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Figure 1. Web application for communication between CAM and machine tools.

3.2. System Model and Structure

A modular structure plays a critical role in the design of CNC systems. The synergy
between various intelligent components across modules fosters a dynamic environment for
learning and self-optimization, as illustrated in Figure 2. The intelligent elements include
the following:

• CAD/CAM: The process of design and manufacturing using NX software (Version
12.0, Siemens Digital Industries Software, Plano, TX, USA) . This is the input part of
the intelligent system, providing design data and manufacturing instructions.

• Learning: Extracts useful information from data to optimize models and manufactur-
ing processes.

• Digital Twin: Provides a virtual environment for testing and optimization, enhancing
efficiency and precision.

• Sense: Monitors various parameters during the manufacturing process, providing
real-time feedback to the digital twin and optimization modules.

• Optimization: The process of optimizing system performance based on learning and
sensing data, reducing resource consumption, and refining manufacturing processes.

• NC System and Machine Tool: Receives instructions from the optimization module
and performs machining and manufacturing according to CNC system directives.
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The intelligent CNC model encompasses the entire process from model design to
final mechanical processing, including real-time feedback. This model begins with NX
software, which is crucial in both the design and manufacturing stages. Achieving the
required precision and surface quality is mainly addressed by selecting the tool-path
density and appropriate cutting conditions. However, these measures are not always
sufficient, and even with optimal choices, the surface quality and precision often decline [17].
By utilizing deep learning technology for feature extraction and pattern recognition, a
seamless digital connection from design to manufacturing can be established based on the
concept of features [13]. The optimization stage is the critical link in the entire process,
focusing on optimizing the process flow based on data analyzed by the learning module.
For identified rough paths, further calculations and adjustments through optimization
algorithms are necessary to enhance path efficiency and precision. To achieve smooth and
continuous machine motion, local corners must be smoothed to ensure the continuity and
smoothness of the machining path [6]. Digital twins represent virtual replicas of the physical
manufacturing environment, providing new opportunities for real-time monitoring of the
machining process. They can simulate the actual production environment while considering
changes in the machining process and operating conditions [24]. This enables testing and
validation in a virtual environment, thereby reducing risks in actual production.

Figure 2. Modeling scheme of intelligent elements in a CNC system.
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The sensing module involves sensors and other devices that collect real-time data from
physical machines, monitoring various parameters in the production process and feeding
data back to the system. The CNC system, as the brain of the machine tool [25], needs to
control the machine based on inputs from the optimization and sensing modules to achieve
precise control of the machine tool. The machine tool, being the physical apparatus that
performs manufacturing tasks, plays a critical role in manufacturing, as its performance
significantly impacts product quality and production efficiency [26]. Hence, intelligent
modules need to be added to facilitate communication. The information flow process
begins with CAD/CAM design, inputting the design into the learning module, which
processes the data and inputs it into the optimization module. The optimization module
communicates with the digital twin for simulation and validation processes, and the digital
twin returns data to the learning module for further optimization. The sensing module
collects real-time data from physical machines and sends it to the digital twin and learning
module. The optimized and validated process is sent to the NC system, which controls
the machine tool to execute manufacturing tasks, and the data from the machine tool are
collected and fed back by the sensing module, completing the feedback loop.

The proposed system model demonstrates the interaction and data flow among vari-
ous components in an intelligent manufacturing system, emphasizing a continuous loop
of learning, optimization, and real-time feedback to improve manufacturing processes.
Through this closed-loop system, the manufacturing process becomes more intelligent, au-
tomated, and efficient, thereby enhancing production quality and efficiency while reducing
costs and risks.

3.3. Assembly Line Work Mode

In this study, the design of the intelligent agent module revolves around the CNC
system processing workflow, as illustrated in Figure 3. The intelligent agent module acts as
a critical node in the integrated processing chain of the CNC system, facilitating information
transmission and processing, thereby achieving more efficient and precise perception and
control of the machining process. Manufacturing activities start with the CAD/CAM
design stage, including modeling and CNC machining. Next is the post-processing stage,
involving tool-path generation and G-code generation. Subsequently, the CNC system
receives these instructions and performs instruction interpretation and data processing. At
this stage, process and data analysis are also conducted.

Figure 3. Machining process flow structure of an intelligent CNC system.

To evaluate the machining process, this study employs feature recognition technology
based on deep learning neural networks to analyze and assess the results. The optimization
stage utilizes optimization algorithms and visualization tools to improve the machining
process, ensuring operational efficiency and precision. The process then moves into the
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servo control and machine tool machining stage, where actual machining operations and
axis movements occur, along with motion control and signal conversion. Digital twin
technology is used for feedback and improvement of the entire process, dynamically
adapting to the actual machining requirements and conditions by combining virtual and
real elements, thus achieving comprehensive monitoring and optimization of the machining
process. This information flow is not unidirectional but aids in the dynamic adaptation of
the system, better aligning with actual machining requirements and conditions.

4. Mathematical Model

In this section, the feature design of machining trajectories and the fundamental
procedure of the improved COA are introduced.

4.1. Machining Path Feature Design

By analyzing the physical characteristics of the control system’s machining paths,
feature extraction and recognition are performed for paths exhibiting uneven smoothness.
The features of the machining paths are defined below.

A path consists of a series of coordinates (xi, yi). Given that the contribution of the
z-axis coordinates is minimal, the path is identified using its two-dimensional coordinates.
For each point i on the path, the direction vector vi is defined as the vector from point i to
point i + 1: vi = (xi+1 − xi, yi+1 − yi).

The dot product of two vectors, vi and vi−1, is defined by Equation (1):

vi · vi−1 = (xi+1 − xi)(xi − xi−1) + (yi+1 − yi)(yi − yi−1) (1)

The formula defines the dot product of two vectors, vi and vi−1, to quantify the
directional relationship between adjacent vectors.

The Euclidean length of vector vi is defined by Equation (2):

|vi| =
√
(xi+1 − xi)2 + (yi+1 − yi)2 (2)

This formula computes the Euclidean distance between adjacent points, ensuring that
the measurement of vectors aligns with the geometric shape of the actual path.

To quantitatively represent the local curvature of a path, denoted as LocalCurvature,
a cumulative value of angle changes between all adjacent vectors from the first point to the
n-th point, is defined. The formula for the local curvature is given in Equation (3):

LocalCurvature =
n−2

∑
i=1

(
1− vi · vi−1

|vi||vi−1|

)
(3)

where:

• vi · vi−1 is the dot product of vectors vi and vi−1.
• |vi| and |vi−1| are the Euclidean lengths of vectors vi and vi−1 respectively.

The formula reflects the curvature variation of the path by calculating the angle
between adjacent vectors. The dot product vi · vi−1 is normalized by the product of the
Euclidean lengths of the vectors, yielding the cosine value between the two vectors, within
the range [−1, 1]. A cosine value closer to 1 indicates that the two vectors are more aligned
in the same direction, suggesting lower curvature. By summing 1− vi ·vi−1

|vi ||vi−1 |
, the overall

local curvature of the path is obtained. Thus, a higher LocalCurvature value signifies a less
smooth path composed of n points, whereas a lower value indicates a smoother path.

In the case of a set number of path points (n = 50), the local curvature of different
paths was categorized, as shown in Table 1. This experimental setup ensures a sufficient
density of path points, allowing the variations in local curvature to effectively reflect the
oscillatory characteristics of the path.
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Table 1. Path roughness categories.

LocalCurvature Description Category Evaluation

LocalCurvature ≤ 1.9 Smooth Category 1 Good
1.9 < LocalCurvature < 3.5 Slightly Rough Category 2 Moderate
3.5 < LocalCurvature < 7.6 Rugged Category 3 Poor

LocalCurvature ≥ 7.6 Sharp Turning Corner Category 4 Very Poor

After feature classification is completed, the feature points and their labels are used to
train the MCRL network model for the automatic recognition of features in new, unlabeled
samples. This model learns to recognize the smoothness of paths from the input coordi-
nates. The workflow for the described machining path feature recognition is illustrated in
Algorithm 1.

Algorithm 1 Path Categorization Algorithm Based on LocalCurvature

Require: A: A set of points {a1, a2, . . . , an}, where ai = (xi, yi);
Ensure: LabelPath: A path with a feature label;

1: The point set A is grouped into groups of 50 points and stored in the Group list:
[g1, g2, . . . , gn], where gi = [p1, p2, . . . , p50], pi = (xi, yi);

2: for each group g in Group do
3: for each point p in g do
4: Generate initial set of vectors Vi: {v1, v2, . . . , v49}, where vi = (xi+1− xi, yi+1− yi);
5: Compute the local curvature of Vi: LocalCurvature = ∑49

i=2(1−
vi ·vi−1
|vi ||vi−1|

);
6: if LocalCurvature ≤ 1.9 then
7: Label Vi as “Category 1”;
8: else if 1.9 < LocalCurvature < 3.5 then
9: Label Vi as “Category 2”;

10: else if 3.5 < LocalCurvature < 7.6 then
11: Label Vi as “Category 3”;
12: else
13: Label Vi as “Category 4”;
14: end if
15: end for
16: end for
17: LabelPath = {all labeled paths from steps 17 and 18};
18: LabelPath was used to train the MCRL model;
19: return LabelPath

The algorithm aims to classify segments of the path based on local curvature and
provide labeled data for subsequent model training. Initially, the algorithm divides the
input point set A into several groups, each containing 50 consecutive points, with each
point represented by its coordinates (xi, yi). These groups are stored in a list Group.

For each group g in the list Group, the algorithm processes each point p sequen-
tially. During the processing of each point, the algorithm generates an initial vector set
Vi = {v1, v2, . . . , v49} consisting of 49 vectors, where each vector vi represents the coordi-
nate difference between adjacent points. Subsequently, the algorithm calculates the local
curvature LocalCurvature of the vector set Vi. The formula for local curvature is given by

LocalCurvature =
49

∑
i=2

(
1− vi · vi−1

|vi||vi−1|

)
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Based on the computed local curvature, the algorithm classifies the path segments into
different categories. If LocalCurvature is less than or equal to 1.9, the segment is labeled
as “Category 1”; if LocalCurvature is between 1.9 and 3.5, it is labeled as “Category 2”; if
LocalCurvature is between 3.5 and 7.6, it is labeled as “Category 3”; and if LocalCurvature
is greater than or equal to 7.6, it is labeled as “Category 4”.

Finally, all labeled path segments are aggregated into a labeled path LabelPath. This
labeled path is then used to train the MCRL model. By precisely calculating local curva-
ture, the algorithm effectively classifies the path segments, providing clear input data for
subsequent machine learning model training.

4.2. Path Optimization Design

The coati optimization algorithm (COA) [27] is a biomimetic algorithm inspired by the
foraging behavior of South American coatis. During their foraging, coatis mark their paths
using visual and olfactory cues and share location information. These markers fade over
time, but their concentration remains higher on shorter paths. Thus, the coati group can
detect these markers and select an optimal path, moving toward areas with stronger signals.

This section proposes four mechanisms to overcome the shortcomings of the tradi-
tional coati algorithm. Firstly, the honey badger algorithm (HBA) is introduced to initialize
the coati population, enhancing optimization efficiency by increasing population diversity.
Secondly, an improved heuristic function is proposed to enhance the algorithm’s goal orien-
tation, effectively reducing randomness in the search. Thirdly, a dynamic multi-population
strategy is introduced to prevent the algorithm from falling into local optima, thereby
enhancing global search capabilities. Finally, a gradient descent fitness-guided strategy is
proposed to accelerate convergence. These four mechanisms are combined to form a new
algorithm, referred to as the novel adaptive coati optimization algorithm (NACOA).

4.2.1. Honey Badger Algorithm for Population Initialization

The initialization of the coati population may have several shortcomings: despite
optimizing the selection process, the quality of the initial population may be influenced by
the initial input data and parameter settings, leading to unstable results. If the individuals in
the initial dataset exhibit limited genetic diversity, the algorithm may struggle to overcome
this limitation, ultimately resulting in insufficient genetic diversity within the population.
The algorithm’s effectiveness depends on high-quality, comprehensive initial data. If
the data are inaccurate or incomplete, it may affect the algorithm’s performance and the
effectiveness of population initialization.

To address these issues, the honey badger algorithm (HBA) [28] is used to initialize
the coati population. This algorithm mimics the searching and hunting behavior of honey
badgers, optimizing individual selection and distribution strategies to ensure that the
population consists of highly adaptable and survivable individuals. The HBA has dy-
namic adjustment capabilities, allowing it to continuously optimize initialization strategies
based on the actual population situation and adapt to changes in different environments
and conditions.

Moreover, the HBA has high computational efficiency, enabling it to find optimal solu-
tions in a relatively short time, thereby reducing human intervention and decision-making
time. By automating selection and optimization processes, the algorithm reduces human
bias and errors, enhancing the scientific rigor and rationality of population initialization.
The HBA can also simulate individual adaptability under different environmental condi-
tions, helping to select individuals best suited to new environments and thus improving
the overall adaptability of the population.

The basic process of generating the coati initialization population using the honey
badger algorithm is as follows:
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a Initialization phase

Generate an initial honey badger population and optimize it to obtain a more optimal
initial population. The steps are as follows:

i Generate initial honey badger population:

• A two-dimensional point set path = {P1, P2, . . . , Pn} represents a set of points on the
path, where Pi = (xi, yi).

• Set the start and end points: start_point = P1 and end_point = Pn.
• Randomly insert points: Randomly select the remaining points and randomly insert

them into a certain position on the path until all points are inserted.

ii Initialize each individual pk in the population:

• pk = {P1, Pk,2, Pk,3, . . . , Pk,n−1, Pn}, where {Pk,2, Pk,3, . . . , Pk,n−1} are random permuta-
tions of {P2, P3, . . . , Pn−1}, and the population size is pop_size = N.

b Defining intensity

Define the intensity Ii, as shown in Equation (4):
Ii = r1 × S

4πd2
i

S = |pk[i + 1]− pk[i]|
di = |gbest[i]− pk[i]|

(4)

where:

• r1 is a random number, uniformly distributed in (0,1).
• S is the intensity.
• pk[i] is the i-th point of individual k.
• gbest[i] is the i-th point of the global best position.
• di represents the distance between the global best position and the current point.

The odor intensity Ii is a function of the distance di between the current position
and the global best position gbest[i]. This model is inspired by the olfactory foraging
mechanism, where the intensity decreases with distance, guiding agents to move toward
more promising areas.

c Simulation of honey badger foraging behavior

The process of updating positions is divided into two parts—the “digging phase” and
the “foraging phase”—as shown in Equation (5):

pk[i]′ =

{
gbest[i] + β× I × gbest[i] + r2 × α1 × di × |cos(2πr3)× [1− cos(2πr4)]| if r6 ≤ 0.5
gbest[i] + r5 × α1 × di else

(5)

where:

• α1 is a constant.
• β is a constant indicating the honey badger’s ability to obtain food.
• pk[i]′ represents the updated position.
• r2, r3, r4, r5, r6 are random numbers between 0 and 1.

This dual-phase strategy enhances the algorithm’s ability to refine the search in promis-
ing regions while maintaining a global perspective to avoid local optima.

d Fitness function

i Curvature calculation

Calculate the curvature of every three adjacent points, as shown in Equation (6):

curvaturei = 1− vi · vi−1

|vi||vi−1|
(6)
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where vi = (xi+1 − xi, yi+1 − yi).
The total curvature is given by Equation (7):

LocalCurvature =
n−1

∑
i=2

curvaturei (7)

ii Smoothness penalty

The smoothness penalty is given by Equation (8):

SmoothnessPenalty =
n−1

∑
i=2

second_di f fi (8)

where the second difference second_di f fi is calculated using Equation (9):

second_di f fi = ||Pi+1 − 2Pi + Pi−1|| =
√
(xi+1 − 2xi + xi−1)2 + (yi+1 − 2yi + yi−1)2 (9)

iii Fitness function

The fitness function is given by Equation (10):

Fitness(pk) = LocalCurvature + SmoothnessPenalty (10)

The adaptive function comprises the local curvature and smoothness penalty terms. The
curvature term ensures that the generated path is smooth and feasible, while the smoothness
penalty refines the path by minimizing abrupt changes. This combination optimizes the
overall quality of the path, making the algorithm suitable for complex optimization problems.

e Updating the honey badger population

Iteratively update each individual in the population, searching for better paths. In
each iteration, update the paths and calculate their fitness to find the current best path. The
update rule is given by Equation (11):

gbest = arg min
pk∈population

Fitness(pk) over generations (11)

This ensures that the algorithm continuously improves the solution quality while
maintaining the diversity necessary to avoid premature convergence.

f Initialization population of COA

Use the population generated by the HBA as the initial population for the COA.
Through the above steps, the HBA can effectively enhance the quality and efficiency

of the initial population.

4.2.2. Enhanced Path Update Rule

In the coati optimization algorithm, the fixed parameter α2 cannot adapt dynamically
during the search process, resulting in the inability to balance between global and local
searches to find the optimal solution. This might lead to a decline in search efficiency.
Therefore, we adopt α2, r7, and r8 to balance the global and local search, as illustrated in
Equation (12):

pk[i]′ = pk[i] + α2 · r7 · (gbest[i]− pk[i]) + α2 · r8 · (rand− 0.5) (12)

α2 is a factor that dynamically adjusts with the algebra g, as shown in Equation (13):

α2 = αmax − (αmax − αmin) ·
g
G

(13)

where:
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• αmax is the initial maximum value of α2.
• αmin is the minimum value of α2.
• g is the current iteration number, incrementing from 1 to G.
• G is the total number of iterations in the algorithm.

r7, r8, population fitness standard deviation std_dev, and average population fitness F
are defined as shown in Equation (14):

r7 = rand ·
(

1 + std_dev
F

)
r8 = rand ·

(
1 + std_dev

F

)
std_dev =

√
1
N ∑N

k=1(Fitness(pk)− F)2

F = 1
N ∑N

k=1 Fitness(pk)

(14)

In the early stages of the algorithm, a higher adaptive α2 encourages extensive ex-
ploration, covering a broader search space and aiding in escaping local optima. As the
algorithm progresses, α2 gradually decreases, promoting fine-tuned exploitation and as-
sisting in converging to the optimal solution. The adaptive α2 enhances the flexibility and
precision of the search, leading to higher solution quality, closer approximation to the
global optimum, and faster convergence.

By employing standard deviation-based adjustments for r7 and r8, the current popula-
tion’s state can be leveraged to optimize the search process. In regions with higher fitness,
the search efficiency increases, accelerating convergence and reducing the iterations needed
to reach the optimal solution. In areas of lower diversity, random perturbations help avoid
local optima, improving the likelihood of discovering the global optimum.

By employing the above methods, the algorithm effectively balances global search and
local refinement, enhancing the likelihood of finding the global optimum while reducing
computation time.

4.2.3. Dynamic Multi-Population Strategy

In the coati optimization algorithm, as individuals converge prematurely near local
optima, the population may lack diversity, making it difficult to find the global optimum.
A single population strategy can lose the balance between exploration (searching for
new solutions) and exploitation (using known good solutions), resulting in a limited
search space. Hence, employing a dynamic multi-population strategy can enhance the
optimization process by dividing the population into multiple sub-populations. Each
sub-population searches in different areas, increasing the probability of finding the global
optimum. The steps are as follows:

a Multi-Population Initialization

Divide the population into M0 sub-populations, each containing Ng individuals:

population = {sub_pop1, sub_pop2, . . . , sub_popM0
}

where sub_popa represents the a-th sub-population, the total population size is N, and the
size of each sub-population sub_popa is given by Equation (15):

Ng =
N

M0
(15)

b Updating Sub-Population Size

At generation g, the number of current sub-populations Mg is dynamically adjusted
to accommodate the evolutionary characteristics of the population and the convergence
requirements of the algorithm, thereby improving efficiency and solution quality. The
adjustment rule is given by Equation (16):
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Mg = max
(

Mmin, min
(

Mmax, M0 −
⌊

g · (M0 −Mmin)

G

⌋))
(16)

where:

• Mmin: Minimum sub-population size
• Mmax: Maximum sub-population size

c Selection of the Optimal Individual

Within each sub-population sub_popa, identify the individual with the minimum
fitness value, as expressed in Equation (17):

pbesta = min
pk∈sub_popa

Fitness(pk) (17)

where k ∈ {1, . . . , N
M0
}.

Within each sub-population, we select the best-performing individual Pbest by compar-
ing individual fitness values. This is crucial for guiding the evolutionary direction of the
sub-population, ensuring that the algorithm continuously evolves toward solutions with
improved optimization performance.

The global optimal individual is denoted by Equation (18):

gbest = min
a∈{1,...,M0}

pbesta (18)

d Individual Exchange Strategy

Every T iterations, perform an exchange of individuals between sub-populations. Let
pk and pt be individuals randomly chosen from sub-populations sub_popa and sub_popb,
respectively. The exchange rule is illustrated in Equation (19):{

sub_popa = sub_popa ∪ {pt} \ {pk}
sub_popb = sub_popb ∪ {pk} \ {pt}

(19)

In the early stages of the algorithm, the number of sub-populations is approximately
M0 = 10, each with a size of N

M0
= 100 individuals. This larger number of sub-populations

maintains diversity and helps to explore a broader search space, thus preventing premature
convergence to local optima. During the middle stages, the number of sub-populations
gradually decreases to approximately Mg = 6, each with a size of N

6 ≈ 167 individuals. As
the number of sub-populations decreases, the search transitions to a more focused phase,
balancing exploration and exploitation. Adjusting the sub-population size dynamically
based on iterations ensures that the algorithm can efficiently search in appropriate regions,
enhancing flexibility and reducing the risk of local optima entrapment through inter-
sub-population exchanges every T = 10 iterations. In the final stages, the number of
sub-populations decreases to Mmin = 2, each with a size of N

2 = 500, concentrating on
fine-tuning the optimal solutions and thereby improving the final solution quality.

This strategy ensures the discovery and utilization of global optima by effectively
escaping local optima in a vast search space. By dynamically adjusting the sizes of sub-
populations and the exchange strategies, the algorithm not only enhances adaptability to
complex problems but also optimizes computational resource efficiency. Theoretically, this
method significantly reduces computation time and improves solution quality. The dynamic
adjustment of sub-population size, based on the population’s performance, iteratively
optimizes the balance between exploration and exploitation, thereby overcoming local
optima constraints in the later stages of the algorithm. The individual exchange strategy
strengthens the flow of information and genetic diversity within the population, aiding in
the discovery of potential optimal regions that are not yet covered by the current population.
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4.2.4. Gradient Descent-Based Adaptive Guidance Strategy

In the coati optimization algorithm, the optimization process relies heavily on global
search and random perturbations. This broad search in the solution space may slow down
the convergence rate due to a lack of precise local tuning, ultimately leading to suboptimal
solutions in complex solution spaces. To address this issue, a gradient descent-based adap-
tive guidance strategy can be employed. This approach utilizes gradient information for
fine-tuning local adjustments, swiftly steering the search toward the optimal solution. The
strategy provides directional information, guiding how to adjust points on the path, reduc-
ing both total curvature and gradient penalties. This helps avoid local optima and enhances
optimization precision. Compared to random perturbations, this directional adjustment
reduces unnecessary searches and accelerates convergence. The gradient descent-based
adaptive guidance strategy smooths the optimization process through continuous small-
scale adjustments, mitigating the disruptive effects of large random perturbations. The
steps are as follows:

a Fitness Function

For each point Pk,i on the path of pk, we define the fitness function Fitness(pk), which
incorporates both curvature and smoothness penalties, as shown in Equation (20):

Fitness(pk) =
n−1

∑
i=2

curvaturei + second_diffi (20)

This function embodies the trade-off between minimizing path curvature and optimiz-
ing smoothness, which is a crucial prerequisite for path optimization. It effectively reduces
sharp turns and oscillations within the path.

b Gradient Calculation

To minimize the cost function Fitness(pk[i]), we need to compute its gradient. We can
calculate the gradient of the curvature, curvaturei, and the gradient penalty, second_diffi,
for this purpose, as follows:

i Gradient of the Curvature

First, we need to compute the gradients of vi−1 and vi, and then we use the chain rule
to determine the gradient of the curvature, as shown in Equation (21):

∇curvaturei =
∂curvaturei

∂Pk,i
=

∂(1− cos(θi))

∂Pk,i
= −∂ cos(θi)

∂Pk,i
(21)

where the partial derivative of cos(θi) with respect to Pk,i is given by Equation (22):

∂ cos(θi)

∂Pk,i
=

∂
(

vi−1·vi
∥vi−1∥∥vi∥

)
∂Pk,i

(22)

Due to the complexity of the calculation, we approximate the gradient numerically
using the central difference formula in Equation (23):

∇curvaturei ≈
curvature(Pk,i + ϵ)− curvature(Pk,i − ϵ)

2ϵ
(23)

where ϵ ∈ (10−6, 10−4).
Numerical approximation maintains sufficient precision while considering computa-

tional efficiency, particularly excelling when step sizes are small.

ii Gradient of the Smoothness Penalty

The gradient of the smoothness penalty is given by Equation (24):

∇second_diffi = 4Pk,i − 2Pk,i−1 − 2Pk,i+1 (24)
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c Gradient Descent

By iteratively updating each point on the path to minimize the fitness function
Fitness(pk), the updated path Pk[i]′ is represented by Equation (25):

Pk[i]′ = Pk[i]− η(g)∇Fitness(pk[i]) (25)

where
1. η(g) is the exponentially decaying learning rate, defined by Equation (26):

η(g) = η0 · e−λ·g (26)

where:

• η0: Initial learning rate
• λ: Decay rate
• g: Current iteration number

2. The gradient of the fitness function at each point is given by Equation (27):

∇Fitness(pk[i]) = ∇curvaturei +∇second_diffi (27)

The importance of local adjustment in optimizing paths is reflected in the application
of gradient descent strategies. By utilizing local gradient information, gradient descent
incrementally improves the accuracy of the solution through local adjustments. An expo-
nentially decaying learning rate allows the algorithm to make significant updates in the
early stages and progressively refine the path as it approaches the optimal solution.

In this section, the variant of the COA integrates four major improvements over the
traditional COA, including the initialization of the coati population using the honey badger
algorithm, an enhanced heuristic function, a dynamic multi-population strategy, and a
gradient descent-based adaptive guidance strategy. Subsequently, a novel variant of the
COA is introduced, termed the novel adaptive coati optimization algorithm (NACOA). The
pseudocode for the NACOA is presented in Algorithm 2, and its flowchart is illustrated in
Figure 4.

The implementation of the algorithm involves the following five steps:

• Step 1: Algorithm Parameter Initialization: The algorithm begins by initializing a
series of parameters, including a1, β, M0, Mmin, Mmax, and the number of iterations G.
This initialization establishes the foundation for subsequent path optimization and
sub-population operations.

• Step 2: HBA Path Optimization: During the path optimization phase, the algorithm
uses the HBA path list as the initial input. For each iteration, the algorithm removes
the first and last elements from the path list and deletes a specific point pk[i] using a
randomly generated t value. The remaining points in the path are updated according
to a specific equation (e.g., Equation (5)). After updating the path, the algorithm
calculates the fitness function using a series of equations (e.g., Equations (6)–(11)) and
determines the current optimal path.

• Step 3: NACOA Path List Initialization and Update: In the second stage, the algo-
rithm initializes the NACOA path list based on the HBA path list, with Mg = M0 and
Ng = N

M0
. As the iterations progress, the number of sub-populations Mg is dynamically

adjusted according to Equation (16). During each update, the algorithm clears the current
sub-population and assigns path points pti to the sub-population subpopa. The algo-
rithm then optimizes the path using a gradient descent strategy and specified equations
(Equations (12)–(14)), incorporating the optimized path points into the population list.

• Step 4: Sub-population Exchange and Global Optimization: At specific iteration counts
(e.g., g%T == 0), the algorithm randomly exchanges individuals between two sub-
populations to increase diversity. At the end of each iteration, the algorithm identifies
the current global best individual gbest based on the fitness function.
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• Step 5: Output Optimal Path: After all iterations are completed, the algorithm outputs
the globally optimal path obtained through computation. This final output represents
the optimal solution under the given constraints.

Algorithm 2 The Pseudocode for the NACOA

1: Initialize various algorithm parameters, including a1, β, M0, Mmin, Mmax, G;
2: Initialize HBA path list;
3: for k from 1 to n do increasing n by 1 each time do
4: path_current = path;
5: Delete the first and last element of the path_current list;
6: for i from 2 to n− 1 do increasing t by 1 each time do
7: t← randomly generate, and the range of t is between [1, n− i];
8: pk[i] = path_current[t], and pk is a member of populations;
9: Delete path_current[t];

10: Update the points in the path according to Equation (5);
11: end for
12: Calculate the fitness function according to Equations (6)–(10);
13: Find the current optimal path according to Equation (11);
14: end for
15: Initialize NACOA path list = HBA path list, Mg = M0, Ng = N

M0
, t = 0, η0;

16: for g from 1 to G do increasing G by 1 each time do
17: The number of sub-populations Mg was updated according to Equation (16);
18: population.clear();
19: for a from 1 to Mg do increasing Mg by 1 each time do
20: sub_popa.clear();
21: for k from 1 to Ng do increasing Ng by 1 each time do
22: t = t + 1;
23: sub_popa[k] = pt;
24: pk = sub_popa[k];
25: Update the path according to Equations (12)–(14);
26: Gradient descent strategy is adopted to update the path according to

Equation (25);
27: end for
28: Calculate the fitness function according to Equations (6)–(10);
29: Individual pbesta with the least fitness is found in sub_popa according to

Equation (17);
30: population.append(sub_popa);
31: end for
32: if g%T == 0 then
33: Exchange two random individuals of two random sub_pop according to

Equation (19);
34: end if
35: The global optimal individual gbest is found according to Equation (18);
36: end for
37: Output the final optimal path.
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Figure 4. The flow chart of the NACOA.
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5. Experiments

We evaluated our proposed hybrid network model and its four constituent base
models using various performance metrics. For the unsmoothed paths identified by model
features, we applied mean filtering, Bézier curve fitting, and the NACOA according to the
level of roughness. This section presents the network experiments, results, and optimization
experiments and results.

5.1. Network Experiments and Results
5.1.1. Network Architecture

The structure of the hybrid network model MCRL, which combines the base neural
network models MLP, CNN, RNN, and LSTM with a linear attention mechanism, is shown
in Figure 5.

Figure 5. MCRL network model structure.

The model employs a decay function to initialize the optimizer with a learning rate,
decaying by 10% every 1000 steps. The input vector size is 50× 2, which is initially divided
into four branches and processed through linear transformations.

The first branch utilizes the ReLU linear attention mechanism to process data, which
are then fed into the MLP. Initially, the two-dimensional output vector is flattened using
TensorFlow’s flatten module into a one-dimensional vector of size 100× 1. This vector is
then passed through four hidden layers with 128, 64, 32, and 16 nodes, each followed by
a ReLU activation function, finally transforming the output vector to a size of 16× 1. It
then passes through a hidden layer with four nodes and a Softmax activation function to
produce the output.

The second branch downsamples the data, converting the two-dimensional output
vector to a size of 30× 2. After processing with the ReLU linear attention mechanism, the
data are fused with the MLP output and fed into the CNN unit. It first passes through a
3× 3 convolutional layer with 32 kernels, followed by a 2× 2 max-pooling layer, resulting
in an output vector of size 15× 32. This is followed by a dropout layer with a default
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probability of 0.2, then flattened into a 480× 1 vector. The vector is then passed to a hidden
layer with 512 nodes using ReLU activation and finally through a hidden layer with four
nodes using Softmax activation to produce the output.

The third branch downsamples the data, converting the two-dimensional output
vector to a size of 20× 2. After processing with the ReLU linear attention mechanism,
the data are fused with the CNN output and fed into the RNN unit. It passes through
three hidden layers with 128, 64, and 64 nodes, with the third layer returning only the last
timestep output, resulting in a 64× 1 vector. Each layer is followed by a Tanh activation
function. Finally, it passes through a hidden layer with four nodes using Softmax activation
to produce the output.

The fourth branch downsamples the data, converting the two-dimensional output
vector to a size of 10× 2. After processing with the ReLU linear attention mechanism,
the data are fused with the RNN output and fed into the LSTM unit. It passes through
three hidden layers with 64, 32, and 32 nodes, with the third layer returning only the last
timestep output, resulting in a 32× 1 vector. Each layer is followed by a Tanh activation
function. Finally, it passes through a hidden layer with four nodes using Softmax activation
to produce the output.

The outputs of the four branches are finally fused and output through a linear
transformation.

5.1.2. Experimental Results

We utilized datasets comprising the machining G-code for aerospace gear, pentagram-
shaped bosses, and maple leaf models. The MCRL model was employed to classify paths
within these datasets. The experimental environment was an RTX 4070.

1. Hyperparameter settings

Table 2 presents the hyperparameter settings for all experiments. This table includes
the initial learning rate, learning rate decay rate, decay steps, batch size, training iterations
before convergence, and total training time (in minutes).

Table 2. Hyperparameter settings for different datasets.

Dataset Learning Rate Decay Rate Decay Steps Batch Size Epochs Time

Gear 0.0001 0.9 500 64 497 212
Pentagram 0.0001 0.8 100 32 203 169
Maple Leaf 0.0005 0.8 500 64 340 140

The hyperparameters were set as follows:

• Learning Rate: This parameter was set to either 0.0001 or 0.0005, depending on the
dataset. The learning rates for the gear and pentagram datasets were 0.0001, while the
rates for the maple leaf datasets were 0.0005.

• Decay Rate: The decay rate varied between datasets, ranging from 0.8 to 0.9. The
decay rates for the gear datasets were higher at 0.9, indicating a slower reduction in
the learning rate over time compared to the 0.8 rate for the pentagram and maple
leaf datasets.

• Decay Steps: The decay steps were either 100 or 500. The gear and maple leaf datasets
used a larger number of decay steps (500), implying a lower frequency of learning rate
decay application, while the pentagram datasets employed 100 decay steps.

• Batch Size: The batch sizes were set to either 32 or 64. The gear and maple leaf datasets
used a batch size of 64, which generally provides a more stable gradient estimate,
whereas the pentagram dataset used a smaller batch size of 32.

• Iterations: The number of iterations required varied significantly between datasets.
The gear dataset required the most iterations, totaling 497, while the pentagram dataset
required 203. The maple leaf datasets required 234 and 340 iterations, respectively.
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• Time: The training times for each dataset also varied. The gear dataset required the
longest training time, at 212 units, while the pentagram dataset required 169 units,
and the maple leaf dataset required the shortest time of 40 units.

These configurations highlight the tailored approach needed to optimize model per-
formance across different datasets, demonstrating the variability of training parameters
essential for achieving effective learning outcomes.

2. Performance Metrics

We evaluated the performance of the MCRL model using metrics such as accuracy,
loss, precision, recall, F1 score, and AUC.

Accuracy: This metric represents the proportion of correctly predicted samples out of
the total number of samples,

Accuracy =
TP + TN

TP + TN + FP + FN
(28)

where:

• TP (True Positives): The number of samples that are truly positive and predicted
as positive.

• TN (True Negatives): The number of samples that are truly negative and predicted
as negative.

• FP (False Positives): The number of samples that are truly negative but predicted
as positive.

• FN (False Negatives): The number of samples that are truly positive but predicted
as negative.

Loss: This metric measures the disparity between the model’s predictions and the
actual labels. In this experiment, the multiclass cross-entropy was used as the loss function.

Categorical Cross-Entropy Loss = − 1
N

N

∑
i=1

C

∑
j=1

yi,j log(pi,j) (29)

where:

• N is the total number of samples.
• C is the total number of classes.
• yi,j is the true label of the i-th sample, where yi,j = 1 if the true label of the i-th sample

is class j, and 0 otherwise.
• pi,j is the predicted probability that the i-th sample belongs to class j.
• log(pi,j) is the natural logarithm of the predicted probability of class j.

Precision: This metric indicates the proportion of correctly predicted positive samples
out of all samples predicted as positive.

Precision =
TP

TP + FP
(30)

High precision signifies that the model accurately predicts positive classes, with few false
positives.

Recall: This metric measures the proportion of correctly predicted positive samples
out of all actual positive samples.

Recall =
TP

TP + FN
(31)

High recall indicates that the model can identify a majority of the actual positive samples.
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F1 score: This metric measures the harmonic mean of precision and recall, providing a
comprehensive measure of the model’s performance.

F1 Score =
2× Precision× Recall

Precision + Recall
(32)

AUC: The area under the ROC (Receiver Operating Characteristic) curve quantifies
the model’s capability to distinguish between classes.

AUC =
∫ 1

0
TPR(FPR) dFPR (33)

where:

• FPR: False Positive Rate
• TPR: True Positive Rate

In this study, we compared the MCRL model with three other prominent models:
ConvMixer (2022) [29], ConvNeXt (2022) [30], and MaxViT (2022) [31]. Table 3 presents the
performance metrics of the various models across different datasets.

Table 3. Performance metrics of different models across datasets.

Dataset Model Accuracy Loss Precision Recall F1 Score AUC

Gear

MCRL 94.75 14.26 96.23 93.52 94.85 97.71
ConvMixer (2022) 92.22 18.94 93.87 91.06 92.44 96.77
ConvNeXt (2022) 93.92 15.60 95.54 91.92 93.69 98.15

MaxViT (2022) 93.35 16.64 95.23 91.16 93.15 97.86
MLP 87.90 28.61 94.50 82.35 88.00 93.55
CNN 93.54 16.49 94.79 92.16 93.45 97.65
RNN 87.59 30.54 93.86 88.86 91.29 92.77
LSTM 92.77 20.00 94.09 91.66 92.85 96.97

Pentagram

MCRL 94.98 13.55 96.47 94.81 95.63 97.94
ConvMixer (2022) 93.91 22.39 94.71 93.35 94.02 98.04
ConvNeXt (2022) 92.50 20.07 95.25 92.77 93.99 96.47

MaxViT (2022) 93.08 18.85 96.32 93.79 95.03 96.43
MLP 87.26 31.23 92.26 87.13 89.62 92.25
CNN 93.29 17.32 95.02 92.29 93.63 97.13
RNN 86.34 33.30 91.27 81.36 86.03 90.42
LSTM 91.67 20.84 93.96 92.72 93.33 96.40

Maple Leaf

MCRL 96.32 9.81 96.52 96.19 96.35 98.85
ConvMixer (2022) 95.97 10.87 96.45 95.47 95.95 98.68
ConvNeXt (2022) 95.27 12.22 95.34 95.08 95.20 98.48

MaxViT (2022) 95.00 15.02 95.41 94.56 94.98 98.00
MLP 85.81 32.66 90.73 80.52 85.32 90.69
CNN 94.17 15.78 96.42 95.43 95.92 97.83
RNN 85.63 33.78 90.71 80.25 85.16 90.01
LSTM 94.47 13.85 95.03 93.86 94.44 98.31

In assessing model performance across various datasets, our model (MCRL) exhibited
outstanding results in multiple tests. A thorough analysis of the experimental outcomes
from the gear, pentagram, and maple leaf datasets provided an in-depth understanding of
the performance variations between MCRL and the other models across different datasets.
These findings are crucial for evaluating the overall effectiveness of the models and their
adaptability to various application contexts. The following section provides a detailed
analysis of the performance of the different models on each dataset.
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Gear Dataset

The results of the models on the gear dataset can be summarized as follows:

• The MCRL model achieved the best performance on the gear dataset, with an accuracy
of 94.75%, a loss of 14.26, a precision of 96.23%, a recall of 93.52%, an F1 score of
94.85%, and an AUC of 97.71%. These results underscore MCRL’s superior predictive
performance on this dataset and its ability to effectively balance various metrics.

• The ConvMixer and ConvNeXt models also performed relatively well, with accuracies
of 92.22% and 93.92%, respectively. While their other metrics were comparable, they
still fell short compared to MCRL.

• MaxViT slightly lagged behind ConvNeXt in overall performance but maintained
high precision and F1 score.

• The MLP, CNN, RNN, and LSTM models showed mediocre performance, particularly
the MLP and RNN models, which fell below 90% across all metrics, highlighting their
limitations on this dataset.

Pentagram Dataset

The results of the models on the pentagram dataset can be summarized as follows:

• On the pentagram dataset, MCRL again excelled with an accuracy of 94.98%, a loss
of 13.55, a precision of 96.47%, a recall of 93.35%, an F1 score of 95.63%, and an AUC
of 97.58%.

• The ConvMixer and ConvNeXt models performed well on the pentagram dataset,
although they slightly lagged behind MCRL in recall and F1 score, with values around
93% and 92%, respectively.

• MaxViT’s performance was fairly balanced, but it fell short in accuracy and AUC.
• Other models, such as MLP, CNN, and RNN, showed relatively poor performance,

with RNN notably underperforming, achieving an accuracy of only 86.34% and signif-
icant deficiencies in recall and F1 score.

Maple Leaf Dataset

The results of the models on the maple leaf dataset can be summarized as follows:

• On the maple leaf dataset, the MCRL model achieved the highest accuracy of 96.32%,
the lowest loss of 9.81, and precision and F1 scores of 96.52% and 96.35%, respectively,
with an AUC of 98.66%. These results highlight MCRL’s exceptional performance in
path classification tasks.

• The ConvMixer and ConvNeXt models followed closely, with accuracies of 95.97% and
95.27%, and F1 scores exceeding 95%, although they still fell slightly short of MCRL.

• MaxViT also showed stable performance, but its AUC was somewhat lower at 98.00.
• Traditional models, such as MLP, CNN, and RNN, generally fell short of the advanced

models mentioned above, with RNN showing particularly poor performance on this
dataset, achieving an accuracy of only 85.63%.

Overall, the MCRL model exhibited exceptional performance across all four datasets,
particularly demonstrating the best comprehensive metrics on the maple leaf dataset. Other
models, such as ConvMixer, ConvNeXt, and MaxViT, also performed admirably, making
them well suited for tasks requiring high accuracy and precision. In contrast, traditional
models like MLP, CNN, RNN, and LSTM performed relatively poorly on these datasets,
with RNN, in particular, struggling to match the performance of more advanced models in
complex path classification tasks.

Accuracy and loss are the two most crucial evaluation metrics, as they provide a clear
reflection of the model’s performance and optimization status. Figures 6 and 7 illustrate
the accuracy and loss of various models across different datasets.
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(a) (b) (c)

Figure 6. Accuracies of different models across different datasets. (a) Accuracies of models on the
gear dataset. (b) Accuracies of models on the pentagram dataset. (c) Accuracies of models on the
maple leaf dataset.

Figure 6 compares the performance of various models, including MCRL, ConvMixer,
ConvNeXt, MaxViT, MLP, CNN, RNN, and LSTM, across each dataset. The x-axis represents
the number of training epochs, ranging from 0 to 500, while the y-axis displays the accuracy,
which ranges approximately from 0.72 to 0.96.

Across all datasets, the MCRL model (depicted by the red line) consistently demon-
strated superior performance, achieving the highest accuracy early in training and main-
taining this advantage throughout subsequent epochs. ConvMixer, ConvNeXt, and MaxViT
also performed admirably, although their accuracies were generally slightly lower than that
of MCRL. In contrast, traditional models, such as MLP, CNN, RNN, and LSTM (represented
by lighter colors), typically exhibited lower accuracy and slower convergence.

This comparative chart highlights MCRL’s exceptional performance across various
datasets, illustrating its robustness and efficacy in different scenarios. The convergence
patterns indicate that while most models stabilized after around 100 training epochs, MCRL
excelled in both convergence speed and final accuracy, particularly on the gear and maple
leaf datasets.

(a) (b) (c)

Figure 7. Losses of different models on different datasets. (a) Losses of models on the gear dataset.
(b) Losses of models on the pentagram dataset. (c) Losses of models on the maple leaf dataset.

Figure 7a presents the loss curves of different models on the gear dataset as the
training epochs progressed. It is evident that the MCRL model (red curve) converged
more rapidly than the other models, achieving the lowest final loss value. Other models,
such as ConvMixer, ConvNeXt, MaxViT, MLP, CNN, RNN, and LSTM, also exhibited a
downward trend in loss during early training, but their final loss values were higher than
those of MCRL.

In Figure 7b, it is evident that the loss values for all models decreased as the number
of training epochs increased. The MCRL model once again demonstrated the fastest
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convergence rate and the lowest final loss value, with other models trailing behind. Notably,
MaxViT and LSTM exhibited a slower rate of loss reduction and ended with higher loss
values compared to the other models.

In Figure 7c, it is evident that the MCRL model continued to exhibit the best conver-
gence speed and the lowest final loss value. The performance of other models mirrored
the trends observed in the previous datasets: a rapid initial decrease in loss followed by
stabilization, but with final loss values higher than those of MCRL.

Overall, the MCRL model consistently demonstrated superior convergence speed and
lower final loss values across all datasets, outperforming the other models.

3. Inference Time

Inference time refers to the duration a model requires to process input data and
produce output predictions. It is a critical metric that directly impacts resource efficiency
in deployment scenarios. Quantization-aware training (QAT) achieves this by simulating
the effects of quantization during the training process, reducing the network’s weights
and activations from 32-bit floating-point numbers to lower-precision 8-bit integers. This
reduction in precision results in smaller memory usage, which accelerates data transfer and
reduces memory bandwidth demands. Consequently, this experiment employed the QAT
strategy to diminish the model’s inference time. Table 4 presents the inference times (in
seconds) of the proposed model alongside those of ConvMixer, ConvNeXt, MaxViT, MLP,
CNN, RNN, and LSTM.

Table 4. Inference times of different models on different datasets.

Model
Datasets

Gear Pentagram Maple Leaf

MCRL 3.2 3.1 3.9
MCRL with QAT 2.8 2.9 3.5
ConvMixer (2022) 3.7 3.8 3.7
ConvNeXt (2022) 3.7 3.2 3.8

MaxViT (2022) 3.0 3.2 4.1
MLP 4.1 4.6 4.6
CNN 3.7 3.5 4.3
RNN 3.7 3.8 4.5
LSTM 3.3 3.5 4.2

The observations of the inference time results are summarized as follows:

• MCRL: The inference times across various datasets ranged from 3.1 to 3.9 s.
• MCRL with QAT: This variant of MCRL utilized quantization-aware training (QAT)

technology, which simulates the effects of reduced precision during training, lowering
network weights and activations from 32-bit floating-point numbers to a minimum of
8-bit integers. This reduction in precision decreased memory usage and accelerated
data transfer, thereby reducing inference time compared to the standard MCRL model.
For instance, on the gear dataset, the inference time for MCRL with QAT was 2.8 s,
while the standard MCRL took 3.2 s. Similar improvements were observed across
all datasets.

• ConvMixer (2022), ConvNeXt (2022), MaxViT (2022): These models, introduced in
2022, achieved inference times comparable to MCRL but showed variability across
datasets, with ConvMixer and RNN exhibiting slightly higher inference times.

• MLP, CNN, RNN, LSTM: These traditional models generally had higher inference
times, with MLP showing the highest inference times across all datasets, particularly
on the pentagram and maple leaf datasets.

In summary, MCRL with QAT emerged as a strong contender among the evaluated
models, optimizing inference time while maintaining performance.
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Taking the paths in the gear dataset as an example, four curves were randomly selected
based on categories, and their classification accuracy within the network was examined. The
green lines represent correct classifications, while the red lines indicate misclassifications,
as shown in Table 5.

The analysis revealed that the MCRL model achieved the best overall classification
performance, with an impressive record of complete accuracy. In contrast, the ConvMixer,
ConvNeXt, MaxViT, MLP, CNN, RNN, and LSTM models each exhibited a misclassification
in one of the selected curves.

In summary, MCRL combines the strengths of MLP, CNN, RNN, and LSTM, signifi-
cantly enhancing the overall performance of the model and making it the most effective
deep learning network model for the given task.

Table 5. Classification results of random curves by different network models.

Category 1 Category 2 Category 3 Category 4

MCRL

ConvMixer

ConvNeXt

MaxVit

MLP

CNN

RNN

LSTM
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5.2. Optimization Experiments and Results
5.2.1. Complexity Analysis

The computational complexity of algorithms can be divided into two principal com-
ponents. The first component arises from path updates and node operations, with a total
complexity of O(n2), where n denotes the number of path points. This signifies that during
the processing of all path points, the complexity escalates to a quadratic level due to the
presence of nested loops. The second component relates to the iterative process of the
algorithm, encompassing population updates and the execution of gradient descent, with
a complexity of O(t× p× d), where t represents the maximum number of iterations, p
denotes the population size, and d signifies the dimensionality of the problem. Overall, the
algorithm’s total computational complexity is O(n2) + O(t× p× d).

5.2.2. Comparison with Other Algorithms

In this study, we compared the NACOA with three other major algorithms (Table 6):
the African Vultures Optimization Algorithm (AVOA) [32], Sand Cat Swarm Optimization
(SCSO) [33], and the Egret Swarm Optimization Algorithm (ESOA) [34].

The runtime of the NACOA was 10 min, demonstrating superior performance in
the time dimension compared to other algorithms, second only to the ESOA (11 min).
This indicates that the NACOA can identify optimal solutions within a relatively short
timeframe. The GPU utilization of the NACOA was 16%, the lowest among the four
algorithms, showcasing its efficiency in terms of hardware resource consumption. In
contrast, the AVOA exhibited a GPU utilization rate as high as 23%. The complexity of
the NACOA, represented as O(n2) + O(t× p× d), highlights its superiority in addressing
large-scale problems. This complexity ensures the stable performance of the NACOA in
practical applications. We consider the following formula, defining efficiency as

Efficiency =
Theoretical Optimal Resource Usage−Actual Resource Usage

Time
(34)

In this formula, we account for the reduction in resource usage (theoretical value
minus actual value) in relation to time. This formula indicates that if a greater reduction in
resource usage is achieved within a shorter period, the efficiency will be higher. According
to this formula, the NACOA achieved the highest efficiency, reaching a value of 8.4, while
the efficiencies of the other algorithms fell below that of the NACOA.

Table 6. Comparison with other algorithms.

NACOA SCSO ESOA AVOA

Time 10 min 12 min 11 min 17 min
GPU usage 16% 20% 18% 23%
Complexity O(n2) + O(t× p× d) O(t× p× d) O(t× p× d) O(t× p) + O(t× p× d)
Efficiency 8.4 6.67 7.45 4.53

GPU RTX 4070 RTX 4070 RTX 4070 RTX 4070

5.2.3. Comparison of Algorithm Optimization Details

Figure 8 illustrates the differences in tool-path optimization across various workpieces
using different algorithms. In all three cases, the COA significantly outperformed the other
algorithms, producing optimized paths that were both smoother and more closely aligned
with the original tool path. This attribute is crucial in precision machining and other
manufacturing processes where maintaining design fidelity is paramount. The smoothness
of the COA path reduces mechanical stress and mitigates the risk of tool wear, potentially
extending tool life and enhancing overall process efficiency.

In summary, the COA excels in providing smoother trajectories while preserving the
integrity of the original path, making it an efficient tool for optimizing paths in complex
and precision-critical applications.
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(a) (b) (c)

Figure 8. Comparative analysis of path optimization algorithms. (a) Comparative analysis of path
optimization algorithms on gear tool path. (b) Comparative analysis of path optimization algorithms
on pentagram tool path. (c) Comparative analysis of path optimization algorithms on maple leaf
tool path.

5.2.4. The Performance of Algorithms in Path Optimization

Figures 9–11 illustrate the application of mean filtering, Bézier curve fitting, and the
NACOA on randomly selected paths with varying degrees of irregularity. A comparison of
the curves before and after optimization using mean filtering shows a 54% reduction in
curvature. Similarly, the Bézier curve fitting resulted in a 67% decrease in curvature, while
the NACOA achieved a more substantial improvement, reducing curvature by 78%.

Figure 9. Path optimization results on the gear model.
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Figure 10. Path optimization results on the pentagram model.

Figure 11. Path optimization results on the maple leaf model.

Overall, the optimized curves significantly improve the smoothness of the machining
model, effectively reducing machine tool vibrations.

5.3. Integration of the Preprocessing Module in the CNC System

In this study, we propose the introduction of a preprocessing module into the CNC
system, designed to analyze the key information embedded in G-code through intelligent
methods. Collaborating with existing CAM software, this module performs preprocessing
before the execution of G-code. Following the initial analysis, the system employs a line
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attention mechanism and the deep learning model MCRL to identify and categorize poten-
tial tool-path regions where machining errors may arise due to discontinuous curvature.
The system then automatically selects and applies the appropriate optimization techniques
based on the detected irregularities.

For the end user, the integration process is nearly seamless, requiring minimal manual
intervention while ensuring greater machining accuracy and smoother tool paths. The
reduction in machining errors will enhance output quality, minimize rework, and improve
overall efficiency. These advancements in the CNC workflow promise significant time and
cost savings, making the machining process more reliable and user-friendly.

6. Conclusions

This paper introduces a deep learning method for feature recognition of unsmooth
paths, employing filtering, fitting, and the proposed NACOA to address sharp corner issues
based on the degree of roughness. The MCRL deep learning network model integrates MLP,
CNN, RNN, and LSTM models along with a linear attention mechanism. We evaluated the
model’s performance using various metrics to demonstrate its substantial advancements.
Experimental validation on G-code datasets for gear, pentagram, and maple leaf machining
confirmed that the proposed model is highly effective in accurately identifying unsmooth
paths, achieving a classification accuracy of 95.56%. In four randomly selected path curves,
MCRL achieved perfect classification, while the other models exhibited varying degrees of
misclassification. Further research indicated that MCRL surpassed its constituent models
in terms of precision.

We anticipate that the developed model and algorithm can be implemented in machin-
ing environments to more accurately identify and optimize unsmooth paths. Depending on
the identified degree of path roughness, we utilized mean filtering, Bézier curve fitting, and
the NACOA for sharp corner recognition. Visual comparisons showed that the optimized
paths were smoother than the original paths, effectively reducing machine tool vibrations.

In the future, we plan to adopt more advanced deep learning network integration
techniques and optimization algorithms, incorporating a broader range of workpiece
machining G-code datasets to further refine our proposed MCRL model and NACOA.
Additionally, we aim to apply interpretable AI techniques to gain deeper insights into
the decision-making processes of the MCRL model and NACOA, thereby enhancing the
accuracy of unsmooth path recognition and the smoothness of algorithm optimization.
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27. Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovskỳ, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic
algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [CrossRef]

28. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic
algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [CrossRef]

29. Trockman, A.; Kolter, J.Z. Patches are all you need? arXiv 2022, arXiv:2201.09792.

http://doi.org/10.1088/1742-6596/2649/1/012010
http://dx.doi.org/10.1016/j.smse.2023.100009
http://dx.doi.org/10.1016/j.procir.2023.06.086
http://dx.doi.org/10.1007/s10845-021-01827-7
http://dx.doi.org/10.1007/s10845-022-01939-8
http://dx.doi.org/10.1016/j.cirpj.2024.01.001
http://dx.doi.org/10.1016/j.jmapro.2024.01.012
http://dx.doi.org/10.1016/j.jmapro.2023.07.069
http://dx.doi.org/10.1109/JSEN.2024.3424218
http://dx.doi.org/10.1142/S2301385025500293
http://dx.doi.org/10.1016/j.cagd.2024.102318
http://dx.doi.org/10.1016/j.jmapro.2022.10.075
http://dx.doi.org/10.3390/app13053181
http://dx.doi.org/10.1109/TII.2020.3011062
http://dx.doi.org/10.1007/s00170-023-11308-1
http://dx.doi.org/10.1007/s00170-022-10422-w
http://dx.doi.org/10.1007/s00170-023-11033-9
http://dx.doi.org/10.1007/s00170-023-10934-z
http://dx.doi.org/10.1016/j.ijfatigue.2022.107459
http://dx.doi.org/10.1016/j.rcim.2018.09.005
http://dx.doi.org/10.1109/JSEN.2023.3268614
http://dx.doi.org/10.1016/j.cirpj.2023.06.011
http://dx.doi.org/10.1016/j.jmsy.2024.06.004
http://dx.doi.org/10.1007/s00170-022-08675-6
http://dx.doi.org/10.1080/00207543.2021.1969462
http://dx.doi.org/10.1016/j.knosys.2022.110011
http://dx.doi.org/10.1016/j.matcom.2021.08.013


Sensors 2024, 24, 5720 33 of 33

30. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–21 June 2022; pp. 11976–11986.

31. Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. Maxvit: Multi-axis vision transformer. In Proceedings of the
European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 459–479.

32. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-
tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]

33. Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems.
Eng. Comput. 2023, 39, 2627–2651. [CrossRef]

34. Chen, Z.; Francis, A.; Li, S.; Liao, B.; Xiao, D.; Ha, T.T.; Li, J.; Ding, L.; Cao, X. Egret swarm optimization algorithm: An
evolutionary computation approach for model free optimization. Biomimetics 2022, 7, 144. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cie.2021.107408
http://dx.doi.org/10.1007/s00366-022-01604-x
http://dx.doi.org/10.3390/biomimetics7040144
http://www.ncbi.nlm.nih.gov/pubmed/36278701

	Introduction
	Related Works
	Feature Recognition in CNC Machining Based on Deep Learning
	CNC Machining Path Optimization

	Agent-Based CNC System Architecture
	Intelligent Requirements
	System Model and Structure
	Assembly Line Work Mode

	Mathematical Model
	Machining Path Feature Design
	Path Optimization Design
	Honey Badger Algorithm for Population Initialization
	Enhanced Path Update Rule
	Dynamic Multi-Population Strategy
	Gradient Descent-Based Adaptive Guidance Strategy


	Experiments
	Network Experiments and Results
	Network Architecture
	Experimental Results

	Optimization Experiments and Results
	Complexity Analysis
	Comparison with Other Algorithms
	Comparison of Algorithm Optimization Details
	The Performance of Algorithms in Path Optimization

	Integration of the Preprocessing Module in the CNC System

	Conclusions
	References

