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Abstract: In this study, nanoporous gold (NPG) was deposited on a screen-printed carbon electrode
(SPCE) by the dynamic hydrogen bubble template (DHBT) method to prepare an electrochemical
sensor for the simultaneous determination of Pb2+ and Cu2+ by square wave anodic stripping voltam-
metry (SWASV). The electrodeposition potential and electrodeposition time for NPG/SPCE prepa-
ration were investigated thoroughly. Scanning electron microscopy (SEM) and energy-dispersive
X-ray diffraction (EDX) analysis confirmed successful fabrication of the NPG-modified electrode.
Electrochemical characterization exhibits its superior electron transfer ability compared with bare and
nanogold-modified electrodes. After a comprehensive optimization, Pb2+ and Cu2+ were simultane-
ously determined with linear range of 1–100 µg/L for Pb2+ and 10–100 µg/L for Cu2+, respectively.
The limits of detection were determined to be 0.4 µg/L and 5.4 µg/L for Pb2+ and Cu2+, respectively.
This method offers a broad linear detection range, a low detection limit, and good reliability for heavy
metal determination in drinking water. These results suggest that NPG/SPCE holds great promise in
environmental and food applications.

Keywords: nanoporous gold; screen-printed carbon electrode; dynamic hydrogen bubble template;
electrochemical sensor; heavy metal

1. Introduction

Heavy metals are a group of metallic elements with atomic densities exceeding 5 g/m3,
encompassing mercury, lead, cadmium, copper, and arsenic [1,2]. With the rapid pace
of global industrialization and urbanization, heavy metal pollution has emerged as an
increasingly prominent concern. Upon absorbed into the human body, lead (Pb) circulates
through the bloodstream and accumulates in vital organs, leading to detrimental effects on
the liver, kidney, and nervous system [3]. While Cu2+ is a necessary metallic element for the
human body, excessive intake can also bring various issues on the central nervous system,
gastrointestinal system, and kidney, damaging body health [4]. Therefore, it is necessary to
develop sensitive and efficient detection techniques for the monitoring of Pb2+ and Cu2+

in environmental and food samples, thus defending heavy metal pollution and ensuring
food safety.

For rapid determination of metal ions, chemosensors that utilize the fluorescence
variation before and after the binding with ions were preferred due to their non-destructive
measurement and rapid analysis. However, their high background interference may impair
their sensitivity [5]. Electrochemical methods, especially electrochemical stripping analysis,
have been widely recognized as powerful tools for determination of heavy metals [6]. In
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this method, heavy metal ions enrich on the electrode under a constant potential, then
strip out for detection. Each metal ion has its own characteristic stripping potential, and
the generated current is proportional to the amount of metal ion [7,8]. Heavy metal
ions with different stripping potentials can be determined simultaneously. Electrochemical
stripping analysis has the advantages of being cost-effective, easy-handling, high sensitivity,
and rapidness [9,10]. Working electrode modification is important in the construction of
electrochemical sensors since it can enhance the active area of the electrode surface and
improve the electron transfer rate [11].

Nanogold is a good choice for the modification of electrodes due to its high conductiv-
ity and high affinity for some heavy metals. It has been widely used in the heavy metal
determination [12,13]. While nanoporous gold (NPG) is a three-dimensional porous mate-
rial with a high specific surface area [14,15]. Modifying electrodes with NPG can further
improve their electrocatalytic performance, increase the active surface area, and provide
more active sites for reactions [16]. Therefore, nanoporous gold holds broad prospects
for heavy metal detection. The preparation methods of nanoporous gold mainly include
dealloying, the template method, and anodization [17]. These methods are difficult to apply
to screen-printed electrodes due to the use of concentrated acids and the complexity of
template removal. The dynamic hydrogen bubble template (DHBT) method is an effective
electrodeposition technique for preparing three-dimensional porous materials [18]. In this
method, the generation of hydrogen bubbles and the deposition of metal ions are conducted
simultaneously under a high density of cathodic current to create porous nanostructures.
This method does not require inorganic or organic materials as templates. Moreover, the
modification can be achieved merely by a potentiostat, which is facile and convenient [19].

In this study, nanoporous gold was electrodeposited on a screen-printed carbon
electrode (SPCE) by the dynamic hydrogen bubble template method, thus preparing a
nanoporous gold modified screen-printed electrode (NPG/SPCE). Then, Pb2+ and Cu2+

were simultaneously determined through square wave anodic stripping voltammetry
(SWASV), where Pb2+ and Cu2+ were deposited on the NPG/SPCE and then stripped out
to the solution with two pronounced and independent stripping peaks (Scheme 1). The
electrodeposition potential and electrodeposition time for the preparation of NPG/SPCEs
were systematically investigated. For comparison, conventionally nanogold-modified SPCE
(AuNPs/SPCE) was also prepared. With NPG/SPCE, Pb2+ and Cu2+ were simultaneously
determined with wide linear range, low limits of detection, and good repeatability and
specificity. Furthermore, the analysis results of water samples were consistent with those
obtained from the ICP-MS method, validating the potential application of this NPG/SPCE-
based sensor.
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2. Materials and Methods
2.1. Reagents and Materials

Chloroauric acid, potassium chloride, potassium ferrocyanide trihydrate, and potas-
sium ferricyanide were purchased from Shanghai Macklin Biochemical Technology Co., Ltd.
(Shanghai, China). Stock solutions of Pb2+ (1000 µg/mL) and Cu2+ (1000 µg/mL) were
purchased from Beijing General Research Institute for Nonferrous Metals. Hydrochloric
acid, sulfuric acid, nitric acid, anhydrous disodium hydrogen phosphate, disodium hy-
drogen phosphate, acetic acid, calcium nitrate, magnesium nitrate, potassium nitrate, and
sodium nitrate were purchased from Guangzhou Chemical Reagent Factory, Guangzhou,
China. The screen-printed carbon electrode (diameter 2.8 mm) was purchased from Wuhan
Zhongkezhikang Biotechnology Co., Ltd. (Wuhan, China). Microporous filter membrane
(0.22 µm) was purchased from Bikeman Biotechnology Co., Ltd. (USA). All solutions were
prepared using ultrapure water produced by Milli-Q ultrapure water (Millipore Company,
Danvers, MA, USA).

2.2. Instruments

Scanning electron microscope (SEM) images were acquired on a field emission scan-
ning electron microscope (Quattro S, Thermo Fisher Scientific, Waltham, MA, USA USA).
Energy dispersive X-ray (EDX) spectrum was collected on an energy dispersive spec-
trometer (Ultim Max Oxford Instruments Ltd., Oxford, UK). Electrochemical impedance
spectroscopy (EIS) was performed with a potentiostat (Autolab 302N, Metrohm Auto-
lab B.V., Herisau, Switzerland). Other electrochemical experiments were performed on
a potentiostat (CHI1440 Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). A
SPCE connector and a time- and speed-regulated stirring device were self-made for heavy
metal detection.

2.3. Experimental Methods
2.3.1. Electrode Modification

The screen-printed carbon electrode used in our study consisted of a carbon working
electrode, a carbon counter electrode, and a Ag/AgCl reference electrode. The SPCE was
washed with ultra-pure water and ethanol three times alternatively to remove the impurities
adhering to the electrode surface. Then, it was dried naturally at room temperature. A
total of 4 mM HAuCl4 solution containing 0.5 M H2SO4 was dropped on the electrode
surface. Then, nanogold or nanoporous gold was electrodeposited on the SPCE under a
fixed applied potential. The deposition potential was set as −0.6 V and −3.0 V for the
modification of nanogold and nanoporous gold, respectively. The deposition time was
set at 40 s. After modification, the SPCE was rinsed with ultra-pure water to remove the
residual HAuCl4 and H2SO4.

2.3.2. SWASV Determination of Pb2+ and Cu2+

A total of 1 mL of 0.1 mol/L HCl solution was used as the supporting electrolyte, and
a certain amount of Pb2+ and Cu2+ were added. The modified electrode was rinsed in the
electrolyte, and then Pb2+ and Cu2+ were detected by SWASV. The parameters were set as
follows: The deposition potential was −0.5 V, the deposition time was 300 s, the potential
increment was 4 mV, and the frequency was 25 Hz. In the deposition process, a time- and
speed-regulated stirring device was used to rotate the sample cell, and the stirring rate was
200 rpm. No stirring was provided in the stripping process. All tests were performed at
room temperature.

2.4. Real Sample Analysis

Bottled drinking water and tap water samples absent of Pb2+ and Cu2+ were used for
spiking analysis. The water samples were filtered by 0.22 µm microporous filter membrane,
followed by the addition of an equal volume of 0.2 M HCl. After thorough mixing, a specific
amount of Pb2+ and Cu2+ were added to the sample solution to obtain spiked samples
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with different concentrations of Pb2+ and Cu2+. The spiked samples were subjected to
electrochemical detection by the method described in Section 2.3.2. For evaluation of
the constructed electrochemical sensor’s reliability toward Pb2+ and Cu2+, the result of
electrochemical analysis is compared with that of ICP-MS.

3. Results and Discussion
3.1. Investigation of NPG/SPCE Preparation

In this part, the hydrogen evolution potential and the reduction potential of AuCl4−

were studied through the cyclic voltammetry characteristics of SPCEs in deposition solu-
tion. Then, the effects of deposition potential and deposition time on the preparation of
NPG/SPCEs was investigated.

3.1.1. Study on Cyclic Voltammetry Characteristics of SPCE in Deposition Solution

The electrochemical behavior of SPCE in the deposition solution (4 mM HAuCl4
containing 0.5 M H2SO4) was studied by cyclic voltammetry (CV). The scanning range was
1.4~−0.35 V, and the scanning rate was 0.1 V/s. Two scanning cycles were conducted.

As shown in Figure 1a, in the former segment of the first scanning cycle (solid line),
there is no cathodic current when the potential is higher than 0.52 V, indicating that Au was
not generated. As the potential decreases, cathodic current significantly increases, and a
large cathodic current peak appears at 0.06 V, indicating that Au3+ was reduced to Au, and
the Au nucleates and grows on the SPCE surface substantially [20]. The reduction process
is shown in Equation (1):

[AuCl4]− + 3e− → Au + 4Cl (1)
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Figure 1. Investigation of electrodeposition conditions for NPG/SPCE preparation. (a) Cyclic
voltammetry curve of screen-printed electrode in deposition solution (4 mM HAuCl4 containing
0.5 M H2SO4). (b) CV curves in 0.5 M H2SO4 and (c) calculated active surface areas of SPCEs prepared
at different deposition potentials. (d) CV curves in 0.5 M H2SO4 and (e) calculated active surface
areas of NPG-SPCEs prepared at different deposition times.

When further scanning towards the negative potential, a small current peak appears
at −0.57 V. When the potential is lower than −0.77 V, the current increases sharply, which
is caused by the evolution of a large amount of hydrogen from the surface of the working
electrode. The reduction process is shown in Equation (2):

2H+ + 2e− → H2 (2)
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When the latter segment of the first scanning cycle was conducted, a current crossover
occurred at 0.37 V. This potential is the overpotential for nucleation. At this potential,
nucleation and growth proceed at a measurable rate [21]. Another current crossover occurs
at 0.51 V, where the equilibrium of Au3+/Au redox reaction is achieved. Anodic current
and anodic current peaks appeared at the potential range of 0.51~1.4 V, indicating the
oxidation of Au. In the second scanning cycle (dashed line), the larger cathodic current
peak shifts from 0.06 V to 0.383 V, and a small cathodic current peak appears at 0.60 V,
indicating that within the potential range of 0.06~0.383 V, Au (0) is more easily deposited on
the Au generated in the first scanning cycle [22]. By studying the cyclic voltammetry curve
of the screen-printed electrode in the deposition solution, the variation of Au3+/Au under
different potentials can be cleared, which offers theoretical support for the electrochemical
deposition of gold materials on SPCEs.

3.1.2. Optimization of Deposition Potential and Deposition Time

Nanogold can be electrodeposited on the electrode under a certain deposition potential
and deposition time, where Au3+ in the solution is reduced to Au and modified on the
electrode. The applied deposition potential is commonly non-hydrogen evolution potential.
While nanoporous gold with high specific surface area can be obtained by utilizing the
hydrogen evolution potential, known as the hydrogen bubble template method [23,24]. The
size and the rate of evolution of hydrogen bubbles can provide a dynamic template for
depositing metal atoms, thus generating porous materials with 3D nanoarchitectures. It is
reported that deposition potential and deposition time strongly influence the porosity, grain
size, and density of the nanofilms [25]. Therefore, the electrochemical characterizations and
the sensing effect can be altered by optimizing the electrodeposition parameters. Herein, we
use the active surface area to identify the optimal deposition potential and deposition time
for NPG/SPCE preparation. The active surface area of modified SPCE was measured by CV
test, which is conducted in 0.5 M H2SO4 with a scanning range of 0.2~1.4 V and a scanning
rate of 0.1 V/s. The reduction peak of gold oxide can be observed in the CV curves. The
active surface area of the NPG–electrode can be calculated by Equations (3) and (4) [26,27]:

Qmes = S/v (3)

Rsa = Qmes/Qsp (4)

where Qmes is the total charge of reduction process (C); S is the integrated area of reduction
peak (CV/s); v is the scanning rate (V/s); Rsa is the active surface area (cm2); and Qsp is the
theoretical charge density for gold oxide reduction (390 µC cm−2) [28,29].

Firstly, the deposition potential for the preparation of nanoporous gold was inves-
tigated. The electrodeposition was conducted under hydrogen evolution potential and
non-hydrogen evolution potential, respectively. According to Figure 1a, the hydrogen
evolution occurs under a potential lower than −0.77 V. Therefore, −0.6 V is selected as the
non-hydrogen evolution potential for deposition, −1.0 V, −2.0 V, and −3.0 V are selected
as the hydrogen evolution potential.

During the deposition process, it can be observed that when the deposition potential
is −0.6 V, there is no evolution of hydrogen on the electrode surface. When the deposition
potential is −1.0 V, significant hydrogen evolution occurs on the electrode surface, with
hydrogen bubbles slowly growing larger and adhering to the working electrode surface.
Compared to −0.6 V, the deposition rate became higher, and for that, the electrode quickly
turned yellow. However, oversized hydrogen bubbles hinder the deposition of gold,
resulting in noticeable vacancies on the modified electrode surface [30]. As the deposition
potential continues to move towards −3.0 V, dense hydrogen bubbles generate on the
electrode surface, which can prevent the enlargement and adhesion of hydrogen bubbles,
thus facilitating the generation of nanoporous gold [31].

The CV curves of electrodes prepared at different electrodeposition potentials are
shown in Figure 1b. Compared to the electrode prepared under the non-hydrogen evolution
potential (−0.6 V), the NPG-modified electrodes using the hydrogen evolution potential
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possess a higher reduction peak current. In addition, as the deposition potential decreases,
the peak current significantly increases and reaches a maximum at −3.0 V, at which point
the active surface area (0.327 cm2) is approximately 3.85 times that of the electrode deposited
at −0.6 V (0.085 cm2) (Figure 1c). This indicates that the nanoporous gold-modified SPCE
has a larger active surface area than conventional nanogold-modified electrodes. Further
lowering the deposition potential will result in excessive current during deposition, which
may exceed the range of the potentiostat (±10 mA) and damage the instrument. Taken
together, a deposition potential of −3.0 V is selected for the electrodeposition of NPG in
subsequent experiments.

The deposition time for preparing NPG was also investigated. The deposition potential
was set as −3.0 V, and the deposition time ranged from 0 s to 40 s. As shown in Figure 1d,
there is no reduction peak of gold oxide in the CV curve for the deposition time of 0 s,
indicating that nanoporous gold was not electrodeposited on the electrode surface. In
addition, the reduction peak current of gold oxide increases as the deposition time ranges
from 10 s to 40 s, indicating the increased deposition amount of NPG on the electrode
surface with electrodeposition time rising up. Moreover, the calculated active surface area
of the NPG-modified electrode prepared at 40 s (0.327 cm2) is approximately two times
that at 10 s (0.163 cm2). Considering the modification efficiency and the stability of the
baseline during subsequent stripping detection, 40 s is chosen as the deposition time for
the preparation of nanoporous gold.

3.2. Morphological Characterization and Element Analysis of SPCE

SEM and EDX were used to characterize the surface of SPCE modified with nanogold
(AuNPs/SPCE) and nanoporous gold (NPG/SPCE). It can be observed that there are great
changes in the morphology of electrodes after electrodeposition (Figure 2a,c,e). Nanopar-
ticles of different sizes were modified on the electrode. The changes in EDX spectrums
demonstrated that the modified material is gold (Figure 2b,d,f). The carbon, oxygen, and
silicon were from the bare screen-printed carbon electrode (Figure 2b). The average particle
size of AuNPs electrodeposited at −0.6 V was approximately 102 nm (Figure 2c), whereas
the average particle size of AuNPs electrodeposited at −3.0 V was about 60 nm (Figure 2e).
These gold nanoparticles aggregated during the deposition process and formed a loose
porous structure, demonstrating the successful preparation of NPG/SPCE.
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3.3. Electrochemical Characterization of NPG/SPCE
3.3.1. Electrode Evaluation with Cyclic Voltammetry

To evaluate the conductivity of NPG/SPCE, CV scans were performed using NPG/SPCE,
AuNPs/SPCE, and a bare electrode in a mixed solution of 5 mmol/L [Fe (CN)6]3−/4− and
0.1 mol/L KCl, respectively. The scanning range was −0.5~0.7 V, and the scanning rate was
0.1 V/s. As shown in Figure 3a, the redox current using AuNPs/SPCE was much higher
than that of the bare electrode, and the peak potential difference narrowed. This is because
the modified gold nanoparticles enlarged the active surface area of electrode and improved
the electron transfer ability [8]. In addition, the redox current further increased when using
NPG/SPCEs, indicating that nanoporous gold nanoparticles further enlarged the active
surface area of the electrode due to its 3D nano-architectures, thus providing more active sites
for the redox reaction [16]. The EIS result was consistent with the CV test for that the Rct
decreased with the modification of AuNPs and NPG, indicating enhanced electron transfer
ability with different modifications (Figure 3b). The NPG/SPCE has a better electron transfer
ability than the conventionally gold nanoparticle-modified electrode, demonstrating the great
advantages of the 3D porous structure of nanoparticles for the electrode modification [30].
Then, CV tests using NPG/SPCEs under different scan rates were conducted. The redox
current was linearly correlated with the square root of scanning rate with linear equations of
Ipa = 175.57v1/2 + 2.10 (R2 = 0.9998) for the oxidation reaction and Ipc = −138.50v1/2 − 10.14
(R2 = 0.9974) for the reduction reaction (Figure 3c), indicating that the redox process of [Fe
(CN)6]3−/4− on the NPG/SPCE was mainly based on the linear diffusion control [32].
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relationship between redox peak current and the square root of scan rate; (d) square wave stripping
voltammetry curves of Pb2+ and Cu2+ detected by different electrodes.
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3.3.2. Comparison of Electrode Performance for Heavy Metal Detection

To evaluate the real detection effect of different electrodes for the determination of
Pb2+ and Cu2+, the SWASV test was carried out using bare electrodes, AuNPs/SPCE, and
NPG/SPCE. As shown in Figure 3d, when using the bare electrode, only a small stripping
peak of silver was observed, which is related to the reference electrode material [33]. When
using AuNPs/SPCE, two independent stripping peaks of Pb2+ and Cu2+ appeared at
−0.2 V and 0.23 V, respectively. As for the NPG/SPCE, the stripping peak of Pb2+ and Cu2+

appeared at −0.19 V and 0.3 V, respectively. Moreover, compared to the conventionally
deposited AuNPs/SPCE, NPG/SPCE prepared by the dynamic hydrogen bubble template
method obtained a higher peak current for Pb2+ and Cu2+ determination, which is due to
the superior electron transfer ability of NPG/SPCE. Although the baseline was not smooth,
it did not affect the detection. Therefore, NPG/SPCE demonstrated the best performance
for the determination of Pb2+ and Cu2+.

3.4. Optimization of Experimental Parameters in SWASV

In order to improve the sensitivity of NPG/SPCE for the determination of Pb2+ and
Cu2+, the supporting electrolyte, deposition potential, deposition time, and stirring rate
used in the SWASV test were optimized.

3.4.1. Supporting Electrolyte

Supporting electrolyte was tested among 0.1 M phosphate buffer solution (PBS,
pH = 7), acetate buffer solution (ABS, pH = 4.5), H2SO4, HNO3, and HCl. Pb2+ and Cu2+

were added into the supporting electrolyte with a final concentration of 50 µg/L, respec-
tively, then detected using NPG/SPCE through the SWASV method. As shown in Figure 4a,
the highest stripping peak currents of Pb2+ and Cu2+ were observed when 0.1 M HCl
solution was used as the supporting electrolyte. HCl is the commonly used supporting
electrolyte in electrochemical analysis of heavy metals; for that, the chloride in the medium
can improve the electrolytic conductivity. In addition, HCl can provide a suitable pH for
the reaction to avoid the hydrolysis of heavy metals [34]. Therefore, a 0.1 M HCl solution
was selected in subsequent experiments.
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3.4.2. Deposition Potential and Deposition Time

The deposition potential and deposition time in the enrichment process of SWASV
have a significant impact on the detection of Pb2+ and Cu2+. Firstly, the influence of
the deposition potential was investigated, which was set at −0.3, −0.4, −0.5, −0.6, −0.7,
−0.8, and −0.9 V. As shown in Figure 4b, the stripping peak currents of Pb2+ and Cu2+

gradually increased as the deposition potential shifted from −0.3 V to −0.5 V, and reached
the maximum at −0.5 V. When the deposition potential continued to shift towards −0.9 V,
the peak currents of Pb2+ and Cu2+ decreased. This is because an excessively negative
deposition potential can lead to a large extent of hydrogen evolution on the electrode
surface during the enrichment process, hindering the enrichment of Pb2+ and Cu2+ and
affecting subsequent stripping [35]. Therefore, −0.5 V was selected as the deposition
potential for SWASV.

Next, the deposition time was investigated using the optimized conditions mentioned
above, and the deposition time was set as 60, 120, 180, 240, and 300 s. As shown in Figure 4c,
the peak currents of Pb2+ and Cu2+ increased linearly with the deposition time in the range
of 60 to 300 s, suggesting that a longer deposition time is favored for the enrichment of
Pb2+ and Cu2+ on the electrode surface. However, an excessively long deposition time will
reduce the detection efficiency. Taken together, 300 s was adopted as the deposition time.

3.4.3. Stirring Rate

Stirring during the enrichment process can reduce the concentration polarization,
thus facilitating the enrichment of heavy metal ions. The stirring rate was adjusted by a
self-made miniaturized device and set as 0, 50, 100, 150, 200, and 250 rpm. As shown in
Figure 4d, the stripping peak currents of Pb2+ and Cu2+ significantly increased with the
stirring rates ranging from 0 to 200 rpm and kept relatively stable after the speed exceeded
200 rpm. Therefore, 200 rpm was applied during the enrichment process.

3.5. Analytical Performance of NPG/SPCE for the Detection of Pb2+ and Cu2+

Under optimal experimental conditions, individual detection of Pb2+ using NPG/SPCE
was conducted. The concentrations of Pb2+ were set as 0, 1, 2, 5, 10, 20, 40, 60, 80, 100, and
120 µg/L. As shown in Figure 5a, the stripping peak of Pb2+ appears at −0.19 V, and the
stripping peak current increases with the Pb2+ concentration varying from 1 to 120 µg/L.
The standard curve for Pb2+ determination is shown in Figure 5b. The linear regression
equation is Ip = 1.14 C + 0.41, and R2 achieves 0.997. The limit of detection was calculated
to be 0.4 µg/L (S/N = 3). The electrode exhibited good repeatability in the 10 consecutive
detections of 50 µg/L Pb2+, with a relative standard deviation (RSD) of 3.00% (Figure S1a).

Subsequently, individual detection of Cu2+ at concentrations of 0, 10, 20, 40, 60, 80, and
100 µg/L was conducted with NPG/SPCE. As shown in Figure 5c, the stripping potential of
Cu2+ is near 0.3 V. The stripping peak current is proportional to Cu2+ concentration within
the range of 10–100 µg/L. The linear regression equation is Ip = 0.73C + 58.89, and R2

reaches 0.998 (Figure 5d). The limit of detection was determined to be 5.5 µg/L (S/N = 3).
The electrode exhibited good repeatability in the 10 consecutive detections of 50 µg/L Cu2+,
with an RSD of 2.61% (Figure S1b).

Furthermore, simultaneous detection of Pb2+ and Cu2+ was performed using NPG/SPCE
at concentrations ranging from 0 to 100 µg/L. As shown in Figure 6a, there are two dis-
tinct stripping peaks at −0.2 V and 0.3 V, which correspond to Pb2+ and Cu2+, respectively.
In addition, the stripping peak currents present a good linear relationship with Pb2+ con-
centration within the range of 1–100 µg/L (Figure 6b). The linear regression equation is
Ip = 1.16C + 0.28 (R2 = 0.993) and the limit of detection is 0.4 µg/L (S/N = 3). Similarly, as
shown in Figure 6a,c, a good linear relationship is observed between stripping peak current
and Cu2+ concentration within the range of 10–100 µg/L. The linear regression equation is
Ip = 0.75C + 54.50 (R2 = 0.996), and the limit of detection is 5.4 µg/L (S/N = 3). Compared
with the individual detection of Pb2+ and Cu2+, there are negligible changes in the slope of
the linear regression equation and the limit of detection, indicating that the NPG/SPCE can
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achieve simultaneous detection of Pb2+ and Cu2+ without mutual influence. However, it was
found that the linear range of Pb2+ decreased from 1–120 µg/L to 1–100 µg/L during simulta-
neous detection. This is due to the high total content of Pb2+ and Cu2+ in the test solution,
leading to competitive binding of Pb2+ and Cu2+ at the working electrode surface [32]. The
repeatability of NPG/SPCE in detecting Pb2+ and Cu2+ was good, with RSD values of 2.33%
for Pb2+ and 2.82% for Cu2+ in 10 repeated measurements of a solution containing 50 µg/L
of both ions (Figure S2). Some reported electrochemical sensors for the simultaneous deter-
mination of Pb2+ and Cu2+ were listed in Table 1. The electrode type, electrode modification
materials, linear range, and limit of detection for Pb2+ and Cu2+ were compared. Our method
demonstrated competitiveness in a comprehensive consideration of linear range and limit of
detection. In addition, we also compared our work with some instrumental analysis methods,
such as spectrophotometry and atomic absorption spectroscopy (Table 1). It can be seen that
our method has comparable sensitivity under the premise of rapid analysis and low cost.
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Table 1. Comparison of different electrochemical sensors and instrumental analysis methods for the
simultaneous determination of Pb2+ and Cu2+.

Electrode Substrate Electrode
Modification

Linear Range (µg/L) Limit of Detection Applications ReferencesPb2+ Cu2+ Pb2+ Cu2+

Screen-printed gold electrode GNP 1 20–200 20–200 2.2 1.6 - [36]
Glassy carbon electrode Ce-CNFs 2 0.9–2.1 0.6–1.8 0.6 0.3 River water [37]

SPCE Calixarene 100–2400 100–2400 38 40 Waste water [38]
Carbon paste electrode RGO/Bi 3 20–120 20–100 0.55 26 Ground-water [39]

Atomic Absorption Spectrometry (AAS) 250–1500 250–1500 28.4 3.7 Fish [40]
Inductively Coupled Plasma Optical Emission

Spectrometry (ICP-OES) / / 0.4 0.5 Seawater [41]

Laser-Induced Breakdown Spectroscopy (LIBS) / / 125 12 water [42]
SPCE NPG 1–100 10–100 0.4 5.4 Tap-water This work

1 GNP denotes gold nanoparticles; 2 Ce-CNFs are cerium oxide-catalyzed carbon nanofibers; 3 RGO/Bi is a
nanocomposite of reduced graphene oxide and bismuth.
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Figure 6. (a) SWASV curves for the simultaneous determination of Pb2+ and Cu2+ with different con-
centrations. Standard curve of Pb2+ (b) and Cu2+ (c) in a simultaneous determination. (d) Specificity
test of NPG/SPCE. The interfering ion was added to the solution containing Pb2+ and Cu2+, and the
corresponding peak current values of Pb2+ and Cu2+ were compared with those in a solution only
containing Pb2+ and Cu2+ without any different ions (marked as absent).

In addition, the influence of different metal ions on the responses of Pb2+ and Cu2+

were investigated. Ca2+, Mg2+, Fe3+, Na+, and K+ with a concentration ten times that of
Pb2+ and Cu2+ were added to the test solution as interfering ions. As shown in Figure 6d,
when the interfering ion exists, there are no obvious changes in the stripping peak current
of both Pb2+ and Cu2+, indicating that Ca2+, Mg2+, Fe2+, Na+, and K+ have little interference
on the determination of Pb2+ and Cu2+. Therefore, NPG/SPCE has great specificity and
anti-interference ability.

3.6. Recovery Study

To assess the feasibility of NPG/SPCEs in practical applications, a spike-recovery
method was employed to detect Pb2+ and Cu2+ in bottled drinking water and tap water
samples. The spiking amounts of Pb2+ and Cu2+ were set to four different levels. The water
sample was pretreated following the guidelines in Section 2.4 and each spiked sample was
tested three times in parallel. Then the recovery rates and RSD were calculated. To further
validate the detection accuracy of the constructed electrochemical sensor, the spiked water
samples were also tested using ICP-MS for comparison.

As shown in Table 2, when NPG/SPCE was used to detect bottled water and tap water
samples, the recovery rates of Pb2+ ranged from 94.5% to 102.8%, with an RSD of 1.01%
to 3.82%, and the recovery rates of Cu2+ were between 98.1% and 107.5%, with an RSD of
1.04% to 3.68%. In addition, the determination values were basically consistent with the
ICP-MS detection results with a minimal deviation less than 5%, indicating that the heavy
metal sensor has good accuracy and reliability.
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Table 2. Detection results of spiked samples measured by the electrochemical method and ICP-MS.

Sample Spiked (µg/L) Found (µg/L) Recovery
Rate (%) RSD * (%) Found by

ICP-MS (µg/L) |Error| (%)

Pb2+ Cu2+ Pb2+ Cu2+ Pb2+ Cu2+ Pb2+ Cu2+ Pb2+ Cu2+ Pb2+ Cu2+

Bottled water
0 - - - - - - 0.18 0.46 - -

30 29.2 29.6 97.4 98.5 1.01 1.04 29.6 30.9 1.35 4.21
60 56.7 58.9 94.5 98.1 2.78 2.12 61.2 58.8 7.35 0.17

Tap water
0 - - - - - - 0.32 1.32 - -

30 30.8 32.3 102.8 107.5 2.90 3.20 31.0 31.7 0.65 1.89
60 60.2 63.3 100.3 105.5 3.82 3.68 60.5 61.9 0.50 2.26

* Relative standard deviation. For each concentration, three replicates were measured.

4. Conclusions

In this study, a nanoporous gold film was electrodeposited onto the surface of SPCE
using the hydrogen bubble template method. The electrodeposition potential and electrode-
position time were optimized according to the active surface area of prepared NPG/SPCEs.
The nanoporous gold demonstrated superior electron transfer ability due to its 3D nanos-
tructure. The NPG/SPCE was used to construct an electrochemical sensor for the simulta-
neous detection of Pb2+ and Cu2+. With its broad linear dynamic range, low detection limit,
and high recovery rates in real sample analysis, this electrode demonstrates suitability
for quantitative determination of Pb2+ and Cu2+ in drinking water. Overall, this sensor
offers simplicity in terms of electrode modification and detection process, making it highly
promising for lead and copper determination applications in environmental monitoring
and food safety.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s24175745/s1, Figure S1: The detection results of
10 repeated tests for the individual determination of Pb2+ (a) and Cu2+ (b) with a concentration
of 50 µg/L; Figure S2: The detection results of 10 repeated tests for the simultaneous determination
of Pb2+ and Cu2+ with a concentration of 50 µg/L each.
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