
Citation: Li, Y.; Li, G.; Wang, X.

Research on Trajectory Planning of

Autonomous Vehicles in Constrained

Spaces. Sensors 2024, 24, 5746.

https://doi.org/10.3390/s24175746

Academic Editor: Arturo de la

Escalera Hueso

Received: 6 July 2024

Revised: 24 August 2024

Accepted: 3 September 2024

Published: 4 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Trajectory Planning of Autonomous Vehicles in
Constrained Spaces
Yunlong Li, Gang Li * and Xizheng Wang

School of Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001, China;
221285021@stu.lnut.edu.cn (Y.L.); 231285063@stu.lnut.edu.cn (X.W.)
* Correspondence: qcxyligang@lnut.edu.cn

Abstract: This paper addresses the challenge of trajectory planning for autonomous vehicles operating
in complex, constrained environments. The proposed method enhances the hybrid A-star algorithm
through back-end optimization. An adaptive node expansion strategy is introduced to handle
varying environmental complexities. By integrating Dijkstra’s shortest path search, the method
improves direction selection and refines the estimated cost function. Utilizing the characteristics of
hybrid A-star path planning, a quadratic programming approach with designed constraints smooths
discrete path points. This results in a smoothed trajectory that supports speed planning using S-curve
profiles. Both simulation and experimental results demonstrate that the improved hybrid A-star
search significantly boosts efficiency. The trajectory shows continuous and smooth transitions in
heading angle and speed, leading to notable improvements in trajectory planning efficiency and
overall comfort for autonomous vehicles in challenging environments.

Keywords: trajectory planning; hybrid A-star; quadratic programming; speed planning

1. Introduction

The rapid development in autonomous driving technology has provided many con-
veniences to people’s lives and reduced traffic accidents [1]. Among them, path planning
is one of the core research areas of autonomous driving technology, aiming to plan a path
for the vehicle to reach the destination safely and ensure the avoidance of obstacles [2]. Al-
though autonomous driving technology has been commercialized in some scenarios, it still
faces greater challenges in path planning. In particular, there are avoidance of high-density
obstacles under restricted and narrow working conditions, precise kinematic constraint
handling, and real-time requirements. Path planning methods can be classified according
to different technical means, including graph search-based methods, optimization meth-
ods, sampling-based methods, and machine learning methods. Among them, Dijkstra’s
algorithm [3] and A-star algorithms [4,5], as the classical algorithms of a graph search,
need to preform a path search on a discrete map to find the optimal path. Optimization
methods utilize mathematical optimization techniques [6,7], such as linear programming
and nonlinear programming [8], that are capable of handling complex dynamic envi-
ronments and multi-objective constraints. Sampling-based methods such as RRT (Rapid
Exploration Random Tree) and its variants [9,10] generate path candidates by random sam-
pling and filter the optimal paths to be suitable for high-dimensional spaces and complex
obstacle environments.

Dmitri Dolgov first proposed the hybrid A-star method, Sebastian Thrun et al., at Stan-
ford University in 2008 [11]. Hybrid A-star combines the A-star algorithm, which “takes ob-
stacles into account without considering motion constraints”, with the Reeds–Shepp curve,
which “takes obstacles into account without considering motion constraints”. The hybrid A-
star combines the A-star algorithm “considering obstacles without motion constraints” with
the Reeds–Shepp curve [12] “considering motion constraints without obstacles”. Therefore,

Sensors 2024, 24, 5746. https://doi.org/10.3390/s24175746 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24175746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4501-7431
https://doi.org/10.3390/s24175746
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24175746?type=check_update&version=1

Sensors 2024, 24, 5746 2 of 25

compared with other algorithms, the hybrid A-star is more suitable for trajectory planning
at low speeds in restricted spaces. After years of development, hybrid A-star is improved
to be applied in different working scenarios. Meng et al. [13] enhance the performance of
hybrid A-star algorithms through a safety-enhanced design and an efficiency-enhanced
design. The safety-enhanced design integrates the Voronoi field potential function in the
path search phase to better consider the safety of the path. The efficiency-enhanced design
proposes a multi-stage dynamic optimization strategy that divides the path planning into
multiple stages and performs dynamic optimization at each stage. The problem that the
output paths of the hybrid A-star algorithm often contain unnecessary steering maneuvers,
and the paths are close to obstacles, is addressed. Tang et al. [14] propose a method that
applies the concept of an artificial potential field to optimize the hybrid A-star algorithm.
The generated paths not only satisfy the vehicle’s non-integrity constraints, but also smooth
and maintain a comfortable distance from obstacles. Tian et al. [15] proposed a hybrid
A-star path planning method based on hierarchical clustering and trilateration to solve
the problems of poor path smoothness and long paths of self-driving cars in narrow areas.
The method uses the Prewitt operator to identify obstacle boundaries and discretize them;
a single-link hierarchical clustering algorithm is used for obstacle clustering; a convex
packet algorithm is used to envelop the clustered points and extend the car to solve the
problem of a traditional hybrid A-star algorithm’s extension in U-shape obstacle clusters;
and, finally, the node extension strategy is improved based on the method of trichotomies.
Jing et al. [16] proposed an enhanced hybrid A-star (EHA) algorithm to solve the prob-
lem of high computational cost or inability to find a suitable initial guess in narrow and
complex environments. The EHA consists of four steps: first, the global rough trajectory is
quickly obtained using traditional A; then, the driving corridor is constructed along the
rough trajectory, and each channel node is evaluated; then, the channel boundary points
are extracted; and finally, the boundary points are connected by hybrid A that generates
a feasible initial guess for the OCP (Optimal Control Problem). Dang et al. [17] improved
the RS method in the hybrid A-star algorithm by providing multiple curvature choices to
improve safety and introducing a cost function that evaluates the risk of collision and the
cost of motion. In addition, by fine-tuning the motion primitives in the forward search
phase, unnecessary turning points are reduced, resulting in smoother paths.

Numerous scholars mentioned above pin the hybrid A-star algorithm with different
improvements, and there exists a significant improvement in path smoothing, search
efficiency, and obstacle avoidance ability. However, for actual tracking control of its planned
path, it is necessary to assign desired vehicle speed and acceleration to each discrete path
point, i.e., speed planning. Therefore, this paper proposes a method to improve the search
efficiency of the hybrid A-star algorithm while performing back-end processing on its
planned trajectories. Smoothing of the hybrid A-star planned trajectories and mapping
the planned speeds to discrete path points are realized. An optimal trajectory containing
position, heading, speed, and acceleration is planned. The main major contributions and
innovations of this paper are as follows:

• Pre-processing using Dijkstra’s algorithm searches for the shortest path between the
start and endpoints that can avoid obstacles. The hybrid A-star searches the path by
calculating the estimated cost h(n) based on this shortest path to provide the correct
direction guidance for the search. In addition, the node expansion strategy with
variable step length and variable angle is designed according to the environment
complexity and path completion.

• Consider the smoothing cost, discrete path point compact cost, and path geometric
similarity cost to construct the quadratic programming problem. By designing con-
straints to ensure the bit position continuity at the articulation of the forward and
reverse segments, the segmental smoothing of the planned path is realized.

• Design the speed planner according to the S-curve to carry out speed planning for
the smoothed path, according to the characteristics of the path design speed planner
adaptive system parameters’ adaptive strategy.

Sensors 2024, 24, 5746 3 of 25

This paper consists of the following main sections in addition to this section: the
second section describes the improvement in the hybrid A-star algorithm; the third section
performs the back-end smoothing of the planning path; the fourth section is the velocity
planning of the planning path; the fifth section validates the method proposed in this paper
through simulations and experiments; and the last section gives the conclusions.

2. Improvement in the Hybrid A-Star Algorithm

Unlike the traditional search class algorithms Dijkstra and A-star algorithms, the
hybrid A algorithm will consider the vehicle’s kinematic model constraints when per-
forming the node expansion, which extends the two-dimensional planar search to the
three-dimensional space [x, y, yaw], where yaw denotes the vehicle’s heading informa-
tion, as shown in Figure 1. Hybrid A is able to plan the continuous positional changes
in the vehicle in a discrete grid, making it practical and accurate in restricted spaces and
narrow environments. In order to improve the utility of the hybrid A-star algorithm in
path planning, this paper improves both the node expansion method and the cost function
calculation method based on the traditional hybrid A-star algorithm to improve search
efficiency and path quality, where the path quality mainly refers to the path length and
curvature change.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 27

• Design the speed planner according to the S-curve to carry out speed planning for

the smoothed path, according to the characteristics of the path design speed planner

adaptive system parameters’ adaptive strategy.

This paper consists of the following main sections in addition to this section: the sec-

ond section describes the improvement in the hybrid A-star algorithm; the third section

performs the back-end smoothing of the planning path; the fourth section is the velocity

planning of the planning path; the fifth section validates the method proposed in this pa-

per through simulations and experiments; and the last section gives the conclusions.

2. Improvement in the Hybrid A-Star Algorithm

Unlike the traditional search class algorithms Dijkstra and A-star algorithms, the hy-

brid A algorithm will consider the vehicle’s kinematic model constraints when performing

the node expansion, which extends the two-dimensional planar search to the three-dimen-

sional space [x, y, yaw], where yaw denotes the vehicle’s heading information, as shown

in Figure 1. Hybrid A is able to plan the continuous positional changes in the vehicle in a

discrete grid, making it practical and accurate in restricted spaces and narrow environ-

ments. In order to improve the utility of the hybrid A-star algorithm in path planning, this

paper improves both the node expansion method and the cost function calculation

method based on the traditional hybrid A-star algorithm to improve search efficiency and

path quality, where the path quality mainly refers to the path length and curvature

change.

(a) (b)

Figure 1. Comparison of different expansion methods; they should be listed as (a) the A-star exten-

sion method; (b) the hybrid A-star extension method.

2.1. Improving Node Expansion

In terms of node expansion methods, short-distance mobility has better flexibility and

obstacle-bypassing ability, but it leads to an increase in the number of node expansions.

While long-distance mobility has poor obstacle avoidance ability, it can approach the tar-

get point faster and reduce the number of node expansions. In this paper, we redesign the

node expansion strategy by introducing the concepts of environmental complexity and

planning completion. The advantages of short- and long-distance mobility methods are

combined.

As shown in Figure 2 for the vehicle at the current node, set the current node as
(, ,)i i ix y yaw . Traverse the raster range as a circle centered at the current node with radius

r. Calculate the percentage of the circle occupied by obstacles obsP :

obs
obs

total

N
P

N
= (1)

Figure 1. Comparison of different expansion methods; they should be listed as (a) the A-star extension
method; (b) the hybrid A-star extension method.

2.1. Improving Node Expansion

In terms of node expansion methods, short-distance mobility has better flexibility and
obstacle-bypassing ability, but it leads to an increase in the number of node expansions.
While long-distance mobility has poor obstacle avoidance ability, it can approach the target
point faster and reduce the number of node expansions. In this paper, we redesign the node
expansion strategy by introducing the concepts of environmental complexity and planning
completion. The advantages of short- and long-distance mobility methods are combined.

As shown in Figure 2 for the vehicle at the current node, set the current node as
(xi, yi, yawi). Traverse the raster range as a circle centered at the current node with radius r.
Calculate the percentage of the circle occupied by obstacles Pobs:

Pobs =
Nobs
Ntotal

(1)

where Ntotal is the total number of grids in the circle; and Nobs is the number occupied by
obstacles; for each grid, whose centroid coordinates are (xgrid, ygrid) inside the circle, by
calculating the distance from the center of the grid to the center of the circle dcenter,

dcenter =
√
(xgrid − xi)

2 + (ygrid − yi)
2 (2)

Sensors 2024, 24, 5746 4 of 25

Sensors 2024, 24, x FOR PEER REVIEW 4 of 27

where totalN is the total number of grids in the circle; and obsN is the number occupied

by obstacles; for each grid, whose centroid coordinates are (,)grid gridx y inside the circle,

by calculating the distance from the center of the grid to the center of the circle centerd ,

2 2() ()center grid i grid id x x y y= − + − (2)

Figure 2. Environmental complexity schematics.

If centerd r , the raster is determined to be inside the circle. Define the function

(,)i iC x y to describe the environment complexity. The complexity of the environment re-

fers to the proportion of occupied rosters around the current node to the total number of

rasters.

(,)i i obs obsC x y w P= (3)

where obs is the environmental complexity factor, and the Euclidean distance from the

current node to the endpoint is
id . Then, according to the environmental complexity and

the planning progress, the dynamic extended distance step is defined as

0 max

1
min (1),

1 (,)

i
i

i i i

d
s s s

C x y L

 = +

+ +
 (4)

where 0s is the base search step;
maxs is the maximum search angle step; and

are adjustment coefficients used to balance the environment complexity and path plan-

ning progress; iL is the Euclidean distance from the current node to the starting point;

and is a small positive constant to avoid an infinite situation. Similarly, for the dynamic

extended angle step,

0 max

1
min (1),

1 (,)

i
i

i i i

d

C x y L

 = +

+ +
 (5)

where 0 is the base search angle step;
max is the maximum search angle step.

When searching in three-dimensional space, the step length decreases when the com-

plexity of the environment increases, ensuring a more detailed search in complex envi-

ronments; when the distance from the target point is far, the step length is relatively large.

To quickly approach the target point, and as the distance to the target point decreases, the

step length gradually decreases to improve the accuracy of the path. Equations (4) and (5)

demonstrate that when the distance to the target point is larger, and the environment is

less complex, the step size of node expansion becomes more larger. To prevent overlook-

ing small obstacles due to the large step size, we set upper limits for the search step sizes,

maxs and max . These upper limits are adjusted based on the size of the vehicle.

r

(, ,)i i ix y yaw

Figure 2. Environmental complexity schematics.

If dcenter < r, the raster is determined to be inside the circle. Define the function
C(xi, yi) to describe the environment complexity. The complexity of the environment refers
to the proportion of occupied rosters around the current node to the total number of rasters.

C(xi, yi) = wobsPobs (3)

where ωobs is the environmental complexity factor, and the Euclidean distance from the
current node to the endpoint is di. Then, according to the environmental complexity and
the planning progress, the dynamic extended distance step is defined as

∆si = min
{

∆s0 ∗
1

1 + αC(xi, yi)
∗ (1 + β

di
Li + ϵ

), ∆smax

}
(4)

where ∆s0 is the base search step; ∆smax is the maximum search angle step; α and β are
adjustment coefficients used to balance the environment complexity and path planning
progress; Li is the Euclidean distance from the current node to the starting point; and ϵ is
a small positive constant to avoid an infinite situation. Similarly, for the dynamic extended
angle step,

∆θi = min
{

∆θ0 ∗
1

1 + αC(xi, yi)
∗ (1 + β

di
Li + ϵ

), ∆θmax

}
(5)

where ∆θ0 is the base search angle step; ∆θmax is the maximum search angle step.
When searching in three-dimensional space, the step length decreases when the

complexity of the environment increases, ensuring a more detailed search in complex
environments; when the distance from the target point is far, the step length is relatively
large. To quickly approach the target point, and as the distance to the target point decreases,
the step length gradually decreases to improve the accuracy of the path. Equations (4) and
(5) demonstrate that when the distance to the target point is larger, and the environment is
less complex, the step size of node expansion becomes more larger. To prevent overlooking
small obstacles due to the large step size, we set upper limits for the search step sizes, ∆smax
and ∆θmax. These upper limits are adjusted based on the size of the vehicle.

Remark 1. The choice of parameters regarding the adjustment coefficients α and β is related to
the degree of conservatism of the algorithm. A more significant α means that the complexity of the
environment is scaled up accordingly, and the step size of the expansion becomes relatively more
minor. The larger β means amplifying the distance from the current node to the endpoint, and the
step size of the expansion becomes relatively more significant. These two coefficients constrain each
other, and the algorithm’s performance can be improved by choosing appropriate parameters.

Sensors 2024, 24, 5746 5 of 25

2.2. Heuristic Improvements

For search class algorithms, the heuristic function plays a crucial role in (1) guiding the
search direction, (2) improving the search efficiency, (3) reducing unnecessary extensions,
etc. Dijkstra’s algorithm, the classical method of search class planning, searches for paths
based on the actual cost g(n) from the starting point to the current node, so the search
scope is wider and less efficient. At the same time, the A-star algorithm combines the
actual cost g(n) and the estimated cost h(n) and guides the search direction by a heuristic
function so as to improve the search efficiency. The heuristic for the hybrid A-star algorithm,
combined with the heuristic for the A-star algorithm, is designed as f(n) = g(n) + h(n). In
this formulation, g(n) represents the actual cost, incorporating penalties for the length to
the parent node, steering, steering changes, and reversals. The estimation of the cost h(n)
includes the Manhattan distance from the current node to the target node and the length of
the Reeds–Shepp curve [18] connection between the current node and the target node. Both
of these penalties ignore the presence of obstacles. In complex environments (e.g., regions
with dense obstacles or complex terrain), these simple heuristics do not accurately reflect
the actual optimal path. This leads to a decrease in search efficiency or the generation of
suboptimal paths. In order to improve the search efficiency and planning accuracy of the
hybrid A-star algorithm in a narrow space, the estimation cost h(n) in it is improved:

h(n) = wmdman + wndnearst + wcdcurve (6)

where dman is the Manhattan distance from the pre-point node to the target node, defining
the end position as (xgoal , ygoal , yawgoal):

dman =
∣∣∣xi − xgoal

∣∣∣+∣∣∣yi − ygoal

∣∣∣ (7)

Distance from the current node to the nearest discrete point in the shortest path dnear:

dnear = minp∈dijkstra_path(
√
(xi − xgoal)

2 + (yi − ygoal)
2) (8)

where dijstra_path is the set of discrete points in the shortest path pre-searched by Dijkstra.
The length of the curve from the nearest discrete point to the target node dcurve:

dcurve = Dijkstra-Path(pnearest, pgoal) (9)

where pnearest is the closest discrete point to the current node in the shortest path, as shown
in Figure 3, being a schematic diagram of each of the h(n):

Sensors 2024, 24, x FOR PEER REVIEW 5 of 27

Remark 1. The choice of parameters regarding the adjustment coefficients and is related

to the degree of conservatism of the algorithm. A more significant means that the complexity

of the environment is scaled up accordingly, and the step size of the expansion becomes relatively

more minor. The larger means amplifying the distance from the current node to the endpoint,

and the step size of the expansion becomes relatively more significant. These two coefficients constrain

each other, and the algorithm’s performance can be improved by choosing appropriate parameters.

2.2. Heuristic Improvements

For search class algorithms, the heuristic function plays a crucial role in (1) guiding

the search direction, (2) improving the search efficiency, (3) reducing unnecessary exten-

sions, etc. Dijkstra’s algorithm, the classical method of search class planning, searches for

paths based on the actual cost g(n) from the starting point to the current node, so the

search scope is wider and less efficient. At the same time, the A-star algorithm combines

the actual cost g(n) and the estimated cost h(n) and guides the search direction by a heu-

ristic function so as to improve the search efficiency. The heuristic for the hybrid A-star

algorithm, combined with the heuristic for the A-star algorithm, is designed as f(n) = g(n)

+ h(n). In this formulation, g(n) represents the actual cost, incorporating penalties for the

length to the parent node, steering, steering changes, and reversals. The estimation of the

cost h(n) includes the Manhattan distance from the current node to the target node and

the length of the Reeds–Shepp curve [18] connection between the current node and the

target node. Both of these penalties ignore the presence of obstacles. In complex environ-

ments (e.g., regions with dense obstacles or complex terrain), these simple heuristics do

not accurately reflect the actual optimal path. This leads to a decrease in search efficiency

or the generation of suboptimal paths. In order to improve the search efficiency and plan-

ning accuracy of the hybrid A-star algorithm in a narrow space, the estimation cost h(n)

in it is improved:

() m man n nearst c curveh n w d w d w d= + + (6)

where mand is the Manhattan distance from the pre-point node to the target node, defin-

ing the end position as (, ,)goal goal goalx y yaw :

| | | |man i goal i goald x x y y= − + − (7)

Distance from the current node to the nearest discrete point in the shortest path neard :

2 2

_min (() ())near p dijkstra path i goal i goald x x y y= − + − (8)

where dijstra_path is the set of discrete points in the shortest path pre-searched by Dijkstra.

The length of the curve from the nearest discrete point to the target node curved :

Dijkstra-Path(,)curve nearest goald p p= (9)

where nearestp is the closest discrete point to the current node in the shortest path, as

shown in Figure 3, being a schematic diagram of each of the h(n):

Hybrid A-star
Dijkstra-Path
Goal Positopn
Start Position

Start Pose

Goal Pose

mand

neard
curved

Figure 3. Schematic representation of estimated costs. Figure 3. Schematic representation of estimated costs.

To ensure the planned path is optimal while meeting the vehicle’s kinematic character-
istics and environmental constraints, a Reeds-Shepp curve is used to connect to the target
point when the node expansion is close to the target, generating a smooth and feasible path.
However, if the shape of the Reeds–Shepp curve at the end of the path is not considered

Sensors 2024, 24, 5746 6 of 25

when mixing the paths searched by the A-star, the curve at the end of the path will appear
as a path with frequent reversals. The final design estimated cost h(n) is

h(n) =
{

wmdMan + wndnearst + wcdcurve dgoal > shootdist
lengthreeds−shepp + numberrs−reverseotherwise

(10)

3. Path Smoothing

In the search process of the hybrid A-star algorithm, penalizing changes in vehicle
heading and steering can ensure that the planned path minimizes the number of turns as
much as possible. However, when turning is necessary, the vehicle will rotate at a high yaw
rate. This reduces ride comfort and impacts the actuator. To address the above problems,
back-end optimization of the paths planned by the improved hybrid A-star is performed.
The steering maneuver of the vehicle is made smooth and continuous, as shown in Figure 4.
The quadratic optimization problem is constructed through the geometric relationship
between the path points, and the constraints are set according to the path characteristics to
achieve the smoothing of the path.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 27

To ensure the planned path is optimal while meeting the vehicle's kinematic charac-

teristics and environmental constraints, a Reeds-Shepp curve is used to connect to the tar-

get point when the node expansion is close to the target, generating a smooth and feasible

path. However, if the shape of the Reeds–Shepp curve at the end of the path is not consid-

ered when mixing the paths searched by the A-star, the curve at the end of the path will

appear as a path with frequent reversals. The final design estimated cost h(n) is

()

m Man n nearst c curve goal

reeds shepp rs reverse

w d w d w d d shootdist
h n

length number otherwise− −

+ +
=

+
 (10)

3. Path Smoothing

In the search process of the hybrid A-star algorithm, penalizing changes in vehicle

heading and steering can ensure that the planned path minimizes the number of turns as

much as possible. However, when turning is necessary, the vehicle will rotate at a high

yaw rate. This reduces ride comfort and impacts the actuator. To address the above prob-

lems, back-end optimization of the paths planned by the improved hybrid A-star is per-

formed. The steering maneuver of the vehicle is made smooth and continuous, as shown

in Figure 4. The quadratic optimization problem is constructed through the geometric re-

lationship between the path points, and the constraints are set according to the path char-

acteristics to achieve the smoothing of the path.

Before smooth After smooth

Figure 4. Schematic diagram of path smoothing process.

3.1. Constructing a Cost Function

The degree of smoothing after smoothing the path, the degree of compactness of the

uniform distribution, and the degree of geometric similarity are considered for the estab-

lishment of the cost function, respectively. Figure 5 shows a schematic representation of

the various costs.

1P 2P

3P4P

1P

2P

3P

1kP

2kP

3kP

1kP 2P

3kP

2 1kP

2 2kP

(a) (b) (c)

Figure 5. Schematic representation of costs; they should be listed as (a) schematic of smoothing cost

of path points; (b) schematic diagram of compact cost of path points; (c) schematic of geometric

similarity cost of paths.

In graph (a) of Figure 5, points 1P , 2P , and 3P are three consecutive discrete points

on the planning path, where 4P is the vertex of the sum of vector 1 2PP and vector 2 3P P

. The length of vector 2 4P P is used as a measure of path smoothing. In graph (b) of Figure

5, 1P , 2P , and 3P are three discrete points on the continuous path; 1kP , 2kP , and 3kP

are the discrete points after smoothing. Although the smoothed path is a smooth, straight

Figure 4. Schematic diagram of path smoothing process.

3.1. Constructing a Cost Function

The degree of smoothing after smoothing the path, the degree of compactness of
the uniform distribution, and the degree of geometric similarity are considered for the
establishment of the cost function, respectively. Figure 5 shows a schematic representation
of the various costs.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 27

To ensure the planned path is optimal while meeting the vehicle's kinematic charac-

teristics and environmental constraints, a Reeds-Shepp curve is used to connect to the tar-

get point when the node expansion is close to the target, generating a smooth and feasible

path. However, if the shape of the Reeds–Shepp curve at the end of the path is not consid-

ered when mixing the paths searched by the A-star, the curve at the end of the path will

appear as a path with frequent reversals. The final design estimated cost h(n) is

()

m Man n nearst c curve goal

reeds shepp rs reverse

w d w d w d d shootdist
h n

length number otherwise− −

+ +
=

+
 (10)

3. Path Smoothing

In the search process of the hybrid A-star algorithm, penalizing changes in vehicle

heading and steering can ensure that the planned path minimizes the number of turns as

much as possible. However, when turning is necessary, the vehicle will rotate at a high

yaw rate. This reduces ride comfort and impacts the actuator. To address the above prob-

lems, back-end optimization of the paths planned by the improved hybrid A-star is per-

formed. The steering maneuver of the vehicle is made smooth and continuous, as shown

in Figure 4. The quadratic optimization problem is constructed through the geometric re-

lationship between the path points, and the constraints are set according to the path char-

acteristics to achieve the smoothing of the path.

Before smooth After smooth

Figure 4. Schematic diagram of path smoothing process.

3.1. Constructing a Cost Function

The degree of smoothing after smoothing the path, the degree of compactness of the

uniform distribution, and the degree of geometric similarity are considered for the estab-

lishment of the cost function, respectively. Figure 5 shows a schematic representation of

the various costs.

1P 2P

3P4P

1P

2P

3P

1kP

2kP

3kP

1kP 2P

3kP

2 1kP

2 2kP

(a) (b) (c)

Figure 5. Schematic representation of costs; they should be listed as (a) schematic of smoothing cost

of path points; (b) schematic diagram of compact cost of path points; (c) schematic of geometric

similarity cost of paths.

In graph (a) of Figure 5, points 1P , 2P , and 3P are three consecutive discrete points

on the planning path, where 4P is the vertex of the sum of vector 1 2PP and vector 2 3P P

. The length of vector 2 4P P is used as a measure of path smoothing. In graph (b) of Figure

5, 1P , 2P , and 3P are three discrete points on the continuous path; 1kP , 2kP , and 3kP

are the discrete points after smoothing. Although the smoothed path is a smooth, straight

Figure 5. Schematic representation of costs; they should be listed as (a) schematic of smoothing cost
of path points; (b) schematic diagram of compact cost of path points; (c) schematic of geometric
similarity cost of paths.

In graph (a) of Figure 5, points P1, P2, and P3 are three consecutive discrete points on
the planning path, where P4 is the vertex of the sum of vector |P1P2| and vector |P2P3|. The
length of vector |P2P4| is used as a measure of path smoothing. In graph (b) of Figure 5,
P1, P2, and P3 are three discrete points on the continuous path; P1k, P2k, and P3k are the
discrete points after smoothing. Although the smoothed path is a smooth, straight line, the
deviation of the smoothed path from the original path is too large, which leads to planning
failure. Therefore, the sum of vectors |p1 p1k|, |P2P2k|, and |P3P3k| is chosen as a measure
of the geometric similarity of the paths. In graph (c) of Figure 5, P1k and P3k are the two
endpoints after smoothing. P2 is the intermediate discrete point before smoothing, and
P2k1 and P2k2 are intermediate discrete points after smoothing in two cases. The planned
path requires the discrete points to be uniformly distributed, and since the hybrid A-
star algorithm searches with a fixed step size, the planned discrete points are uniformly

Sensors 2024, 24, 5746 7 of 25

distributed. Therefore, in the optimization, we need to ensure that the smoothed path
points are uniformly distributed and compact. When point P2 is point P2k1 after smoothing,
it satisfies |P1kP2k1| > |P2k1P3k|, and the three points after smoothing are not uniformly
distributed. When point P2 is smoothed to point P2k2, it satisfies |P1kP2k2| ≈ |P2k2P3k|, and
the distribution of the three discrete points after smoothing is uniform, which meets the
planning requirements. |P1kP2k|2+|P2kP3k|2 is selected as the evaluation index of uniform
and compact distribution of path points after smoothing.

To summarize, the cost of the whole path smoothing is mainly composed of three
parts: the smoothing cost, the path geometric similarity cost, and the compactness cost,
which are expressed as follows:

f1 = (x1 + x3 − 2x2)
2 + (y1 + y3 − 2y2)

2 (11)

f2 =
3

∑
i=1

(xi − xki)
2 + (yi − yki)

2 (12)

f3 =
3

∑
i=1

(xi+1 − xi)
2 + (yi+1 − yi)

2 (13)

where xki and yki, i = 1, 2, and 3, are the known original discrete path points; xki and yki,
i = 1, 2, and 3, are the unknown smoothed path points; f1 is the path smoothing cost
function; f2 is the geometrically similar cost to the original path points; and f3 is the
compact cost of the discrete path points. The total smoothing cost is designed as follows:

cost = ω1 f1 + ω2 f2 + ω3 f3 (14)

where ω1 is the smoothing cost weight coefficient; ω2 is the cost of geometric similarity to
the original path points; and ω3 is the cost of compactness of the path discrete points.

3.2. Constructing the Quadratic Programming Problem

The smoothed path discrete points need to satisfy the solution when the total cost of
smoothing is minimized. Combining the characteristics of Equations (11)–(14), a method of
constructing a quadratic programming problem for a solution is adopted. The standard
form of quadratic programming [19] is given below:

minimize 1
2 xTHx + cTx

subject to Ax ≤ b

Ex = d

(15)

where x is the optimization variable; H is the Hession matrix; c is the gradient vector; and
s.t. is the equation and inequality constraints. Equation (14) is deformed according to its
standard form, and the constraints are designed according to the actual needs.

3.2.1. Smoothing Cost

For smoothing of three discrete path points, expanding Equation (11) yields

f1 = (x1 + x3 − 2x1, y1 + y3 − 2y1)(x1 + x3 − 2x1, y1 + y3 − 2y1)
T (16)

Sensors 2024, 24, 5746 8 of 25

where (x1 + x3 − 2x1, y1 + y3 − 2y1) = (x1, y1, x2, y2, x3, y3)

1 0
0 1
−2 0
0 −2
1 0
0 1

. Denote

x =

x1
y1
x2
y2
x3
y3

 as the optimization variable. Then, Equation (11) can be rewritten as

f1 = xT
1 AT

1 A1x (17)

When considering the case of n discrete path points, the smoothing cost f1 is as follows:

f1 =
n−2

∑
i=1

(xi + xi+2 − 2xi+1)
2 + (yi + yi+2 − 2yi+1)

2 (18)

Similarly, Equation (18) can be organized into the form of Equation (17), while x is a
1 × 2n matrix containing the horizontal and vertical coordinates of n discrete points. A1 is
a (2n − 4)× 2 matrix containing n − 2 matrices.

3.2.2. Compact Cost

Extending Equation (12) to the case of n discrete points, the process rounding cost of
path smoothing can be written as

f2 =
n−1

∑
i=1

(xi − xi+1)
2 + (yi − yi+1)

2 (19)

f1 = (x1 − x2, y1 − y1, x2 − x3, y2 − y3, . . .)(x1 − x2, y1 − y1, x2 − x3, y2 − y3, . . .)T (20)

Let A2 =

1 0 0 0
0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0
0 0 0 −1
0 0 0 0

.....

and its dimension size be 2n × (2n − 2). Finally,

the compact cost can be organized as follows:

f2 = xTAT
2 A2x (21)

3.2.3. Geometric Similarity Cost

For n discrete path points, the geometric similarity cost can be written as

f3 =
n

∑
i=1

(xi − xki)
2 + (yi − yki)

2 (22)

Expanding Equation (22) yields

f3 =
n

∑
i=1

(x2
i + y2

i) +
n

∑
i=1

(−2xkixi − 2ykiyi) +
n

∑
i=1

(x2
ki + y2

ki) (23)

Sensors 2024, 24, 5746 9 of 25

Since xki and yki are known information, the third term in Equation (11) is constant,
and hence the cost is not affected by it. Now, Equation (11) is converted into vector form as
follows:

f3 = (x1, y1, x2, y2, . . .)

1 0 0
0 1 0
0 0 1 . . .
0 0 0

. . .

x1
y1
. . .
. . .
xn
yn

+ (−2)(xk1, yk1, xk2, yk2, . . .)

x1
y1
. . .
. . .
xn
yn

 (24)

Let the unit matrix in Equation (11) be A3, and f be (−2xk1,−2yk1,−2xk2,−2yk2, . . .)T .
In summary, combining Equations (17), (21), and (24), the total cost of path smoothing is

cost = xT(ω1AT
1 A1 + ω2AT

2 A2 + ω3AT
3 A3)x + ω3cTx (25)

Rewriting equation (24) into the standard form of quadratic programming, the expres-
sion for the Hessian matrix in equation (5) can be written as H = 2(ω1AT

1 A1 + ω2AT
2 A2 +

ω3AT
3 A3), cT = ω3 f T . xk = (xk1, yk1, xk2, yk2, . . .) is a vector composed of the original path

point coordinates, and x = (x1, y1, x2, y2, . . .) is a vector composed of the smoothed path
point coordinates. In order to maintain the general shape of the planned path, the distance
between the smoothed path points and the corresponding original path points should be
constrained as follows:

|x − xk|≤ dist (26)

where dist is the threshold value of the distance of the difference, and Equation (25) is
deformed as

xk − dist ≤ x ≤ xk + dist (27)

Let lb = xk − dist and ub = xk + dist be the upper and lower constraint boundaries of
the optimization variable x, respectively. In addition, due to the characteristics of hybrid
A-star planning paths, it is necessary to divide the forward and backward paths and smooth
them separately. Therefore, it is necessary to add the equation constraints xi = xki and
yi = yki, where i = 1, 2, n − 1, n. It is guaranteed that the consecutive paths smooth the
transition and the positional attitude remains unchanged.

4. Speed Planning

The path planned by the hybrid A-star contains information about the position and
heading of the path points. To obtain a trajectory that can be used for tracking, speed
planning is required on top of the path. Since the proposed method in this paper targets
the scenario of low-speed traveling under restricted working conditions, Double S-type
speed planning is selected [20].

Double S-type speed planning solves the problem of acceleration discontinuity by
using a combination of two linear segments of intervals. Furthermore, parabolic transitions
are used at the endpoints of the linear segments to ensure that the acceleration profile at the
connection is continuous. The speed profile of Double S-type speed planning is shown in
Figure 6. The overall speed can be divided into three processes, “A”, “M”, and “D”, which
are the acceleration phase (AP), maximum speed phase (MP), and deceleration phase (DP).
A parabolic fit is used at the endpoints of the AP and DP segments, thus avoiding sudden
changes in speed.

Speed planning parameters are constraints on the shape and trend of the speed profile,
and different planning effects are realized through different parameter settings. The
parameters in Double S-type speed planning can be divided into input parameters and
system parameters. The input parameters are displacement at the planning start point,
displacement at the planning endpoint, initial speed at the planning start point, and speed
at the planning endpoint. The input parameters are set in real-time according to different

Sensors 2024, 24, 5746 10 of 25

path lengths to realize different dynamic speed planning. The system parameters are
upper and lower speed limits (vmax, vmin), limit acceleration (amax, amin), and limit jerk
(jmax, jmin). The system parameters depend on the performance requirements and design
specifications of the system, and they affect the response speed, stability, and accuracy of
the mechanical system.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 27

maxV

0v

1v

AP

MP

DP

Figure 6. Double S-curve planning speed profile.

Speed planning parameters are constraints on the shape and trend of the speed pro-

file, and different planning effects are realized through different parameter settings. The

parameters in Double S-type speed planning can be divided into input parameters and

system parameters. The input parameters are displacement at the planning start point,

displacement at the planning endpoint, initial speed at the planning start point, and speed

at the planning endpoint. The input parameters are set in real-time according to different

path lengths to realize different dynamic speed planning. The system parameters are up-

per and lower speed limits (maxv , minv), limit acceleration (maxa , mina), and limit jerk (
maxj ,

minj). The system parameters depend on the performance requirements and design spec-

ifications of the system, and they affect the response speed, stability, and accuracy of the

mechanical system.

It is assumed that 1 0 q q ; i.e., the vehicle is in the forward state for the starting and

ending displacements. The speed planning problem is now derived based on this assump-

tion. Figure 7 shows the three phases of speed planning acceleration and acceleration

changes in different phases of acceleration.

2jT
dT2jT

vT1jT
aT1jT

minj

maxj

mina

maxa

Figure 7. Schematic diagram of speed planning acceleration changes.

In Figure 7,
1jT is the high and low pulse time of the first stage;

2jT is the high and

low pulse time of the second stage; aT is the time of the acceleration stage ()12a jT T ;

dT is the time of the deceleration stage ()2 2d jT T ; and vT is the time of the uniform

speed stage. In addition, the total planning time a d vT T T T= + + . If a constant speed phase

exists, the maximum speed of the actual plan max{ ()}limv q t= equals the set maximum

speed. The actual planned maximum acceleration lim max{ ()}a q t= . It is worth noting that

not all planning parameters are amenable to Double S-type speed planning. In some limit

Figure 6. Double S-curve planning speed profile.

It is assumed that q1 > q0; i.e., the vehicle is in the forward state for the starting and
ending displacements. The speed planning problem is now derived based on this assump-
tion. Figure 7 shows the three phases of speed planning acceleration and acceleration
changes in different phases of acceleration.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 27

maxV

0v

1v

AP

MP

DP

Figure 6. Double S-curve planning speed profile.

Speed planning parameters are constraints on the shape and trend of the speed pro-

file, and different planning effects are realized through different parameter settings. The

parameters in Double S-type speed planning can be divided into input parameters and

system parameters. The input parameters are displacement at the planning start point,

displacement at the planning endpoint, initial speed at the planning start point, and speed

at the planning endpoint. The input parameters are set in real-time according to different

path lengths to realize different dynamic speed planning. The system parameters are up-

per and lower speed limits (maxv , minv), limit acceleration (maxa , mina), and limit jerk (
maxj ,

minj). The system parameters depend on the performance requirements and design spec-

ifications of the system, and they affect the response speed, stability, and accuracy of the

mechanical system.

It is assumed that 1 0 q q ; i.e., the vehicle is in the forward state for the starting and

ending displacements. The speed planning problem is now derived based on this assump-

tion. Figure 7 shows the three phases of speed planning acceleration and acceleration

changes in different phases of acceleration.

2jT
dT2jT

vT1jT
aT1jT

minj

maxj

mina

maxa

Figure 7. Schematic diagram of speed planning acceleration changes.

In Figure 7,
1jT is the high and low pulse time of the first stage;

2jT is the high and

low pulse time of the second stage; aT is the time of the acceleration stage ()12a jT T ;

dT is the time of the deceleration stage ()2 2d jT T ; and vT is the time of the uniform

speed stage. In addition, the total planning time a d vT T T T= + + . If a constant speed phase

exists, the maximum speed of the actual plan max{ ()}limv q t= equals the set maximum

speed. The actual planned maximum acceleration lim max{ ()}a q t= . It is worth noting that

not all planning parameters are amenable to Double S-type speed planning. In some limit

Figure 7. Schematic diagram of speed planning acceleration changes.

In Figure 7, Tj1 is the high and low pulse time of the first stage; Tj2 is the high and
low pulse time of the second stage; Ta is the time of the acceleration stage

(
Ta ≥ 2Tj1

)
; Td

is the time of the deceleration stage
(
Td ≥ 2Tj2

)
; and Tv is the time of the uniform speed

stage. In addition, the total planning time T = Ta + Td + Tv. If a constant speed phase
exists, the maximum speed of the actual plan vlim = max

{ .
q(t)

}
equals the set maximum

speed. The actual planned maximum acceleration alim = max{ ..
q(t)

}
. It is worth noting

that not all planning parameters are amenable to Double S-type speed planning. In some
limit cases, there is only acceleration or deceleration, i.e., one positive and one negative
plus acceleration pulse. The basic condition for planning is to complete at least one “S”
curve, and the time taken for a single pulse of the S-curve is T∗

j , which is categorized into
two cases depending on whether or not the acceleration reaches the maximum acceleration
during the run:

T∗
j = min

{√
|v1 − v0|

jmax
,

amax

jmax

}
(28)

Sensors 2024, 24, 5746 11 of 25

T∗
j is taken as the minimum of the final failure to reach the maximum acceleration

and the time to reach the maximum acceleration. Suppose the additive acceleration of
the system is considered to be infinite. In that case, i.e., the maximum acceleration can
be reached instantaneously at the starting point of planning, then there are the following
plannable displacement constraints:

q1 − q0 >

{
T∗

j (v0 + v1)
1
2 (v0 + v1)[T∗

j + |v1−v0|
amax

]
(29)

The ultimate goal of Double S planning is to rationalize the allocation of time among
the three phases of A.M.D. to accomplish speed planning.

4.1. Calculation of Speed Planning Parameters

The key to accomplishing Double S-type speed planning is the calculation of the
parameters, which need to be calculated as the time parameters Tj1, Tj2, Ta, Td, and Tv and
the actual running parameters vlim and alim.

4.1.1. Time Parameter

The time parameter calculation is divided into two cases:{
vlim = vmax
vlim < vmax

(30)

That is, the existence of a homogeneous phase and the absence of a homogeneous
phase throughout.

(1) Assuming that the (Ta, Td) segment exists, first determine whether the accelerated
segment reaches the maximum acceleration and then calculate. Calculate the parameters of
the segment:

(vmax − v0)jmax < a2
max (31)

If Equation (30) holds, i.e., the maximum acceleration has not been reached, and there
is no uniform phase,

Tj1 =

√
vmax − v0

jmax
(32)

Ta = 2Tj1 (33)

If Equation (31) does not hold, i.e., the planning process reaches the maximum acceleration,

Tj1 =
amax

jmax
(34)

Ta = Tj1 +
vmax − v0

amax
(35)

On Td segment parameter calculation,

(vmax − v1)jmax < a2
max (36)

If Equation (36) holds, the maximum deceleration has not been reached, and there is
no homogeneous segment:

Tj2 =

√
vmax − v1

jmax
(37)

Td = 2Tj2 (38)

Sensors 2024, 24, 5746 12 of 25

If Equation (36) does not hold, the maximum deceleration is reached:

Tj2 =

√
amax

jmax
(39)

Td = Tj2 +
vmax − v1

amax
(40)

According to T = Ta + Td + Tv, the uniform time is Tv.

Tv =
q1 − q0

vmax
− Ta

2
(1 +

v0

vmax
)− Td

2
(1 +

v1

vmax
) (41)

4.1.2. Actual Operating Parameters

In determining the time, this parameter is divided into a variety of scenarios, so in
the system, parameters may change under the current time parameters. To ensure the
feasibility of speed planning, it is necessary to modify the desired system parameters: vmax
down to vlim, and amax down to alim. The procedure for calculating the actual operation of
this parameter according to time is as follows:

alima = jmaxTj1 (42)

alimd
= jmaxTj2 (43)

vlim = v0 + (Ta − Tj1)alima = v1 − (Td − Tj2)alimd
(44)

At this time, all parameters used for speed planning are calculated.

4.2. Segmented Expression

To ensure a smooth transition of speed and acceleration during motion and to avoid
sudden changes in acceleration, segmented calculations using different motion curves for
different stages are employed. The acceleration phase (AP) is divided into three stages:
increasing acceleration, constant acceleration, and decreasing acceleration. Similarly, the
deceleration phase (DP) is divided into three stages: increasing deceleration, constant
deceleration, and decreasing deceleration. The solution for each stage is as follows:

1. Increasing Acceleration Phase

At time t ∈ [0, Tj1), and acceleration from 0 gradually increased to the maximum
value, forming an S-shaped curve half, jerk is positive. The calculation process is as follows:

q(t) = q0 + v0t + jmax
t3

6
.
q(t) = v0 + jmax

t2

2
..
q = jmaxt

q(3)(t) = jmax

(45)

2. Constant Acceleration Phase

At the time t ∈ [Tj1, Ta − Tj1), after the acceleration reaches its maximum value, the
acceleration is kept constant until it needs to be reduced. The calculation process is as
follows:

q(t) = q0 + v0t + alima
6 (3t2 − 3Tj1t + T2

j1)

.
q(t) = v0 + alima(t −

Tj1
2)

..
q = alima

q(3)(t) = 0

(46)

3. Decreasing Acceleration Phase

Sensors 2024, 24, 5746 13 of 25

At time t ∈ [Ta − Tj1, Ta), in this phase, the acceleration gradually decreases to 0,
completing the other half of an S-curve, plus the acceleration is negative. The calculation
process is as follows:

q(t) = q0 + (vlim + v0)
Ta
2 − vlim(Ta − t)− jlim

(Ta−t)3

6
.
q(t) = vlim + jmin

(Ta−t)2

2
..
q = −jmin(Ta − t)

q(3)(t) = jmin = −jmax

(47)

4. Constant Speed Phase

At the time t ∈ [Ta, Ta + Tv), the speed remains constant and does not change anymore.
The calculation process is as follows:

q(t) = q0 + (vlim + v0)
Ta

2+vlim
(t − Ta)

.
q(t) = vlim
..
q = 0

q(3)(t) = 0

(48)

5. Increasing Deceleration Phase

After the time t ∈ [T − Td, T − Ta + Tj2), uniform phase, the acceleration gradually
increases from 0 to a negative maximum, and jerk is positive, but the speed is decreasing.
The calculations are as follows.

q(t) = q1 − (vlim + v1)
Td
2 + vlim(t − T + Td)− jmax

(t−T+Td)
3

6
.
q(t) = vlim − jmax

(t−T+Td)
2

2
..
q = −jmax(t − T + Td)

q(3)(t) = imin = −jmax

(49)

6. Constant Deceleration Phase

At time t ∈ [T − Td + Tj2, T − Tj2), after the acceleration reaches a negative maximum,
keep the acceleration constant until the acceleration begins to decrease. The calculation
process is as follows:

q(t) = q1 − (vlim + v1)
Td
2 + vlim(t − T + Td) +

alimd
6 [3(t − T + Td)

2 − 3Tj2(t − T + Td) + T2
j2]

.
q(t) = vlim + alimd

(t − T + Td −
Tj2
2)

..
q = −jmax(t − T + Td)

q(3)(t) = 0

(50)

7. Decreasing Deceleration Phase

During time t ∈ [T − Tj2, T), the acceleration gradually decreases from the negative
maximum value to 0, completing the entire deceleration process. The calculation process is
as follows:

q(t) = q1 − v1(T − t)− jmax
(T−t)3

6
.
q(t) = v1 + jmax

(T−t)2

6
..
q = −jmax(T − t)

q(3)(t) = jmax

(51)

The above planning processes are all performed under the premise that q1 > q0. Now,
considering q1 < q0, this paper proposes a conversion method that makes it unnecessary to

Sensors 2024, 24, 5746 14 of 25

distinguish between these two cases when dealing with speed planning, thus simplifying
the implementation of the algorithm. Firstly, the initial values are converted as follows:

q0 = Ξq̂0
q1 = Ξq̂1
v0 = Ξv̂0
v1 = Ξv̂1

(52)

where Ξ = sign(q̂1 − q̂0) is the sign factor; q̂0 and q̂1 are the original input start and end
displacements; and v̂0 and v̂1 are the original input start and end velocities, respectively.
By the above operation, any case can be converted uniformly into the form of q̂1 ≥ q̂0; after
completing the initial value conversion, further convert the planning parameters such as
speed, acceleration, and jerk. The specific conversion formulas are as follows:

vmax = (Ξ+1)
2 v̂max +

(Ξ−1)
2 v̂min

vmin = (Ξ+1)
2 v̂min +

(Ξ−1)
2 v̂max

amax = (Ξ+1)
2 âmax +

(Ξ−1)
2 âmin

amin = (Ξ+1)
2 âmin +

(Ξ−1)
2 âmax

jmax = (Ξ+1)
2 ĵmax +

(Ξ−1)
2 ĵmin

jmin = (Ξ+1)
2 ĵmin +

(Ξ−1)
2 ĵmax

(53)

Finally, after obtaining the results of the speed planning, the results need to be con-
verted back to the original directions:

q̂(t) = Ξq(t)

v̂(t) = Ξ
.
q(t)

â(t) = Ξ
..
q(t)

ĵ(t) = Ξq(3)(T)

(54)

Through the conversion of the above steps, different situations in speed planning
can be handled uniformly, making the algorithm more concise and general. This not only
improves the computational efficiency but also ensures the smooth transition and stable
operation of the system under different initial conditions. The method of unified initial
value and planning parameter conversion provides an effective solution for dealing with
complex motion control problems.

4.3. Parameter Settings

Since the trajectory planned by the hybrid A-star algorithm includes both forward
and backward paths, segmented planning is required, and the speed at the endpoint of
each path segment should be zero. If a path segment is too short, i.e., |q0q1| is smaller than
a certain threshold, Tv = 0 may arise. To ensure the ride comfort of the autonomous vehicle
and to avoid mechanical loss caused by rapid acceleration and deceleration, a mechanism
is designed to dynamically adjust system parameters according to the path length. This
ensures that the speed planning protocol always includes a constant speed phase. First, the
path curve length is calculated:

L =
n−1

∑
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (55)

where L is the curve passing length of each path segment; n is the number of discrete points
of the path. The system parameters q0 = 0, q1 = L (vehicle in forward direction), q0 = L,
q1 = 0 (vehicle in backward direction), and v0 = v1 = 0 are set according to the dynamic

Sensors 2024, 24, 5746 15 of 25

path length. The system parameters maximum speed vmax and maximum acceleration amax
are dynamically adjusted as follows:{

vmax = vbase + kvL
amax = abase + kaL

(56)

where vbase is the system base speed, kv is the speed gain coefficient, abase is the system base
acceleration, and ka is the acceleration gain coefficient. Both vbase and abase are set according
to the system’s minimum acceleration requirements. Additionally, the system parameters
in this paper are set symmetrically as follows:

jmin = −imax

amin = −amax

vmin = −vmax

(57)

Since Double S planning is one-dimensional, the speed and acceleration need to be
discretized according to the number of discrete path points. The final mapping to the
discrete points of the planned path results in a trackable trajectory containing position,
attitude, speed, and acceleration information.

5. Simulation and Experimentation

To verify the effectiveness of the method proposed in this paper in a constrained
space, simulation and experimental validation are carried out using the Robot Operating
System (ROS).

5.1. Simulation Verification
5.1.1. Simulation Platform

The operating environment consists of a 64-bit Linux operating system, Ubuntu 20.04,
with ROS1 Noetic. The simulation flow is illustrated in Figure 8. First, load the map
information using the built-in “map_server” node in the ROS system. Read the algorithm
parameters from the parameter manager. Use “2D Pose Estimate” and “2D Nav Goal” to
set the initial and endpoints’ positions and orientations. Initialize the state grid and raster
map based on the map, initial point, and endpoint information. Node management is
handled through two lists, OPEN_LIST and CLOSE_LIST, which are used to backtrack each
node at the end of the search to reconstruct the original path. Perform speed planning on
the smoothed path to generate a trackable trajectory. Publish the planned trajectory and the
search tree generated during the search. Additionally, read the URDF file and publish the
vehicle model as a topic. Finally, visualize the planned trajectory, search tree, and vehicle
model in Rviz. The algorithm’s planning results are saved in real-time using file input and
output streams in C++17.

Two scenarios were selected for validation: Scene 1—continuous regular obstacle
scenario. Scene 2—discrete irregular obstacle scene. In each scene, the same starting point
and endpoint are set, and the method of this paper (IHAS) is compared with the traditional
A-star (THAS) algorithm. Combining the parameters of the simulated vehicles and the
test scenes in this paper, the parameters of the hybrid A-star search-related algorithm are
set as ∆s0 = 0.2; ∆θ0 = 30; α = 0.52; β = 0.5; ∆smax = 0.2; ∆θmax = 0.8. The resolution
of the grid map is 0.2 (i.e., each grid cell represents 0.2 m). Path smoothing algorithm
parameters are set as ω1 = 100; ω2 = 5; ω3 = 5.5. Speed planning this parameter is set as
Ξ = 0.7; vbase = 10; abase = 15; kv = 0.5; ka = 0.5. In addition, to ensure the fairness of the
comparison, the parameters of the three methods are set to the same parameters.

Sensors 2024, 24, 5746 16 of 25

Sensors 2024, 24, x FOR PEER REVIEW 16 of 27

5.1. Simulation Verification

5.1.1. Simulation Platform

The operating environment consists of a 64-bit Linux operating system, Ubuntu 20.04,

with ROS1 Noetic. The simulation flow is illustrated in Figure 8. First, load the map infor-

mation using the built-in “map_server” node in the ROS system. Read the algorithm pa-

rameters from the parameter manager. Use “2D Pose Estimate” and “2D Nav Goal” to set

the initial and endpoints’ positions and orientations. Initialize the state grid and raster

map based on the map, initial point, and endpoint information. Node management is han-

dled through two lists, OPEN_LIST and CLOSE_LIST, which are used to backtrack each

node at the end of the search to reconstruct the original path. Perform speed planning on

the smoothed path to generate a trackable trajectory. Publish the planned trajectory and

the search tree generated during the search. Additionally, read the URDF file and publish

the vehicle model as a topic. Finally, visualize the planned trajectory, search tree, and ve-

hicle model in Rviz. The algorithm’s planning results are saved in real-time using file in-

put and output streams in C++17.

/map

PoseWithCovarianceSt
amped

/initialpose

/move_base_simple/goal
geometry_msgs/

PoseStamped

Save Log

parameter_server

map_server

2D Pose Estimate

2D Nav Goal

ROS master

Initialize Occupancy
Grid Map

Initialize State
Grid Map

Expand Search Nodes to Target Point

Trace Back Path from Parent Nodes

Perform Double S-Curve Velocity Planning

Smooth Discrete Path Points

RobotModel

/robot_
description

/optimal_path
nav_msgs/Path

/search_tree

visualization_m
sgs/Marker

updatagrid stateoccupancy situatio

original path

smooth path

trajectory

CLOSE_LIST

URDF file

load parameters

nav_msgs/
OccupancyGrid

Figure 8. Schematic diagram of simulation flow.

Two scenarios were selected for validation: Scene 1—continuous regular obstacle sce-

nario. Scene 2—discrete irregular obstacle scene. In each scene, the same starting point

and endpoint are set, and the method of this paper (IHAS) is compared with the tradi-

tional A-star (THAS) algorithm. Combining the parameters of the simulated vehicles and

the test scenes in this paper, the parameters of the hybrid A-star search-related algorithm

are set as 0 0 max max0.2; 30; 0.52; 0.5; 0.2; 0.8s s = = = = = = . The resolution of the

grid map is 0.2 (i.e., each grid cell represents 0.2 m). Path smoothing algorithm parameters

are set as
1 2 3100; 5; 5.5 = = = . Speed planning this parameter is set as 0.7; =

10; 15; 0.5; 0.5base base v av a k k= = = = . In addition, to ensure the fairness of the comparison,

the parameters of the three methods are set to the same parameters.

5.1.2. First Scenario

The first scenario aims to simulate the extreme working conditions of narrow pas-

sages and long straight walls. In turn, it evaluates the ability of the algorithms proposed

in this paper in terms of path smoothing, handling vehicle kinematics constraints, and

Figure 8. Schematic diagram of simulation flow.

5.1.2. First Scenario

The first scenario aims to simulate the extreme working conditions of narrow passages
and long straight walls. In turn, it evaluates the ability of the algorithms proposed in this
paper in terms of path smoothing, handling vehicle kinematics constraints, and search
efficiency. The trajectory planning results of different methods in the first scenario are
shown in Figure 9.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 27

search efficiency. The trajectory planning results of different methods in the first scenario

are shown in Figure 9.

Path A
Path B
Path C
Path D

Figure 9. Path planning results within the first scenario.

The specific meanings of the four paths in Figure 9 are Path A represents the planning

result of the traditional hybrid A-star algorithm; Path B represents the planning result of

the hybrid A-star algorithm with the improvement in the node expansion method and the

estimation of the cost h(n) in this paper; Path C is the result of smoothing Path B through

the back-end smoothing method designed in this paper; and Path D is the shortest path

searched for between the start point and the endpoint by using Dijkstra’s algorithm. From

Figure 8, it can be observed that compared with Path A, the curvature change in Path B is

more continuous, and there is no steering. Since the hybrid A-star method can perform

path planning while ensuring the vehicle’s kinematics, it also addresses the vehicle’s trav-

eling states, including both forward and reverse states. In the method designed in this

paper, the RS curve connects the current position with the target position when approach-

ing the target point. RS curve planning maintains the vehicle’s kinematics and considers

the vehicle’s traveling state. The primary goal of designing the ‘spike’ shape of the path

in the black dashed area in Figure 9 is to accommodate the reversing maneuver. Planning

the reversing state optimizes the vehicle’s trajectory to adjust the path effectively without

compromising kinematic performance. This approach enhances the vehicle’s maneuvera-

bility and operational flexibility in confined spaces, ensuring that path planning meets

kinematic constraints while adapting to actual driving needs. Moreover, the overall trend

of Path B is closer to the trend of the shortest path, Path D. In addition, the improved

hybrid A-star algorithm produces a significantly smaller size of the number of searches.

The time consumed by the two methods to complete the search is shown in Table 1:

Table 1. The time consumption of the search within the first scenario.

 THAS IHAS

Time to compute cost h(n)/ms 27.79 35.89

Time to check for collision/ms 617.56 146.23

Time to obtain neighboring nodes/ms 731.25 174.39

Total search time/ms 816.30 220.25

The data in Table 1 show that the time consumed is relatively high due to the relative

complexity of the improved computation of the cost h(n). However, the time from colli-

sion detection and obtaining neighboring nodes is substantially reduced. There are two

main reasons for this: on the one hand, it is because the node expansion method adopts a

variable step size, which reduces the number of sampled nodes; on the other hand, the

cost of expanding nodes is evaluated more accurately. Thus, sacrificing the time for calcu-

lating the cost leads to a 73.03% reduction in the total used time. In addition to this, the

Figure 9. Path planning results within the first scenario.

The specific meanings of the four paths in Figure 9 are Path A represents the planning
result of the traditional hybrid A-star algorithm; Path B represents the planning result of
the hybrid A-star algorithm with the improvement in the node expansion method and
the estimation of the cost h(n) in this paper; Path C is the result of smoothing Path B
through the back-end smoothing method designed in this paper; and Path D is the shortest
path searched for between the start point and the endpoint by using Dijkstra’s algorithm.
From Figure 8, it can be observed that compared with Path A, the curvature change in
Path B is more continuous, and there is no steering. Since the hybrid A-star method
can perform path planning while ensuring the vehicle’s kinematics, it also addresses
the vehicle’s traveling states, including both forward and reverse states. In the method
designed in this paper, the RS curve connects the current position with the target position
when approaching the target point. RS curve planning maintains the vehicle’s kinematics

Sensors 2024, 24, 5746 17 of 25

and considers the vehicle’s traveling state. The primary goal of designing the ‘spike’ shape
of the path in the black dashed area in Figure 9 is to accommodate the reversing maneuver.
Planning the reversing state optimizes the vehicle’s trajectory to adjust the path effectively
without compromising kinematic performance. This approach enhances the vehicle’s
maneuverability and operational flexibility in confined spaces, ensuring that path planning
meets kinematic constraints while adapting to actual driving needs. Moreover, the overall
trend of Path B is closer to the trend of the shortest path, Path D. In addition, the improved
hybrid A-star algorithm produces a significantly smaller size of the number of searches.
The time consumed by the two methods to complete the search is shown in Table 1:

Table 1. The time consumption of the search within the first scenario.

THAS IHAS

Time to compute cost h(n)/ms 27.79 35.89
Time to check for collision/ms 617.56 146.23

Time to obtain neighboring nodes/ms 731.25 174.39
Total search time/ms 816.30 220.25

The data in Table 1 show that the time consumed is relatively high due to the relative
complexity of the improved computation of the cost h(n). However, the time from collision
detection and obtaining neighboring nodes is substantially reduced. There are two main
reasons for this: on the one hand, it is because the node expansion method adopts a variable
step size, which reduces the number of sampled nodes; on the other hand, the cost of
expanding nodes is evaluated more accurately. Thus, sacrificing the time for calculating the
cost leads to a 73.03% reduction in the total used time. In addition to this, the number of
discrete points for planning and the path length for searching are reduced by 12.13% and
6.25%, respectively.

Remark 2. To verify the effectiveness of the method proposed in this paper in a constrained space,
the simulation time consumed by the hybrid A* approach to planning includes the following main
components: computing the cost of a node, extending neighboring nodes, and detecting collisions.
Dijkstra’s shortest path algorithm provides the optimal direction for expanding nodes, which avoids
extensive searches and reduces the time consumed. Additionally, this approach minimizes redundant
nodes in the search process, thereby reducing the collision detection time for these redundant nodes.

Figure 10 shows the desired vehicle heading angle changes corresponding to Path
B and Path C. In this paper, the vehicle heading angle in the range of 0–2π continues to
increase at 4.3 s. Thus, the vehicle heading angle remains continuously variable. The
Reeds–Shepp curve is used to connect the endpoint when approaching the target point. In
order to ensure that the position of the planning endpoint is consistent with the desired goal
point, the back-end smoothing of the planning path in this paper does not include the RS
path. From the figure, it can be concluded that the smoothed path expects smoother heading
angle changes, which improves the ride comfort of the vehicle in the lateral direction.

Figure 11 shows the results of the speed planning for Path C. It depicts the direction of
travel of the vehicle in different phases as well as the planned speed and acceleration. If the
value of “Direction” is 1, it means the vehicle state is forward; otherwise, the vehicle state
is backward. Due to the initial position and environmental constraints, the vehicle heading
is adjusted by reversing at the beginning of the phase. From the figure, it can be seen that
the planned speed and acceleration directions are consistent with the vehicle state, and the
changes are continuous. The trend of the speed and acceleration can be seen through the
change in speed and acceleration, the adaptive adjustment system parameter mechanism
designed in this paper to limit the speed and acceleration for short distances.

Sensors 2024, 24, 5746 18 of 25

Sensors 2024, 24, x FOR PEER REVIEW 18 of 27

number of discrete points for planning and the path length for searching are reduced by

12.13% and 6.25%, respectively.

Remark 2. To verify the effectiveness of the method proposed in this paper in a constrained space,

the simulation time consumed by the hybrid A* approach to planning includes the following main

components: computing the cost of a node, extending neighboring nodes, and detecting collisions.

Dijkstra’s shortest path algorithm provides the optimal direction for expanding nodes, which avoids

extensive searches and reduces the time consumed. Additionally, this approach minimizes redun-

dant nodes in the search process, thereby reducing the collision detection time for these redundant

nodes.

Figure 10 shows the desired vehicle heading angle changes corresponding to Path B

and Path C. In this paper, the vehicle heading angle in the range of 0–2 continues to

increase at 4.3 s. Thus, the vehicle heading angle remains continuously variable. The

Reeds–Shepp curve is used to connect the endpoint when approaching the target point.

In order to ensure that the position of the planning endpoint is consistent with the desired

goal point, the back-end smoothing of the planning path in this paper does not include

the RS path. From the figure, it can be concluded that the smoothed path expects smoother

heading angle changes, which improves the ride comfort of the vehicle in the lateral di-

rection.

0 5 10 15 20 25
−4

−2

0

2

4

Y
aw

/r
ad

Time/s

 Path A

 Path C

Figure 10. Vehicle heading change in the first scenario.

Figure 11 shows the results of the speed planning for Path C. It depicts the direction

of travel of the vehicle in different phases as well as the planned speed and acceleration.

If the value of “Direction” is 1, it means the vehicle state is forward; otherwise, the vehicle

state is backward. Due to the initial position and environmental constraints, the vehicle

heading is adjusted by reversing at the beginning of the phase. From the figure, it can be

seen that the planned speed and acceleration directions are consistent with the vehicle

state, and the changes are continuous. The trend of the speed and acceleration can be seen

through the change in speed and acceleration, the adaptive adjustment system parameter

mechanism designed in this paper to limit the speed and acceleration for short distances.

Figure 10. Vehicle heading change in the first scenario.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 27

0 5 10 15 20 25
0.0

0.5

1.0

0 5 10 15 20 25
−6

−3

0

3

6

0 5 10 15 20 25
−14

−7

0

7

14

D
ir

ec
ti

o
n

S
p

ee
d

/m
/s

A
cc

el
er

at
io

n
/m

/s
2

Time/s

Figure 11. Speed planning results for the first scenario.

5.1.3. Second Scenario

The location and shape of the obstacles in the second scenario are irregular. The

adaptability and generalization ability of the algorithms in this paper in real application

environments can be evaluated to ensure their effectiveness in various complex situations.

The planning results of different methods under Scene 2 are shown in Figure 11.

Path A, Path B, Path C, Path D, and other elements in Figure 12 have the same mean-

ing as in the first scenario. The most obvious change compared to scenario one is that the

search tree for both methods, IHAS and THAS, is significantly reduced. This is due to the

fact that in irregular obstacle scenarios, the random distribution of obstacles leads to an

increase in the diversity of path choices. The hybrid A-star algorithm can utilize more free

space to generate shorter and straighter paths, thus reducing the number of node expan-

sions. Whereas in the scenario with regular obstacles (e.g., long passages), there are fewer

path choices and the algorithm may need to explore more nodes to find the only feasible

path, increasing the number of search trees. However, in the second scenario, the search

tree size of IHAS is still significantly smaller than that produced by THAS. It is more ob-

vious in the second scenario that the paths planned by IHAS are closer to the shortest path,

Path D, while satisfying the vehicle kinematics. Points A and B in Figure 12 represent the

forward and reverse state thresholds in the paths planned by the THAS and IHAS meth-

ods, respectively. This approach ensures that the final position and attitude planned along

the shortest path align with the desired state. In addition, the time consumed to complete

the search by the two methods is shown in Table 2.

Figure 11. Speed planning results for the first scenario.

5.1.3. Second Scenario

The location and shape of the obstacles in the second scenario are irregular. The
adaptability and generalization ability of the algorithms in this paper in real application
environments can be evaluated to ensure their effectiveness in various complex situations.
The planning results of different methods under Scene 2 are shown in Figure 11.

Path A, Path B, Path C, Path D, and other elements in Figure 12 have the same meaning
as in the first scenario. The most obvious change compared to scenario one is that the
search tree for both methods, IHAS and THAS, is significantly reduced. This is due to
the fact that in irregular obstacle scenarios, the random distribution of obstacles leads to
an increase in the diversity of path choices. The hybrid A-star algorithm can utilize more
free space to generate shorter and straighter paths, thus reducing the number of node
expansions. Whereas in the scenario with regular obstacles (e.g., long passages), there are
fewer path choices and the algorithm may need to explore more nodes to find the only
feasible path, increasing the number of search trees. However, in the second scenario, the
search tree size of IHAS is still significantly smaller than that produced by THAS. It is more
obvious in the second scenario that the paths planned by IHAS are closer to the shortest
path, Path D, while satisfying the vehicle kinematics. Points A and B in Figure 12 represent
the forward and reverse state thresholds in the paths planned by the THAS and IHAS

Sensors 2024, 24, 5746 19 of 25

methods, respectively. This approach ensures that the final position and attitude planned
along the shortest path align with the desired state. In addition, the time consumed to
complete the search by the two methods is shown in Table 2.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 27

Figure 12. Path planning results within the second scenario.

Table 2. The time consumption of the search within the second scenario.

 THAS IHAS

Time to compute cost h(n)/ms 0.99 0.41

Time to check for collision/ms 19.57 1.94

Time to obtain neighboring nodes/ms 23.23 2.32

Total search time/ms 25.65 2.90

As can be seen from Table 2, all the used times of IHAS in the second scenario are

less than the THAS method. For the efficiency of searching a path, the IHAS method im-

proves 88.69% relative to the HAS method. This result clashes with the size of the search

tree it produces. It is worth noting that the excessive redundant nodes searched by the

THAS method lead to an overall decrease in the used time to compute h(n), even for the

IHAS method, which has a more complex estimated cost. The node expansion approach

with variable step size and angle and improved estimated cost resulted in an 8.23% reduc-

tion in the number of planned path points and a 2 m reduction in the total path length.

Figure 13 shows the variation of desired heading angles for Path C and Path D within

the second scenario. In complex environments, the smoothed path heading angle changes

more gently, making the path more feasible and comfortable.

0 2 4 6 8 10 12 14 16

−4

−3

−2

−1

0

Y
aw

/r
ad

Time/s

 Path A

 Path C

Figure 13. Vehicle heading change in the second scenario.

Figure 14 shows the results of the speed planning within the second scenario. Due to

the settings of the start and end poses, the whole journey is divided into two segments for

speed planning. In the first 12.5 s, the vehicle is moving forward, accelerates to 6 m/s, and

then starts to decelerate at 12 s. After decelerating to 0, the vehicle starts to reverse, and

after the uniform speed phase, it starts to decelerate to 0. Finally, the vehicle is parked at

Path A
Path B
Path C
Path D

A

B

Figure 12. Path planning results within the second scenario.

Table 2. The time consumption of the search within the second scenario.

THAS IHAS

Time to compute cost h(n)/ms 0.99 0.41
Time to check for collision/ms 19.57 1.94

Time to obtain neighboring nodes/ms 23.23 2.32
Total search time/ms 25.65 2.90

As can be seen from Table 2, all the used times of IHAS in the second scenario are less
than the THAS method. For the efficiency of searching a path, the IHAS method improves
88.69% relative to the HAS method. This result clashes with the size of the search tree it
produces. It is worth noting that the excessive redundant nodes searched by the THAS
method lead to an overall decrease in the used time to compute h(n), even for the IHAS
method, which has a more complex estimated cost. The node expansion approach with
variable step size and angle and improved estimated cost resulted in an 8.23% reduction in
the number of planned path points and a 2 m reduction in the total path length.

Figure 13 shows the variation of desired heading angles for Path C and Path D within
the second scenario. In complex environments, the smoothed path heading angle changes
more gently, making the path more feasible and comfortable.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 27

Figure 12. Path planning results within the second scenario.

Table 2. The time consumption of the search within the second scenario.

 THAS IHAS

Time to compute cost h(n)/ms 0.99 0.41

Time to check for collision/ms 19.57 1.94

Time to obtain neighboring nodes/ms 23.23 2.32

Total search time/ms 25.65 2.90

As can be seen from Table 2, all the used times of IHAS in the second scenario are

less than the THAS method. For the efficiency of searching a path, the IHAS method im-

proves 88.69% relative to the HAS method. This result clashes with the size of the search

tree it produces. It is worth noting that the excessive redundant nodes searched by the

THAS method lead to an overall decrease in the used time to compute h(n), even for the

IHAS method, which has a more complex estimated cost. The node expansion approach

with variable step size and angle and improved estimated cost resulted in an 8.23% reduc-

tion in the number of planned path points and a 2 m reduction in the total path length.

Figure 13 shows the variation of desired heading angles for Path C and Path D within

the second scenario. In complex environments, the smoothed path heading angle changes

more gently, making the path more feasible and comfortable.

0 2 4 6 8 10 12 14 16

−4

−3

−2

−1

0

Y
aw

/r
ad

Time/s

 Path A

 Path C

Figure 13. Vehicle heading change in the second scenario.

Figure 14 shows the results of the speed planning within the second scenario. Due to

the settings of the start and end poses, the whole journey is divided into two segments for

speed planning. In the first 12.5 s, the vehicle is moving forward, accelerates to 6 m/s, and

then starts to decelerate at 12 s. After decelerating to 0, the vehicle starts to reverse, and

after the uniform speed phase, it starts to decelerate to 0. Finally, the vehicle is parked at

Path A
Path B
Path C
Path D

A

B

Figure 13. Vehicle heading change in the second scenario.

Figure 14 shows the results of the speed planning within the second scenario. Due
to the settings of the start and end poses, the whole journey is divided into two segments

Sensors 2024, 24, 5746 20 of 25

for speed planning. In the first 12.5 s, the vehicle is moving forward, accelerates to 6 m/s,
and then starts to decelerate at 12 s. After decelerating to 0, the vehicle starts to reverse,
and after the uniform speed phase, it starts to decelerate to 0. Finally, the vehicle is parked
at the target point with the desired attitude. The speed change process is continuous and
smooth to ensure the ride comfort of the vehicle in the longitudinal direction.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 27

the target point with the desired attitude. The speed change process is continuous and

smooth to ensure the ride comfort of the vehicle in the longitudinal direction.

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

0 4 8 12 16
−6

−3

0

3

6

0 2 4 6 8 10 12 14 16
−14

−7

0

7

14

D
ir

ec
ti

o
n

S
p

ee
d
/m

/s
A

cc
el

er
at

io
n

/m
/s

2

Time/s

Figure 14. Speed planning results for the second scenario.

5.1.4. Third Scenario

In this paper, a dynamic expansion of nodes based on the complexity of the environ-

ment and the distance to the target point is designed. This method improves the algo-

rithm’s efficiency, but it may decrease obstacle avoidance ability in low-complexity envi-

ronments because the step size is too large. In order to test the performance of the pro-

posed method in this paper in terms of obstacle avoidance ability in low-complexity en-

vironments and planning under narrow space, a third scenario is designed, as shown in

Figure 15.

Path A
Path B
Path C
Path D

Figure 15. Path planning results within the third scenario.

Path A, Path B, Path C, Path D, and other elements in Figure 15 have the same mean-

ing as in the first scene. The dashed box in the figure shows the area far from the target

point and has relatively low environmental complexity. The planning results show that

obstacle avoidance planning can still be completed in the scene with a relatively large step

size. Although the shortest path, Path D, violates the vehicle kinematics constraints, Path

D provides a guideline of the shortest path for the IHAS method in a narrow channel. The

paths planned by THAS are shorter compared to the traditional method THAS. With Table

Figure 14. Speed planning results for the second scenario.

5.1.4. Third Scenario

In this paper, a dynamic expansion of nodes based on the complexity of the environ-
ment and the distance to the target point is designed. This method improves the algorithm’s
efficiency, but it may decrease obstacle avoidance ability in low-complexity environments
because the step size is too large. In order to test the performance of the proposed method
in this paper in terms of obstacle avoidance ability in low-complexity environments and
planning under narrow space, a third scenario is designed, as shown in Figure 15.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 27

the target point with the desired attitude. The speed change process is continuous and

smooth to ensure the ride comfort of the vehicle in the longitudinal direction.

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

0 4 8 12 16
−6

−3

0

3

6

0 2 4 6 8 10 12 14 16
−14

−7

0

7

14

D
ir

ec
ti

o
n

S
p

ee
d

/m
/s

A
cc

el
er

at
io

n
/m

/s
2

Time/s

Figure 14. Speed planning results for the second scenario.

5.1.4. Third Scenario

In this paper, a dynamic expansion of nodes based on the complexity of the environ-

ment and the distance to the target point is designed. This method improves the algo-

rithm’s efficiency, but it may decrease obstacle avoidance ability in low-complexity envi-

ronments because the step size is too large. In order to test the performance of the pro-

posed method in this paper in terms of obstacle avoidance ability in low-complexity en-

vironments and planning under narrow space, a third scenario is designed, as shown in

Figure 15.

Path A
Path B
Path C
Path D

Figure 15. Path planning results within the third scenario.

Path A, Path B, Path C, Path D, and other elements in Figure 15 have the same mean-

ing as in the first scene. The dashed box in the figure shows the area far from the target

point and has relatively low environmental complexity. The planning results show that

obstacle avoidance planning can still be completed in the scene with a relatively large step

size. Although the shortest path, Path D, violates the vehicle kinematics constraints, Path

D provides a guideline of the shortest path for the IHAS method in a narrow channel. The

paths planned by THAS are shorter compared to the traditional method THAS. With Table

Figure 15. Path planning results within the third scenario.

Path A, Path B, Path C, Path D, and other elements in Figure 15 have the same meaning
as in the first scene. The dashed box in the figure shows the area far from the target point

Sensors 2024, 24, 5746 21 of 25

and has relatively low environmental complexity. The planning results show that obstacle
avoidance planning can still be completed in the scene with a relatively large step size.
Although the shortest path, Path D, violates the vehicle kinematics constraints, Path D
provides a guideline of the shortest path for the IHAS method in a narrow channel. The
paths planned by THAS are shorter compared to the traditional method THAS. With Table 3,
all the elapsed times of the IHAS method are improved. It is because of the correct guidance
of the shortest path, avoiding ‘more detours’ in the search process. This is confirmed by the
distribution of the search tree in Figure 15.

Table 3. The time consumption of the search within the third scenario.

THAS IHAS

Time to compute cost h(n)/ms 1.29 0.92
Time to check for collision/ms 21.36 3.91

Time to obtain neighboring nodes/ms 33.23 4.46
Total search time/ms 22.12 2.14

Figure 16 shows the dynamic expansion step change in the third scenario. As can
be seen from the figure, the distance step size ∆s and the angle step size ∆θ dynamically
change during the search. As the distance to the target point gets closer, the overall trend of
the step length gradually decreases. At the same time, the magnitude of the dynamic step
length is adjusted in real-time with the changes in environmental complexity. Combined
with the time consumption of the algorithm in Table 3, it further illustrates the effectiveness
of the step length dynamic expansion strategy designed in this paper. In addition, the path
smoothing and speed planning results under the third scenario have the same effect as
those under the first and second scenarios.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 27

3, all the elapsed times of the IHAS method are improved. It is because of the correct guid-

ance of the shortest path, avoiding ‘more detours’ in the search process. This is confirmed

by the distribution of the search tree in Figure 15.

Table 3. The time consumption of the search within the third scenario.

 THAS IHAS

Time to compute cost h(n)/ms 1.29 0.92

Time to check for collision/ms 21.36 3.91

Time to obtain neighboring nodes/ms 33.23 4.46

Total search time/ms 22.12 2.14

Figure 16 shows the dynamic expansion step change in the third scenario. As can be

seen from the figure, the distance step size s and the angle step size dynamically

change during the search. As the distance to the target point gets closer, the overall trend

of the step length gradually decreases. At the same time, the magnitude of the dynamic

step length is adjusted in real-time with the changes in environmental complexity. Com-

bined with the time consumption of the algorithm in Table 3, it further illustrates the ef-

fectiveness of the step length dynamic expansion strategy designed in this paper. In addi-

tion, the path smoothing and speed planning results under the third scenario have the

same effect as those under the first and second scenarios.

0 2 4 6 8 10 12
0.18

0.21

0.24

0.27

0.30

0 2 4 6 8 10 12

0.5

0.6

0.7

0.8

Δ
s/

m
Δ

θ
/r

ad

Time/s

Figure 16. Dynamic extension of step size variation in the third scenario.

5.2. Real-Vehicle Experiment

Real-vehicle experiments can be used to validate the effectiveness of the method pro-

posed in this paper in a natural environment based on simulation. The hybrid A-star and

trajectory smoothing parameters are set as in the simulation, and the velocity planning

parameters are set as follows: 0.7; = 6; 10; 0.5; 0.5base base v av a k k= = = = . The object of

the experiment is the ROS intelligent micro-vehicle, as shown in Figure 17. The experi-

mental scene was built manually, as shown in Figure 18.

Figure 16. Dynamic extension of step size variation in the third scenario.

5.2. Real-Vehicle Experiment

Real-vehicle experiments can be used to validate the effectiveness of the method
proposed in this paper in a natural environment based on simulation. The hybrid A-star
and trajectory smoothing parameters are set as in the simulation, and the velocity planning
parameters are set as follows: Ξ = 0.7; vbase = 6; abase = 10; kv = 0.5; ka = 0.5. The
object of the experiment is the ROS intelligent micro-vehicle, as shown in Figure 17. The
experimental scene was built manually, as shown in Figure 18.

Sensors 2024, 24, 5746 22 of 25Sensors 2024, 24, x FOR PEER REVIEW 23 of 27

Figure 17. Diagram of ROS smart experimental vehicle.

Figure 18. Schematic diagram of experimental scene.

5.2.1. Experimental Platforms

The traveling state of the micro-vehicle in Figure 17 supports forward and backward

motion and satisfies the vehicle kinematics constraints. The experimental trolley is

equipped with a single-line LiDAR (RPLIDARA1360) to detect the position of static. A

depth camera (IMX219-160) handles target detection and provides category and depth

information. The STM32 microcontroller, embedded with an Inertial Measurement Unit

(MPU9250), delivers linear and angular acceleration data in three directions, which helps

in calculating real-time vehicle speed and position. The computing platform (Jetson Nano)

processes complex perception, decision-making, and control algorithms, extracting sensor

data for target recognition, path planning, and motion control. The high-performance

computing and deep learning capabilities of Jetson Nano enable the intelligent micro-ve-

hicle to respond more quickly and accurately to environmental changes.

In Figure 18, the ROS trolley is used as the controlled object. The green arrow is the

initial position, and the red arrow is the desired position and orientation of the target

point. The controlled vehicle needs the green arrow to depart to reach the red arrow, and

the orientation is the same as that of the red arrow. Due to the limitation of the experi-

mental site and the trolley’s structural characteristics, the experiments are carried out un-

der low-speed conditions.

Lidar

Camera

Steering motor
Drive motor

STM32
microcontroller

Jetson nano

ROS intelligent

micro vehicle

Obstacle

boundary

Initial position

and orientation

Desired position

and orientation

Figure 17. Diagram of ROS smart experimental vehicle.

Sensors 2024, 24, x FOR PEER REVIEW 23 of 27

Figure 17. Diagram of ROS smart experimental vehicle.

Figure 18. Schematic diagram of experimental scene.

5.2.1. Experimental Platforms

The traveling state of the micro-vehicle in Figure 17 supports forward and backward

motion and satisfies the vehicle kinematics constraints. The experimental trolley is

equipped with a single-line LiDAR (RPLIDARA1360) to detect the position of static. A

depth camera (IMX219-160) handles target detection and provides category and depth

information. The STM32 microcontroller, embedded with an Inertial Measurement Unit

(MPU9250), delivers linear and angular acceleration data in three directions, which helps

in calculating real-time vehicle speed and position. The computing platform (Jetson Nano)

processes complex perception, decision-making, and control algorithms, extracting sensor

data for target recognition, path planning, and motion control. The high-performance

computing and deep learning capabilities of Jetson Nano enable the intelligent micro-ve-

hicle to respond more quickly and accurately to environmental changes.

In Figure 18, the ROS trolley is used as the controlled object. The green arrow is the

initial position, and the red arrow is the desired position and orientation of the target

point. The controlled vehicle needs the green arrow to depart to reach the red arrow, and

the orientation is the same as that of the red arrow. Due to the limitation of the experi-

mental site and the trolley’s structural characteristics, the experiments are carried out un-

der low-speed conditions.

Lidar

Camera

Steering motor
Drive motor

STM32
microcontroller

Jetson nano

ROS intelligent

micro vehicle

Obstacle

boundary

Initial position

and orientation

Desired position

and orientation

Figure 18. Schematic diagram of experimental scene.

5.2.1. Experimental Platforms

The traveling state of the micro-vehicle in Figure 17 supports forward and back-
ward motion and satisfies the vehicle kinematics constraints. The experimental trolley
is equipped with a single-line LiDAR (RPLIDARA1360) to detect the position of static.
A depth camera (IMX219-160) handles target detection and provides category and depth
information. The STM32 microcontroller, embedded with an Inertial Measurement Unit
(MPU9250), delivers linear and angular acceleration data in three directions, which helps
in calculating real-time vehicle speed and position. The computing platform (Jetson Nano)
processes complex perception, decision-making, and control algorithms, extracting sensor
data for target recognition, path planning, and motion control. The high-performance com-
puting and deep learning capabilities of Jetson Nano enable the intelligent micro-vehicle to
respond more quickly and accurately to environmental changes.

In Figure 18, the ROS trolley is used as the controlled object. The green arrow is the
initial position, and the red arrow is the desired position and orientation of the target
point. The controlled vehicle needs the green arrow to depart to reach the red arrow,
and the orientation is the same as that of the red arrow. Due to the limitation of the
experimental site and the trolley’s structural characteristics, the experiments are carried
out under low-speed conditions.

Sensors 2024, 24, 5746 23 of 25

5.2.2. Analysis of Experimental Results

Figure 19 shows the results of the real-vehicle experiment. The algorithm performs
path planning by providing an a priori map of the cart. Paths A, B, C, and D are THAS
planned paths, IHAS planned paths before smoothing, IHAS planned paths, and Dijkstra
planned paths, respectively. In the experiment, the path followed by the controlled vehicle
is Path B. Due to the characteristics of obstacles, start position, and target position, Path D
is very different from Path A. The path planned by IHAS is shorter than that planned by
THAS under the guidelines of the shortest path. Due to the characteristics of the desired
attitude, both IHAS and THAS, there is a reversing maneuver in the final stage to achieve
the desired attitude. The paths planned by the IHAS and THAS methods consume 68 ms
and 145 ms, respectively, with an overall improvement in search efficiency of 53.13%.

Sensors 2024, 24, x FOR PEER REVIEW 24 of 27

5.2.2. Analysis of Experimental Results

Figure 19 shows the results of the real-vehicle experiment. The algorithm performs

path planning by providing an a priori map of the cart. Paths A, B, C, and D are THAS

planned paths, IHAS planned paths before smoothing, IHAS planned paths, and Dijkstra

planned paths, respectively. In the experiment, the path followed by the controlled vehicle

is Path B. Due to the characteristics of obstacles, start position, and target position, Path D

is very different from Path A. The path planned by IHAS is shorter than that planned by

THAS under the guidelines of the shortest path. Due to the characteristics of the desired

attitude, both IHAS and THAS, there is a reversing maneuver in the final stage to achieve

the desired attitude. The paths planned by the IHAS and THAS methods consume 68 ms

and 145 ms, respectively, with an overall improvement in search efficiency of 53.13%.

Figure 19. Results of experimental planning with real vehicle.

Figure 20 shows the changes in vehicle heading during the experiment. The heading

information is obtained by integrating the angular velocity measurements from the

onboard IMU sensor. Due to the vehicle’s mechanical structure and the sensor’s charac-

teristics, the collected heading information is noisy. However, the overall trend in Path A

and Path C indicates that the heading change in Path C is smoother, further proving the

effectiveness of the proposed back-end smoothing method. Figure 21 displays the results

of the experimental speed planning for the real vehicle. Acceleration data are directly ob-

tained from the IMU’s linear acceleration measurements, and velocity is derived by inte-

grating this acceleration. The overall velocity change is smooth, with the velocity decreas-

ing to zero at 12 s before entering a reverse state with negative velocity. These results

further validate the rationality and effectiveness of applying Double S velocity planning

to hybrid A-star planned paths.

0 2 4 6 8 10 12 14 16

−0.4

0.0

0.4

0.8

1.2

Y
aw

/r
ad

Time/s

 Path A

 Path C

Figure 20. Vehicle heading changes in the experiment.

Path A
Path B
Path C
Path D

Figure 19. Results of experimental planning with real vehicle.

Figure 20 shows the changes in vehicle heading during the experiment. The heading
information is obtained by integrating the angular velocity measurements from the onboard
IMU sensor. Due to the vehicle’s mechanical structure and the sensor’s characteristics,
the collected heading information is noisy. However, the overall trend in Path A and
Path C indicates that the heading change in Path C is smoother, further proving the
effectiveness of the proposed back-end smoothing method. Figure 21 displays the results of
the experimental speed planning for the real vehicle. Acceleration data are directly obtained
from the IMU’s linear acceleration measurements, and velocity is derived by integrating
this acceleration. The overall velocity change is smooth, with the velocity decreasing to
zero at 12 s before entering a reverse state with negative velocity. These results further
validate the rationality and effectiveness of applying Double S velocity planning to hybrid
A-star planned paths.

Sensors 2024, 24, x FOR PEER REVIEW 24 of 27

5.2.2. Analysis of Experimental Results

Figure 19 shows the results of the real-vehicle experiment. The algorithm performs

path planning by providing an a priori map of the cart. Paths A, B, C, and D are THAS

planned paths, IHAS planned paths before smoothing, IHAS planned paths, and Dijkstra

planned paths, respectively. In the experiment, the path followed by the controlled vehicle

is Path B. Due to the characteristics of obstacles, start position, and target position, Path D

is very different from Path A. The path planned by IHAS is shorter than that planned by

THAS under the guidelines of the shortest path. Due to the characteristics of the desired

attitude, both IHAS and THAS, there is a reversing maneuver in the final stage to achieve

the desired attitude. The paths planned by the IHAS and THAS methods consume 68 ms

and 145 ms, respectively, with an overall improvement in search efficiency of 53.13%.

Figure 19. Results of experimental planning with real vehicle.

Figure 20 shows the changes in vehicle heading during the experiment. The heading

information is obtained by integrating the angular velocity measurements from the

onboard IMU sensor. Due to the vehicle’s mechanical structure and the sensor’s charac-

teristics, the collected heading information is noisy. However, the overall trend in Path A

and Path C indicates that the heading change in Path C is smoother, further proving the

effectiveness of the proposed back-end smoothing method. Figure 21 displays the results

of the experimental speed planning for the real vehicle. Acceleration data are directly ob-

tained from the IMU’s linear acceleration measurements, and velocity is derived by inte-

grating this acceleration. The overall velocity change is smooth, with the velocity decreas-

ing to zero at 12 s before entering a reverse state with negative velocity. These results

further validate the rationality and effectiveness of applying Double S velocity planning

to hybrid A-star planned paths.

0 2 4 6 8 10 12 14 16

−0.4

0.0

0.4

0.8

1.2

Y
aw

/r
ad

Time/s

 Path A

 Path C

Figure 20. Vehicle heading changes in the experiment.

Path A
Path B
Path C
Path D

Figure 20. Vehicle heading changes in the experiment.

Sensors 2024, 24, 5746 24 of 25Sensors 2024, 24, x FOR PEER REVIEW 25 of 27

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

0 2 4 6 8 10 12 14 16
−8

−4

0

4

8

0 2 4 6 8 10 12 14 16
−20

−10

0

10

20

D
ir

ec
ti

o
n

S
p

ee
d

/m
/s

A
cc

el
er

at
io

n
/m

/s
2

Time/s

Figure 21. Speed planning results from real-vehicle experiments.

Combining the above analyses, the method proposed in this paper demonstrates ef-

fective performance in real-world constrained environments. It successfully plans the

shortest safe path while adhering to the vehicle’s kinematic constraints. Additionally, path

and speed smoothing further enhances the vehicle’s ride comfort.

6. Conclusions

In this paper, an optimal trajectory planning method under restricted narrow space

is proposed. The traditional hybrid A-star algorithm is improved based on the traditional

hybrid A-star algorithm, and the search capability is improved by more than 50% in dif-

ferent scenarios. At the same time, back-end smoothing is performed on the searched

paths. The improved hybrid A-star algorithm has higher adaptability and robustness in

dealing with complex continuous obstacles and irregular obstacles. The simulation anal-

ysis and real-vehicle experiment show that the improved algorithm in this paper performs

well in a variety of complex scenarios, which not only significantly reduces the computa-

tion time of path planning but also significantly improves the smoothness and safety of

the path. In addition, the introduction of speed planning further optimizes the motion

trajectory of the autonomous vehicle so that it can adaptively adjust the driving speed

under different working conditions to improve overall driving efficiency and ride com-

fort. After the processing of path planning and speed planning, an optimized trajectory is

obtained with the comprehensive consideration of path smoothness and speed control.

It is worth noting that the method proposed in this paper relies on a raster search

class algorithm. Although the method improves in some aspects, it still demands signifi-

cant memory and time. Consequently, this method is more suitable for fixed scenarios like

car parks, warehouses, and other limited-area environments. Additional optimization and

adaptation may be necessary for large-scale or dynamic environments (e.g., urban plan-

ning). Future work will explore more efficient algorithms and optimization strategies to

enhance applicability in complex and dynamic environments.

Author Contributions: Conceptualization, Y.L. and G.L.; methodology, Y.L. and X.W.; software, Y.L.

and G.L.; validation, Y.L., G.L., and X.W.; formal analysis, Y.L.; investigation, X.W.; resources, G.L.

and X.W.; data curation, Y.L. and X.W.; writing—original draft preparation, Y.L.; writing—review

and editing, Y.L. and G.L.; visualization, Y.L. and G.L.; supervision, G.L.; project administration,

Figure 21. Speed planning results from real-vehicle experiments.

Combining the above analyses, the method proposed in this paper demonstrates
effective performance in real-world constrained environments. It successfully plans the
shortest safe path while adhering to the vehicle’s kinematic constraints. Additionally, path
and speed smoothing further enhances the vehicle’s ride comfort.

6. Conclusions

In this paper, an optimal trajectory planning method under restricted narrow space is
proposed. The traditional hybrid A-star algorithm is improved based on the traditional
hybrid A-star algorithm, and the search capability is improved by more than 50% in
different scenarios. At the same time, back-end smoothing is performed on the searched
paths. The improved hybrid A-star algorithm has higher adaptability and robustness in
dealing with complex continuous obstacles and irregular obstacles. The simulation analysis
and real-vehicle experiment show that the improved algorithm in this paper performs well
in a variety of complex scenarios, which not only significantly reduces the computation
time of path planning but also significantly improves the smoothness and safety of the path.
In addition, the introduction of speed planning further optimizes the motion trajectory of
the autonomous vehicle so that it can adaptively adjust the driving speed under different
working conditions to improve overall driving efficiency and ride comfort. After the
processing of path planning and speed planning, an optimized trajectory is obtained with
the comprehensive consideration of path smoothness and speed control.

It is worth noting that the method proposed in this paper relies on a raster search class
algorithm. Although the method improves in some aspects, it still demands significant
memory and time. Consequently, this method is more suitable for fixed scenarios like
car parks, warehouses, and other limited-area environments. Additional optimization
and adaptation may be necessary for large-scale or dynamic environments (e.g., urban
planning). Future work will explore more efficient algorithms and optimization strategies
to enhance applicability in complex and dynamic environments.

Author Contributions: Conceptualization, Y.L. and G.L.; methodology, Y.L. and X.W.; software, Y.L.
and G.L.; validation, Y.L., G.L. and X.W.; formal analysis, Y.L.; investigation, X.W.; resources, G.L. and
X.W.; data curation, Y.L. and X.W.; writing—original draft preparation, Y.L.; writing—review and edit-
ing, Y.L. and G.L.; visualization, Y.L. and G.L.; supervision, G.L.; project administration, G.L.; funding
acquisition, G.L. All authors have read and agreed to the published version of the manuscript.

Sensors 2024, 24, 5746 25 of 25

Funding: This work was supported by Key Research Project of the Liaoning Provincial Department of
Education (JYTZD2023081), Overseas Training Program for Higher Education Institutions in Liaoning
Province (2018LNGXGJWPY-YB014), and China Liaoning Provincial Natural Fund Grant Program
Project (2022-MS-376).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Olofsson, B.; Nielsen, L. Using Crash Databases to Predict Effectiveness of New Autonomous Vehicle Maneuvers for Lane-

Departure Injury Reduction. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3479–3490. [CrossRef]
2. Ayawli, B.B.K.; Chellali, R.; Appiah, A.Y.; Kyeremeh, F. An Overview of Nature-Inspired, Conventional, and Hybrid Methods of

Autonomous Vehicle Path Planning. J. Adv. Transp. 2018, 2018, 8269698. [CrossRef]
3. Zhu, D.-D.; Sun, J.-Q. A New Algorithm Based on Dijkstra for Vehicle Path Planning Considering Intersection Attribute. IEEE

Access 2021, 9, 19761–19775. [CrossRef]
4. Zhang, H.; Tao, Y.; Zhu, W. Global Path Planning of Unmanned Surface Vehicle Based on Improved A-Star Algorithm. Sensors

2023, 23, 14. [CrossRef]
5. Shang, E.K.; Bin, D.; Nie, Y.M.; Qi, Z.; Liang, X.; Zhao, D.W. An improved A-Star based path planning algorithm for autonomous

land vehicles. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420962263.
6. Parkinson, C.; Boyle, I. Efficient and scalable path-planning algorithms for curvature constrained motion in the Hamilton-Jacobi

formulation. J. Comput. Phys. 2024, 509, 113050. [CrossRef]
7. Lin, Z.; Ma, J.; Duan, J.; Li, S.E.; Ma, H.; Cheng, B.; Lee, T.H. Policy Iteration Based Approximate Dynamic Programming Toward

Autonomous Driving in Constrained Dynamic Environment. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5003–5013. [CrossRef]
8. Huang, J.; He, Z.; Arakawa, Y.; Dawton, B. Trajectory Planning in Frenet Frame via Multi-Objective Optimization. IEEE Access

2023, 11, 70764–70777. [CrossRef]
9. Zhang, X.; Zhu, T.; Du, L.; Hu, Y.; Liu, H. Local Path Planning of Autonomous Vehicle Based on an Improved Heuristic Bi-RRT

Algorithm in Dynamic Obstacle Avoidance Environment. Sensors 2022, 22, 7968–7977. [CrossRef]
10. Yu, J.; Chen, C.; Arab, A.; Yi, J.; Pei, X.; Guo, X. RDT-RRT: Real-time double-tree rapidly-exploring random tree path planning for

autonomous vehicles. Expert Syst. Appl. 2024, 240, 122510. [CrossRef]
11. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Ann. Oper.

Res. 2008, 1001, 18–80.
12. Furtuna, A.A.; Balkcom, D.J.; Chitsaz, H.; Kavathekar, P. Generalizing the dubins and reeds-shepp cars: Fastest paths for bounded-

velocity mobile robots. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA,
USA, 19–23 May 2008.

13. Meng, T.; Yang, T.; Huang, J.; Jin, W.; Zhang, W.; Jia, Y.; Wan, K.; Xiao, G.; Yang, D.; Zhong, Z. Improved Hybrid A-Star Algorithm
for Path Planning in Autonomous Parking System Based on Multi-Stage Dynamic Optimization. Int. J. Automot. Technol. 2023, 24,
459–468. [CrossRef]

14. Tang, B.; Hirota, K.; Wu, X.; Dai, Y.; Jia, Z. Path Planning Based on Improved Hybrid A* Algorithm. J. Adv. Comput. Intell Inform.
2021, 25, 64–72. [CrossRef]

15. Chang, T.; Tian, G. Hybrid A-Star Path Planning Method Based on Hierarchical Clustering and Trichotomy. Appl. Sci. 2024,
14, 5582. [CrossRef]

16. Lian, J.; Ren, W.; Yang, D.; Li, L.; Yu, F. Trajectory Planning for Autonomous Valet Parking in Narrow Environments With
Enhanced Hybrid A* Search and Nonlinear Optimization. IEEE Trans. Intell. Veh. 2023, 8, 3723–3734. [CrossRef]

17. Dang, C.V.; Ahn, H.; Lee, D.S.; Lee, S.C. Improved Analytic Expansions in Hybrid A-Star Path Planning for Non-Holonomic
Robots. Appl. Sci. 2022, 12, 5999. [CrossRef]

18. Kim, J.; Lim, K.; Kim, J. Auto Parking Path Planning System Using Modified Reeds-Shepp Curve Algorithm. In Proceedings of
the 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Kuala Lumpur, Malaysia, 12–15
November 2014; pp. 311–315.

19. Jiang, Y.; Liu, Z.; Qian, D.; Zuo, H.; He, W.; Wang, J. Robust Online Path Planning for Autonomous Vehicle Using Sequential
Quadratic Programming. In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV), Munich, Germany, 4–9 June 2022.

20. Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer: Berlin/Heidelberg, Germany, 2008; pp. 154–196.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TITS.2020.2983553
https://doi.org/10.1155/2018/8269698
https://doi.org/10.1109/ACCESS.2021.3053169
https://doi.org/10.3390/s23146647
https://doi.org/10.1016/j.jcp.2024.113050
https://doi.org/10.1109/TITS.2023.3237568
https://doi.org/10.1109/ACCESS.2023.3294713
https://doi.org/10.3390/s22207968
https://doi.org/10.1016/j.eswa.2023.122510
https://doi.org/10.1007/s12239-023-0038-1
https://doi.org/10.20965/jaciii.2021.p0064
https://doi.org/10.3390/app14135582
https://doi.org/10.1109/TIV.2023.3268088
https://doi.org/10.3390/app12125999

	Introduction
	Improvement in the Hybrid A-Star Algorithm
	Improving Node Expansion
	Heuristic Improvements

	Path Smoothing
	Constructing a Cost Function
	Constructing the Quadratic Programming Problem
	Smoothing Cost
	Compact Cost
	Geometric Similarity Cost

	Speed Planning
	Calculation of Speed Planning Parameters
	Time Parameter
	Actual Operating Parameters

	Segmented Expression
	Parameter Settings

	Simulation and Experimentation
	Simulation Verification
	Simulation Platform
	First Scenario
	Second Scenario
	Third Scenario

	Real-Vehicle Experiment
	Experimental Platforms
	Analysis of Experimental Results

	Conclusions
	References

