
Citation: Achkouty, F.; Gallon, L.;

Chbeir, R. RDSC: Range-Based Device

Spatial Clustering for IoT Networks.

Sensors 2024, 24, 5851. https://

doi.org/10.3390/s24175851

Academic Editors: Shaoen Wu, Jinbo

Xiong, Periklis Chatzimisios and

Mahmoud Daneshmand

Received: 21 July 2024

Revised: 2 September 2024

Accepted: 4 September 2024

Published: 9 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

RDSC: Range-Based Device Spatial Clustering for IoT Networks
Fouad Achkouty 1,† , Laurent Gallon 2,† and Richard Chbeir 1,*,†

1 OpenCEMS, LIUPPA, E2S UPPA, University Pau & Pays Adour, 64600 Anglet, France;
fouad.achkouty@univ-pau.fr

2 OpenCEMS, LIUPPA, E2S UPPA, University Pau & Pays Adour, 40000 Mont de Marsan, France;
laurent.gallon@univ-pau.fr

* Correspondence: richard.chbeir@univ-pau.fr
† These authors contributed equally to this work.

Abstract: The growth of the Internet of Things (IoT) has become a crucial area of modern research.
While the increasing number of IoT devices has driven significant advancements, it has also intro-
duced several challenges, such as data storage, data privacy, communication protocols, complex
network topologies, and IoT device management. In essence, the management of IoT devices is
becoming more and more challenging, especially with the limited capacity and power of the IoT
devices. The devices, having limited capacities, cannot store the information of the entire environment
at once. In addition, device power consumption can affect network performance and stability. The
devices’ sensing areas with device grouping and management can simplify further networking tasks
and improve response quality with data aggregation and correction techniques. In fact, most research
papers are looking forward to expanding network lifetimes by relying on devices with high power
capabilities. This paper proposes a device spatial clustering technique that covers crucial challenges
in IoT. Our approach groups the dispersed devices to create clusters of connected devices while
considering their coverage, their storage capacities, and their power. A new clustering protocol along-
side a new clustering algorithm is introduced, resolving the aforementioned challenges. Moreover,
a technique for non-sensed area extraction is presented. The efficiency of the proposed approach
has been evaluated with extensive experiments that gave notable results. Our technique was also
compared with other clustering algorithms, showing the different results of these algorithms.

Keywords: clustering; spatial data; IoT; coverage; capacity-aware

1. Introduction

The Internet of Things (IoT) is a network of objects that are connected, providing data
collection, data analysis, and decision making. The number of IoT devices is increasing
each year. IoT is becoming increasingly widespread in many domains and contexts like
health care, smart homes, smart cities, agriculture, energy optimization, supply chains, and
environmental monitoring [1].

The proliferation of connected IoT devices has led to numerous challenges across
different domains:

• Security is one of the major concerns, as the large number of devices connected to the
network makes it more vulnerable to attacks by increasing the potential entry points
for cybercriminals.

• Data management also represents a significant challenge. The massive amounts of
data collected by IoT devices must be stored in data centers for processing and analysis,
which can be costly in terms of storage, financial resources, and human administration.
Moreover, these sensitive data must be anonymized and, in some cases, encrypted to
preserve user privacy and confidentiality.

Sensors 2024, 24, 5851. https://doi.org/10.3390/s24175851 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24175851
https://doi.org/10.3390/s24175851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3211-0901
https://orcid.org/0000-0003-4252-1421
https://orcid.org/0000-0003-4112-1426
https://doi.org/10.3390/s24175851
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24175851?type=check_update&version=1

Sensors 2024, 24, 5851 2 of 30

• Another key challenge is the heterogeneity of IoT devices. These devices are produced
by different manufacturers, with varying sensing capabilities, power consumption,
and storage capacities, which complicates their management.

• Finally, the management of IoT networks also brings its share of complexities, particu-
larly when devices use distinct communication protocols, such as Wi-Fi and Bluetooth,
making their interconnectivity more difficult.

Diverse solutions for IoT management were developed. For instance, edge com-
puting [1] allows the processing of data closer to its source, reducing network load and
latency. Another solution that has been developed is automated device management,
particularly during the deployment process. This involves implementing techniques for
auto-configuration and automated maintenance of IoT devices. Scalability in network ar-
chitectures has been addressed by designing robust network architectures that are scalable
and can respond to network dynamics and failures. Additionally, energy-efficient protocols
that track device energy and battery depletion and charging have emerged.

This paper highlights several key challenges, including the constrained capacities
of the devices, the limited sensing area of the devices, and the power optimization of
the according IoT devices. Here, we propose a novel solution for managing the diverse
landscape of IoT devices. Our approach groups IoT devices with varying capabilities
while considering power consumption, and organizes them into a hierarchical clustering
architecture. This hierarchical clustering design enables several benefits for IoT device
management, including data aggregation, load balancing, and increased network avail-
ability. By intelligently grouping and hierarchically managing heterogeneous IoT devices,
our solution addresses key challenges in large-scale IoT deployments, enabling more effi-
cient and reliable device management. A comparison was made between RDSC and other
clustering techniques (k-means and DBSCAN). The comparison demonstrated that these
clustering algorithms resulted in overlapping big clusters without considering the device
storage capacities and the residual energy. For this reason, we propose the RDSC approach,
which clusters devices based on their coverage range, eliminates overlaps, and takes into
account both device storage capacities and residual power while clustering, emphasizing
the novelty of our approach.

The rest of this paper is organized as follows: In the next section, we present a
motivating scenario highlighting IoT characteristics, emphasizing the addressed challenges.
In Section 3, we present related work featuring a background about clustering, specific
device clustering use cases and finalized with a comparison table. After that, we will
present some preliminaries and assumptions (Section 4) used further. In Section 5, we
detail our approach along with our clustering protocol. Section 6 explains our clustering
algorithm before we detail in Section 7 the uncovered zone generation. Section 8 shows
the set of experiments that concerns the clustering algorithm execution before we conclude
this study in Section 9.

2. Motivating Scenario

To provide context and motivation for our proposal, we will consider the use case of
devices deployed in the Chiberta forest of Anglet, France.

2.1. Chiberta Forest Setup

In the Chiberta forest, an environmental enterprise deployed devices equipped with
infrared-based temperature sensors to prevent fires in the forest and conduct analysis. The
enterprise deploys devices randomly throughout the forest, as some areas are easily acces-
sible (plain fields), while others are not (hills and mountains). This random distribution
results in varying device densities in the forest. Easily accessible areas have a high device
density, while isolated areas are almost empty. Infrared sensors are non-contact sensors
that can measure temperature within a specific coverage range. The coverage range can
vary depending on the sensor type, the detector sensitivity, and the intensity of the emitted

Sensors 2024, 24, 5851 3 of 30

radiation. Typically, infrared sensors can measure distances ranging from a few centimeters
to several meters.

2.2. Device Heterogeneity

The deployed devices are heterogeneous (i.e., sensing attributes of different types) and
have different properties, as shown in Figure 1a. First, they have different coverage ranges
since they are provided by different industrial companies. Second, devices have varying
and limited storage capacities. Last but not least, devices have limited power consumption,
which impacts the network performance and its overall lifetime.

Figure 1. Deployment of devices in the Chiberta forest.

2.3. Challenges

In fact, extending the lifespan of an IoT network is essential for providing long-term
reliability and avoiding network shutdowns. A lot of strategies help in achieving network
lifetime expansion:

- Energy-efficient hardware: using devices with low energy consumption while enabling
sleep/wake methodologies will expand the network’s life expectancy. In addition,
using energy harvesting techniques with solar panels and other energy sources will
keep devices alive for a longer duration.

- Data aggregation: aggregating the data (crowd wisdom) and forwarding them at
once will reduce the number of devices involved and extend the network’s lifetime.
Furthermore, data aggregation offers functionalities that are unavailable when each
device operates independently, such as handling missing data, detecting anomalies,
and ensuring data quality.

- Communication Protocols: efficient transmission protocol (e.g., MQTT) will reduce
the number of devices involved during the packet transmission, hence enhancing the
network lifetime.

Sensors 2024, 24, 5851 4 of 30

- Load balancing: load balancing involves distributing network load across multiple
nodes. By spreading tasks among different nodes, heavy workloads can be divided,
reducing resource consumption and, consequently, energy consumption.

Additionally, the network topology has a significant effect on the performance of the
network. Leaving each device working on its own will increase the network load and
complexity since each node will have to return its data to the sender (user, base station).
Furthermore, in connected environments, devices can go down easily due to weather
conditions or a false configuration, making network recovery challenging in that case. To
bypass this difficulty and increase network efficiency, a common practice has been adopted
in the Chiberta forest, which consists of grouping the devices together while choosing a
responsible device for each group (as shown in Figure 1b). In essence, grouping devices
will lead to data load balancing between the devices (blue devices, example), network
stability in case of a device failure (brown devices, for example), and network scalability
in case of a newly added device (red devices, for example). The coverage area is a crucial
factor to consider when grouping the devices because it guarantees that all of the devices’
sensing areas cover the target region without any noticeable overlaps or gaps, maximizing
the network’s monitoring and data collection efficiency and effectiveness. We note that we
define the coverage area as the sensor’s sensing area and not its communication range. For
the sake of simplification and ease of understanding, devices are assumed to be sensing the
same observation (i.e., temperature).

Thus, to manage these issues, various challenges need to be addressed:

• Challenge 1: How to cluster devices while taking into consideration their limited
storage capacity?

• Challenge 2: How to manipulate device coverage range while clustering? How to
manipulate coverage range gaps while clustering?

• Challenge 3: How to take into account device power while clustering to optimize
network lifecycle?

• Challenge 4: How can device connectivity be considered while clustering to optimize
packet forwarding between clusters?

It is important to note that, in large connected environments, network behaviors are
unpredictable due to their complexity. Choosing query destinations in an IoT network can
streamline the network, simplifying many networking tasks and reducing overloads and
data flows. The physical network architecture can also facilitate query routing directly to
the destination, such as mesh networks and ad hoc networks. In our use case, each query is
directly routed from the sender (external user) to the appropriate cluster head (through
either a single-hop or multi-hop path), as the query destinations are predetermined at
the time of issuing the query (collecting information from a specific area such as cities or
forests). Therefore, network connectivity challenges (challenge 4) will be addressed in a
future study.

3. Related Works

In this section, we will detail some studies related to clustering and more specifically
device clustering.

3.1. Clustering Background

In IoT, device clustering has many benefits and can make major differences in network
performances. A clustering survey for k-means and other clustering algorithms was
conducted in [2]. In this survey, the authors described many clustering methodologies
and technologies:

• Centroid-based: Objects are assigned to the nearest cluster head based on the distance
between the current point and other cluster heads (CHs). Some examples of centroid-
based algorithms are the k-means and k-medoids. These algorithms are used in many
use cases related to energy management (electric vehicles [3] and smart grids [4]),

Sensors 2024, 24, 5851 5 of 30

network security (false data injection [5]), and the identification of unstable cluster
heads [6]).

• Distribution-based: These clustering algorithms rely on the probabilistic distribution
of the objects. The clustering model calculates the probability of an object being
assigned to a specific cluster. Gaussian mixture model (GMM) clustering is an example
of a distribution-based algorithm. This technique can be used to model electricity
consumption patterns [7,8] and perform system reliability analysis [9]. Another
popular distribution-based technique is Bayesian clustering. Bayesian clustering can
be used for model parameter estimation [10,11] and energy consumption pattern
detection [12].

• Density-based: The goal of such algorithms is to group objects with high density.
These algorithms are suitable for complex data with different shapes and structures.
DBSCAN is a popular example of density-based algorithms. This type of methodology
is used in anomaly detection and in the discovery of power consumption patterns [13].

There are also other clustering techniques (grid-based, graph-based, shapelet-based)
that also partition data and aim to find semantic relations between the data tuples.

At the end of the clustering process, depending on the technique, each cluster can
have a center point named centroid. The centroid can be any point in the data space,
or it can be an actual node of the cluster. In networking, having a node that manages
others can improve network performance by performing local operations (data aggregation
and correction). In other words, having an actual node acting as a centroid is crucial in
networking. This “manager” node is named cluster head. The dependency between CH
and cluster members (CM) exhibits a hierarchical relationship between these nodes, leading
to the establishment of a hierarchical architecture.

A type of clustering capable of acquiring a hierarchical architecture is the hierarchical
clustering. The result of this clustering type will be a hierarchical tree of devices, each
group of devices having a cluster head responsible of the entire group. In hierarchical
clustering, there are two main types of algorithms: divisive and agglomerative. In divisive
hierarchical clustering, all the nodes are grouped into a single cluster; then they are divided
to form smaller clusters. It is used to break down large-scale data [14] and transform them
into subsets of data, simplifying load management [15]. In agglomerative hierarchical
clustering, a bottom–up methodology is employed, where each member starts as an inde-
pendent cluster, and then cluster pairs are merged to create bigger clusters. Agglomerative
hierarchical clustering is primarily used for power consumption monitoring [16,17] and
load balancing [18]. Given that each device is independent and can function autonomously,
we will adopt the agglomerative hierarchical clustering in our approach.

3.2. Device Clustering

In the context of device spatial clustering, researchers adopted different methodologies
and use cases.

The authors in [19] presented different constraints that affect the result of a clustering
algorithm. The center and the capacity of each cluster and outliers must be taken into
consideration while clustering IoT devices. Non-spatial attributes may also interfere
with the clustering process. The authors also proposed an algorithm that covers these
constraints. They created an objective function that relies on distance, centers, and outliers.
The algorithm is composed of two main steps. The allocation step assigns each point to
the nearest facility (center), and the location step relocates centers following the newly
assigned points.

In Ref. [20], the authors elaborated an algorithm that clusters IoT devices while taking
into consideration obstacles. The algorithm starts with m cells. Each cell is denoted
as dense/non-dense and obstructed/non-obstructed. Obstructed cells are cells having
obstacles, while dense cells are cells having a lot of devices. Neighboring dense and non-
obstructed cells are merged into a single cluster. The output of the algorithm returns a list
of clusters along with their centers.

Sensors 2024, 24, 5851 6 of 30

In Ref. [21], the authors took the case of device spatial clustering in catastrophic
disasters. To gather information, a UAV is deployed over the desired area. The UAV
gathers info from cluster heads. Cluster heads are responsible for gathering the data from
cluster members and transmitting them to the UAV. Cluster heads are chosen based on the
energy levels of the cluster nodes.

Energy and correlation principles are employed in the spatial device indexing algo-
rithm presented in [22], extending the network life cycle. First, the nodes are divided
into two clusters following their energy consumption. After dividing the clusters, upon
receiving a task, a node acts as an initiator for the task. After receiving the information
from the different nodes, the initiator compares the amount of information from the old
cluster with the newly formed cluster. If the amount of information is greater than the old
cluster, the join request (task) is accepted and the cluster is created.

In Ref. [23], a user-centric clustering approach is given. The authors showed different
constraints faced during a user-centric clustering process, such as traffic load, security, delay,
mobility, energy management, and computational capability. In the proposed algorithm,
the network architecture is composed of access points, user equipment, and a macro base
station. The connection across access points and user equipment is determined by their
distance, which cannot exceed a predetermined limit. The AP is all in the range of the
macro base station.

In Ref. [24], the authors proposed an algorithm to cluster devices following their
energy and their distance to the base station. Nodes having minimal residual energy and
being closer to the sink are elected as CH (cluster head). In addition, nodes having an
optimal level of energy are elected as active nodes for an area. Messages are exchanged
between the CH and the sink using a multi-hop communication.

In Ref. [25], an energy optimization method is proposed where the authors presented
a socially aware clustering technique. Using this technique, a device receiving information
from many devices is elected as CH. Cluster heads can have many cooperators in order
to transfer the message to a sink node. The network can have many sinks; thus, the CH
will forward the message through coordinators, reducing the energy consumption of the
devices and increasing the network lifetime. Device storage capabilities are not mentioned
in their work, plus the authors grouped the devices following their energy consumption
without taking into consideration their coverage area.

In Refs. [26,27], the authors proposed a clustering technique that involves cluster
heads and subcluster heads (SCH). Cluster heads are chosen based on the resource
capability of a node precisely following their residual energy, computational capability,
and storage capacity. Cluster heads and subcluster heads perform aggregation oper-
ations, reducing traffic load on the network, hence extending its lifetime. They also
proposed an architecture named CCIC-WSN, extending the NDN (named data network-
ing) architecture, where communication packets of CH and CM and their tasks (data
aggregation and management tasks) are detailed. To optimize data retrieval, a lite-query
structure is proposed, allowing for filtering the content based on dynamic keywords and
comparison operators.

Device clustering is also popular in fog computing approaches. For example, in [28],
the authors presented an approach named I-SEMP. Devices can choose to communicate
between a fog node and another device that operates as a small proxy (SP) in case fog
nodes (FN) are far from the current device. These choices are made following the energy
consumption, the residual energies in the fog network, and the distances between the
involved nodes. After choosing the SP, the different nodes can decide to be connected to
an SP or an FN, depending on the distance between these nodes. Following the energy
consumption of the devices, new devices can be elected as an SP at the end of each
round (iteration). The experiments in this approach showed good results compared with
other approaches.

Sensors 2024, 24, 5851 7 of 30

3.3. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering (AHC) is the grouping of many singleton clus-
ters in order to create bigger clusters incorporating leaf nodes. AHC was used by many
researchers a long time ago, such as in [29]. The authors presented a protocol-based cluster-
ing technique implying a cost function. The cost function must be minimized in a way that
an optimal number of clusters is reached starting from leaf nodes. The cost function has
two main elements: the first element controls the cluster shape and size, while the second
element controls the cluster size. The use of these elements will lead to have an optimal
number of data clusters according to the cost function.

In modern approaches, AHC computes a distance matrix between the involved nodes
using criteria referred to as linkage. The most recognized linkage types are single-linkage
clustering, where the minimal distance between individuals is considered; complete-linkage
clustering, where the maximal distance between individuals is employed; and average
linkage clustering, where the average distance between individuals is used. For example,
in [16], the authors used the dynamic time warping distance as a distance metric, replacing
the traditional Euclidean distance method used in many clustering techniques. The usage
of the dynamic time warping distance metric is effective in clustering time series data
points. The authors evaluated the clustering performance with many distance metrics and
a linkage. Following the experiments conducted, AHC clustering with a DTW distance
metric with a complete linkage gave the best results for time series.

3.4. Comparison Table

In Table 1, we compared the aforementioned approaches with three criteria: coverage
range (i.e., the area in which the device can sense information about a specific attribute such
as temperature or humidity), energy/power, and capacity (mainly the storage). Columns
marked with a check mark indicate that the approach considered the corresponding crite-
rion, while those marked with a “-” did not.

Table 1. Comparison table of clustering approaches for IoT resources (devices).

Contribution Coverage Range Energy/Power Device Capacity

Essalhi et al. [28] - ✓ ✓

Ruha et al. [19] - - ✓

Saif et al. [21] - ✓ -

Mukherjee et al. [22] - ✓ -

Basavaraj et al. [24] ✓ ✓ -

El-Sharkawi et al. [20] ✓ - -

Lin et al. [23] - ✓ -

Rehman et al. [26,27] - ✓ ✓

Our approach ✓ ✓ ✓

Only the two approaches provided in [20,24] considered in their clustering the cov-
erage range of the sensors connected to the devices. We note that some approaches, such
as in [23], use the term “Coverage range” to designate the communication range of the
device. Since our criterion is the sensing area, an “-” is marked for this record. Regarding
the energy criterion, many approaches (e.g., [21–24,26–28]) considered it for their clustering
algorithms since the power is a major factor. The last column indicates that only [19,26–28]
took the device capacity into consideration.

To sum up, one can easily see that none of the existing approaches consider all of the
three criteria as does our approach.

Sensors 2024, 24, 5851 8 of 30

4. Preliminaries and Assumptions

In this section, we aim to define the terminology employed and the assumptions of
this proposal.

4.1. Device, Sensor, and Cluster Head

Definition 1 (Device). A device d, also named IoT resource, can be defined by a 6-tuple as follows:

d ∶ ⟨id, l, c, p, S⟩ (1)

where

• id is the device identifier;
• l is the device location stamp (see Remark 1);
• c is the device storage capacity (in bytes);
• p is the device current power level (in Wh); and
• S = ⋃n

i=0 s is the set of the device sensors. Each sensor is defined as s ∶ ⟨o, cz, ch⟩, where

– o is an observation (i.e., sensed data such as temperature);
– cz is its coverage zone (see Definition 3); and
– ch: is its cluster head (identifier) when it exists.∎

It is to be noted that each device can identify its neighbors within the network. Net-
work discovery protocols such as the Constrained Application Protocol (CoAP) and Simple
Service Discovery Protocol (SSDP) enable devices and resources to manage and communi-
cate with their neighbors and other entities.

Remark 1. We note that the definitions of a location stamp and of an observation are mentioned in
our previous work [30].

Definition 2 (Cluster head). A cluster head ch is a device (that inherits the attributes of the device
object) responsible, regarding one or several observations, for providing functionalities and services
for its cluster members such as data aggregation and load balancing. It is defined as follows:

ch ∶ ⟨d, D, cz⟩ where ∶ (2)

• d = is the corresponding device
• D = ⋃n

i=0 s: is the set of devices managed by the device.
• cz: is the covered zone of the entire devices. ∎

4.2. Zones and Environment

Definition 3 (Zone). A zone z is a surface area represented by

z ∶ ⟨id, su, shape, L⟩ where (3)

• id is the zone identifier;
• su is the surface of the zone;
• shape is the spatial shape of the zone; and
• L := ⋃n

i=0 li ∀i ∈ N is the set of location stamps that constitute the vertices of the zone. ∎

Remark 2. A covered zone, denoted by cz, is a zone that is covered by at least one device. A
cz can have many vertices. The covered zones of the devices are spatially sampled into rectan-
gles/squares, simplifying the calculations during the clustering. This step is explained in detail in the
upcoming sections.

Remark 3. An uncovered zone, denoted by uz, is a zone that has no device inside, thus having
no coverage. A uz has two vertices only. Uncovered zones are always represented in our study by
rectangles, leading to the necessity of two vertices to represent the zone.

Sensors 2024, 24, 5851 9 of 30

Definition 4 (Environment). An environment is an area that groups the set of covered and
uncovered zones. It is represented by a rectangle and is defined as

env ∶ ⟨id, CH, UZ, L⟩ where (4)

• id is the environment identifier;
• CH is the set of cluster heads in the environment;
• UZ is the set of uncovered zones in the environment; and
• L are the two corresponding vertices of the environment. ∎

5. Proposed Approach

In this section, we present the global architecture used in our approach.
Our approach aims to cluster devices according to their coverage range, capacity, and

power. As shown in Figure 2, the clustering protocol takes the deployed devices as an input.
It is to be noted that device deployment is assumed in our study to be random because, in
many situations and use cases, it is not always controlled.

Figure 2. Our approach architecture.

Once the devices are deployed, the clustering protocol begins processing this input.
The input consists of a set of devices, and the output is the clusters of devices along with a
set of uncovered zones. Our clustering protocol is divided into three layers:

5.1. Pre-Clustering

In this layer, there are three main steps that are required to optimize the proto-
col performance:

- Environment division following physical communication: commonly, devices are
grouped based on their physical communication connections. In other words, each
group of devices, which can communicate with each other using direct or multi-
hop links, is gathered together. This ensures an overlay connection between the
devices (where the algorithm execution must occur). IoT communication technologies
(such as Wi-Fi and Bluetooth) enable direct communication, allowing nearby IoT
devices to easily interact, thereby simplifying the task of this module. In Ref. [31], the
authors considered the communication range as two times the coverage range. Other
approaches, such as in [32], rely on connecting the devices from the beginning; hence,
each device knows its directly connected devices. In our approach, we assume that
each group of devices is aware of its directly or indirectly connected neighbors (using
any network discovery protocol), which allows smooth inner connection.

- Coverage area conversion: following [31], sensing models are the representation of
sensing capabilities and quality. They rely on the sensing method: (1) directional
sensing that depends on the distance and the horizontal orientation of the sensor
or (2) omnidirectional sensing that refers to devices that can capture a 360-degree

Sensors 2024, 24, 5851 10 of 30

view of the surrounding scene (i.e., determines if a point is within the sensor’s ra-
dius). Several sensing models can be distinguished, but mainly two: Boolean and
probabilistic. The Boolean sensing model is one of the most used according to [31]. It
consists of considering each sensor node to have a binary sensing capability within a
specific radius; i.e., it can detect the presence or absence of a target. The probabilistic
sensing model extends the Boolean sensing model to better reflect modern connected
environments. It relies on the probability of detecting a point within the coverage
area. Even if a point is within this area, the detected value might have low accuracy or
be undetectable. In our approach, the probabilistic sensing model is adopted since
it includes the Boolean and provides more realism. In this study, we only focused
on omnidirectional sensing. To reduce computation complexity in our approach, we
transform the devices’ coverage zones (circles and lines) to either squares or rectangles
and incorporate a probabilistic percentage named degradation percentage based on
the sensor specifications and environmental conditions.

To ease the illustration of the coverage, let us consider Figure 3. There are
two ways to represent an omnidirectional device coverage: one method uses a square
with a side equal to 2 ∗ R (case (a)), and the other represents the side of the square by
R ∗
√

2 (case (b)). In case (a), some of the coverage area exceeds the coverage range of
the sensor (gaining a small portion from the coverage range), while in case (b), the
coverage area is totally included in the coverage range while losing a small portion of
the coverage range. The degradation percentage (DP) directly impacts the coverage
range, as demonstrated in cases (c) and (d). As the DP goes up, the coverage range
area will be shortened. The method for representing the coverage area with the DP
depends on the sensor specifications and precision.

- Device grouping: After generating the coverage zones of each device, we check for
continuous intersections between them. Devices having a continuous intersection will
be added to the same group. At the end of this step, the devices can communicate with
each other and have consecutive covered zone intersections. The clustering algorithm
will be applied independently to each group.

Figure 3. Coverage range transformation.

5.2. Clustering Algorithm Execution

In this layer, the clustering algorithm is executed along with some pre-processing
steps (commonly performed in many clustering algorithms).

- Sensor metadata normalization: all numerical values are normalized using the follow-
ing min–max normalization technique [33]:

N(x) = x − xmin

xmax − xmin
(5)

with xmin = 0 and xmax the highest possible value. x represents any numerical value
between xmin and xmax.

- Coverage zone clustering algorithm execution: the clustering algorithm is executed
for each device group. Details about the execution steps will be presented in Section 6.
The clustering process will result in distinct, non-overlapping covered zones, each

Sensors 2024, 24, 5851 11 of 30

with a designated cluster head. It is important to note that any grouping, division, or
modification of a device’s coverage area will create a covered zone.

5.3. Post-Clustering

In this layer, we gather additional information from the environment that could be
used to simplify other networking tasks. These steps are optional but ought to enhance
many networking tasks (device indexing and information gathering).

- Uncovered area calculation using ENV and CZ: In this step, we calculate empty areas
by subtracting the entire connected environment from the covered zones. As a result,
we will have areas that are not covered by any sensing device.

- Uncovered zone division using internal vertices: Internal vertices are those located
within the boundaries of the connected environment but not on the edges of the
environment’s Minimum Bounding Rectangle. For each internal vertex, we draw a
horizontal line dividing the current uncovered area into two parts. After splitting all
internal vertices, the uncovered zones will be rectangular. This step aims to reduce the
storage capacity required on the device’s local storage, as only two points are needed
to represent a rectangle in memory. More information about this part will be given in
Section 7.

6. RDSC Clustering Algorithm

In this section, we will detail the covered zone clustering algorithm. We will start by
presenting the different equations employed. Then, we will present the different use cases.
Finally, we will detail each step of the RDSC clustering algorithm.

6.1. Equations and Applications
6.1.1. Objective Function

As previously discussed, three main criteria must be considered when clustering:
(1) the surface area of the current cluster, (2) the power within the cluster, and (3) the
vertices required to store the boundaries of the current cluster (depending on the device
storage capacities). In our case, we aim to maximize the cluster’s surface area (reducing the
overall number of clusters) and to increase the power contained inside the cluster, while
minimizing the number of vertices to be stored to track the cluster boundaries. To state the
problem, we defined an objective function that incorporates the above criteria. As shown
in Equation (6), we can distinguish a gain (G) whose values are to be maximized and a loss
(L) to be minimized.

f (x) = G − L (6)

In other words, the adopted problems are converted into a maximization problem,
where we aim to maximize the gain of f and minimize the loss of f .

f (x) = w1 ∗ ch(x).cz.su +w2 ∗ sum(ch(x).D.p + ch(x).p)−w3 ∗ length(ch(x).cz.L) (7)

⎧⎪⎪⎨⎪⎪⎩

w1 +w2 +w3 = 1
0 ≤ w ≤ 1

(8)

In Equation (7), we detail the gain and the loss components of the objective function.
w1, w2, and w3 are the corresponding weights (provided manually) that affect the impor-
tance of the associated criteria. w1 is associated with the surface of the zone cz.su. A higher
w1 will increase the importance of larger surfaces for the objective function. w2 is associated
with the power of all the devices combined including the power of the cluster head ch.
Given that energy can be quantified in watt-hours (Wh), the energy of the covered zone is
calculated as the sum of the power of each device within that zone. A higher value for w2
will amplify the significance of increasing the power levels within the objective function. w3
is associated with the number of location stamps required to store the zone cz.L. During the

Sensors 2024, 24, 5851 12 of 30

algorithm iterations, a custom-shaped zone will have a variable number of vertices. This
will necessitate a greater storage capacity on the device to accommodate the information.

6.1.2. Use Cases

To apply the objection function, a comparison between two intersecting covered zones
must be conducted. Since our coverage zones are represented by rectangles and squares,
we can identify five main use cases. These use cases are illustrated in Figure 4. Figure 4a,b
are two different zones each zone having a separate color.

Figure 4. Objective function application use cases.

In Figure 4 case (1), cz (a) remains intact while cz (b) is divided, resulting in
cz (b) having six vertices. In case (2), cz (a) is divided while cz (b) retains its shape,
resulting in cz (a) having six vertices. cz (a) and cz (b) can be merged into a single covered
zone as shown in case (3) having eight vertices. In case (4), cz (a) is shrunk, reducing its
surface while removing its intersection from zone b. In case (5), cz (b) is shrunk and its
intersection with cz (a) is removed. The option to shrink zones is not always considered
since, in some connected environments, this is not an option. In other situations, shrinking
cz can improve network lifetime, for example, by reducing the battery-drained devices’
impact on the network. Using the objective function (Equation (7)), each use case will
have specific values based on the surface area, vertices, and total power of each separated,
merged, or shrunk zone.

For use cases (1) and (2), the final objective value can be determined by summing the
values of each zone alone. We note that, in these section’s equations, a and b are the zones
represented in Figure 4. After applying the zone dominance, we will obtain two zones.
One unchanged zone has its objective value. Another zone has been cut, reducing its
surface and increasing its vertices. To obtain a single value for these zones, we added their
objective function values. Using Equation (7), we can deduce

f (a∣b) = f (a)+ f (b) (9)

For use case (3), the final objective value is the objective value of the two combined
zones. It should be noted that the objective value for combined zones differs from the
objective value of two separate zones that are divided. After merging (unifying) zones, we
can easily calculate their combined objective value. To calculate the final objective value for
two merged cz, we define the following equation:

f (a + b) = f (a ∪ b) (10)

For use cases (4) and (5), the final objective value is the value of the zone that we kept
minus the value of the affected zone multiplied by a deletion rate (loss rate). Shrinking
zones signify that we are losing data. Data loss should be penalized depending on the
environment and user needs. The deletion rate is a value passed as an input at the beginning
of the algorithm that affects the final result of the objective function. Recall that device
exclusion is optional. It is not required depending on user needs. Having two zones, a and
b, we subtract the loss of zone b (f (b)∗ deletion_rate) from zone a. The final objective value
associated with cz narrowing is defined by

f (a − b) = f (a)− f (b) ∗ deletion_rate (11)

Sensors 2024, 24, 5851 13 of 30

After calculating the values resulting from Equations (9)–(11), we compare the different
values and we choose the case that have the highest objective value. The according value
will have the highest priority to be executed.

Algorithm 1 shows the execution and calculations involved in each use case. The
inputs of the algorithm are the two cluster heads, the weights of the surface area, the power,
and the number of vertices, respectively. The merge factor and the deletion rate are inputs
to pass to further processing steps in the algorithm. The output of the algorithm is the
calculated value for each use case with corresponding metadata.

Algorithm 1: runUseCases()
Input : ch1, ch2, w1, w2, w3, mergeF, deletionR
Output : useCasesObj // object containing use cases results
Local Variables : useCasesObj = []
// Calculating power values

1 powerch1 = ch1.p + sum(ch1.D.p)
2 powerch2 = ch2.p + sum(ch2.D.p)
3 resultDe f aultZone1 = objectiveFunction(ch1.cz.su, powerch1, length(ch1.cz.L), w1, w2, w3)

4 resultDe f aultZone2 = objectiveFunction(ch2.cz.su, powerch2, length(ch2.cz.L), w1, w2, w3)

// merged use case
5 useCasesObjElement.label = ‘merged’
6 useCasesObjElement.cz = combineCoverageZone(ch1.cz, ch2.cz)
7 useCasesObjElement.P = powerch1 + powerch2
8 useCasesObjElement.mergedValue = mergeF ∗ (length(ch1.D)+ (ch2.D)+ 2)
9 useCasesObjElement.value =

objectiveFunction(useCasesObjElement.cz.su, useCasesObjElement.P, length(useCasesObjElement.cz.L), w1, w2, w3)

10 useCasesObj.push(useCasesObjElement)
// dominant one use case

11 useCasesObjElement.label = ‘dominantOne’
12 useCasesObjElement.cz = ch2.cz − ch1.cz
13 resultZone2 = objectiveFunction(useCasesObjElement.cz.su, powerch2, length(useCasesObjElement.cz.L), w1, w2, w3)

14 useCasesObjElement.value = resultDe f aultZone1 + resultZone2
15 useCasesObj.push(useCasesObjElement)

// dominant zone two use case
16 useCasesObjElement.label = ‘dominantTwo’
17 useCasesObjElement.cz = ch1.cz − ch2.cz
18 resultZone1 = objectiveFunction(useCasesObjElement.cz.su, powerch1, length(useCasesObjElement.cz.L), w1, w2, w3)

19 useCasesObjElement.value = resultZone1 + resultDe f aultZone2
20 useCasesObj.push(useCasesObjElement)

// shrink zone one use case
21 useCasesObjElement.label = ‘shrinkOne’
22 useCasesObjElement.cz = ch2.cz − ch1.cz
23 useCasesObjElement.value = resultDe f aultZone1 − resultDe f aultZone2 * deletionR
24 useCasesObj.push(useCasesObjElement)

// shrink zone two use case
25 useCasesObjElement.label = ‘shrinkTwo’
26 useCasesObjElement.cz = ch1.cz − ch2.cz
27 useCasesObjElement.value = resultDe f aultZone1 − resultDe f aultZone2 * deletionR
28 useCasesObj.push(useCasesObjElement)
29 return useCasesObj

In lines 1–2, we calculate the power contained in each cluster. The power is measured
in watt-hours (Wh), leading to the summation of the power values determining the total
power in the according cluster. Default objective values are also calculated for each cluster
head (lines 3–4). These values will be used in the upcoming steps.

After calculating the required values engaged in further steps (the power and the
default objective values), we start calculating the objective value of each use case. First,
the algorithm starts with the merged use case. In the merged cz use case, the cz of both
cluster heads are combined, creating a unique zone. The combination of these zones will
determine the total surface area and the number of vertices needed to store the boundaries
of the cz. The power of the two cluster heads is added. The result of combining both powers
determines the total power inside the newly merged zone (lines 6–7). The mergedValue
in line 8 is calculated by multiplying the passed merge factor with the total number of
devices in the current group. In lines 9–10, the objective value calculation for the merged cz
is performed. The obtained values are added to the useCasesObj.

The next use case concerns the domination of ch1 over ch2. During this step, ch1
remains the same, while changes affect ch2 only. The new cz of ch2 will be its current cz
subtracted by the cz of ch1 (line 12). The purpose of this step is to remove the intersecting

Sensors 2024, 24, 5851 14 of 30

area between ch1 and ch2 from the cz of ch2. The new objective value of ch2 is calculated
in line 13, while the objective value of ch1 remains the same (no changes are made to ch1).
Both objective values are summed and pushed to the useCasesObj (lines 14–15).

Similar to the dominant first use case, the ch2 cluster dominates ch1 in the dominant
second use case. The intersection area is assigned to ch2 while being removed from ch1
(line 17). In lines 18–20, objective values for ch1 and ch2 are calculated separately, summed,
and pushed to the useCasesObj.

For zone shrinkage use cases, the intersection area between the cz is removed. Then,
we subtract the default objective value of the shrunk zone multiplied by the deletion rate
deletionR from the objective value of the current zones, and we add their values to the
useCasesObj array (line 21–28).

Finally, we return the useCasesObj array used in Algorithm 2.

Algorithm 2: spatialClustering()
Input : CH, w1, w2, w3, mergeF, deletionR
Output : CH // clustered heads
Local Variables : initialCHLength = length(CH)

1 while i < length(CH) do
2 while j < length(CH) do

// getting intersection between the two zones
3 intersection = intersectionBetweenZones(CH[i].cz, CH[j].cz)
4 if (intersection) then

// calculating zones objective values
5 operationValues = runUsecases(CH[i], CH[j], w1, w2, w3, mergeF, deletionR)

// sort operationValues in descending order following their cost value
6 sort(operationValues, descending = True)
7 operationExecuted = False
8 while !operationExecuted do

// check which case has the highest value
9 if (operationValues[0].label == “merged” and

operationValues[0].mergedValue ≤ initialCHLength then
// merging zones has the highest value

10 if (CH[i].p ≥ CH[j].p and (CH[i].c ≥ length(operationValues[0].cz.L)) then
// combine both CH with CH[i] as head of the cluster

11 mergeCH(CH[i], CH[j])
12 operationExecuted = True
13 j = 0
14 else if (CH[j].c ≥ length(operationValues[0].cz.L)) then

// combine both CHs with CH[j] as head of the cluster
15 mergeCH(CH[j], CH[i])
16 operationExecuted = True
17 j = 0
18 else if (operationValues[0].label == “dominantOne”) and

(CH[j].c ≥ length(operationValues[0].cz.L) then
// CH[i] dominates CH[j]

19 costDominant(CH[i], CH[j])
20 operationExecuted = True
21 else if (operationValues[0].label == “dominantTwo”) and

(CH[i].c ≥ length(operationValues[0].cz.L) then
// CH[j] dominates CH[i]

22 costDominant(CH[j], CH[i])
23 operationExecuted = True
24 else if (operationValues[0].label == “shrinkOne”) then
25 if (CH[j].c > length(operationValues[0].cz.L) then
26 shrinkCH(CH[j], intersection) // shrink CH[j]
27 operationExecuted = True
28 else if (operationValues[0].label == “shrinkTwo”) then
29 if (CH[i].c > length(operationValues[0].cz.L) then
30 shrinkCH(CH[i], intersection) // shrink CH[i]
31 operationExecuted = True

// remove the executed operation
32 if (length(operationValues)) then
33 operationValues.pop(0)
34 else
35 break
36 end
37 end
38 j ← j + 1
39 end
40 i ← i + 1
41 end
42 return CH;

Sensors 2024, 24, 5851 15 of 30

6.2. Main Algorithm Execution

After completing the use case calculations, we start applying changes to the
corresponding cluster heads CH. The changes to CH will be explained in detail in
this section.

The algorithm flow is demonstrated in Figure 5. The algorithm starts with two loops
going through all the CHs’ detecting intersections between those zones (lines 1–3). When
an intersection is detected, we can start applying the different use cases of Algorithm 1
(line 5). Following the score obtained by the runUseCases function, we can mutate our
CH. The results are sorted in descending order, placing the highest value at the beginning
(line 6).

Figure 5. Clustering algorithm schema.

When merged zones have the highest values, we check if the mergedValue is less
than the total number of devices in the environment. This step regulates the device
density within the clusters, preventing the formation of overly large clusters (line 9).
After checking the cluster density allowance, we identify the cluster head with the
highest power between the two. The purpose of this check is to enhance network health
by designating high-power devices as a cluster head. As mentioned before, our clustering
algorithm considers the device capacities while clustering. In addition to the power
condition, we check for the capability of the device to store all the boundaries of the new
covered zone cz.L. The device with the highest power capable of storing the zone will be
chosen as cluster head ch. After choosing the ch, the cz are combined and the attributes

Sensors 2024, 24, 5851 16 of 30

of the designated ch are updated. After the update of the ch, j is set to 0 since the current
zone merge can affect bypassed zones by creating new intersections with them. These
steps can be seen in lines 9 to 17.

In case the first cluster head dominates the second, the new cz of ch must be checked to
ensure that ch2.c supports storing all the vertices of the zone. Once checked, the overlapping
zone is assigned to ch1 (no difference for ch1) and the new cut zone is assigned to ch2.
Lines 18 to 20 demonstrate this step.

The same conditions as in the cost dominant zone first use case are applied to the cost
dominant zone second use case, but for ch1. The algorithm checks that ch1 can store all the
vertices of the cut zone. The overlapping zone is assigned to ch2 (lines 21–23).

The last two steps involve CH shrinking. Based on the calculations made, we can
choose to shrink a device cz or exclude it from the algorithm, reducing its impact on the
environment. Similarly, a check on the device storage capacity is made to check if the
devices can store the cut zone. These steps are outlined in lines 24–31. From lines 32–36,
these steps involve removing operations that could not be executed and proceeding to the
next operations.

7. Uncovered Zones Division

As previously mentioned, generating uncovered zones is an optional step but can
be beneficial for future network operations. Having additional information about the
environment can assist in indexing, querying, and other networking tasks. For example,
when querying the value of an attribute from a specific location stamp l, data retrieval
can be more effective when knowing the boundaries of uncovered zones. In our case,
uncovered zones are always represented as rectangles, which reduces their storage cost
when they need to be stored on the device.

The input of the algorithm is the resulting output of Algorithm 2. The output of
Algorithm 3 will be the environment containing the cz, uz, and the boundaries of the entire
environment represented by two location stamps. In line 1 of the algorithm, an environment
variable is initiated and filled with the CH and the location stamps of the bottom-left and
top-right corners of the environment. These corners are represented by the xmin, xmax, ymin,
ymax between all the cz represented in the entire CH group.

Algorithm 3: generateUncoveredZones()
Input : CH
Output : env // the environment object

1 env = initiateEnvironment(CH)
2 emptyAreas = getEnvrionmentCoordinates(env, CH)
3 UZ = splitOnInternalVertices()
4 env.UZ = UZ
5 return env

In line 2, empty areas are calculated by subtracting all the covered zones of CH
from the surface of the env’s rectangle. The created empty areas are custom-shaped. To
create rectangles from these custom shapes, the splitOnInternalVertices()method is used.
This method detects internal vertices, which are vertices located inside the boundaries
of the original env’s rectangle. After detecting the internal vertices, a horizontal split is
performed on each internal vertex, transforming the custom shape into a multi-rectangle
representation. Each rectangle represents a single uz. An array of uz is returned, denoted by
UZ. The env variable is updated and returned as a final result of our clustering algorithm in
lines (4–5). Figure 6 shows an example of the execution of Algorithm 3. The clustering result
that is displayed is the output of 20 devices clustered together, each cluster is represented
by a different color. After finishing the clustering process, all empty areas of the clustering
result are filled with rectangles that will be used in further networking operations. Recall
that only rectangles are obtained since they can be stored easily using two points. Taking
the bottom-right uncovered zones as an example, to store the entire polygon, 13 vertices

Sensors 2024, 24, 5851 17 of 30

are required. After dividing the polygon into rectangles, 10 vertices are required, hence
reducing the storage cost of uncovered zones.

Figure 6. Uncovered zone example.

8. Experiments

In this section, we present the set of experiments achieved on a 12 GB RAM machine with
an Intel(R) Xeon(R) CPU @ 2.20 GHz (Google Colab). The first set of experiments denotes
the algorithm performance evaluation including weights and density factor evaluation. A
comparison of RDSC with DBSCAN and k-means was also made on 20 and 100 devices. For
data transmission, we consider that the devices have the required parameters to transfer the
messages over Wi-Fi channels (frequency band equal to 2.4 GHz and transmission power
equal to 20 dBm). We consider that the IoT devices use the CSMA/CA access method to
avoid collisions.

The complexity of the algorithm is n2 log n due to the two external loops (each loop is
counted as n), while j is being set to 0 to recheck for bypassed intersections between zones
(since, after a merge, the number of zones is reduced, we multiplied n2 by log n).

8.1. Performance Evaluation

During these experiments, we varied the different algorithm weights and parameters
to evaluate the impact of each parameter on the final result of RDSC.

8.1.1. Effect of the Surface Weight w1 on the Clustering Results

In this experiment, we evaluate the effect of the surface weight w1 on the final result
of RDSC. On the other hand, w2 is set to 0 to remove the effect of the device power
on the result, while mergeF and deletionR are fixed to 3.5 and 0.3, respectively (Table 2).
A group of 100 devices is generated. Recall that a group contains devices that have
consecutive intersections.

Table 2. Variation of the surface weight parameter.

Case 1 Case 2 Case 3

w1 0.9 0.75 0.5

w2 0 0 0

w3 0.1 0.25 0.5

mergeF 3.5 3.5 3.5

deletionR 0.3 0.3 0.3

We varied the values of w1 to 0.9, 0.75, and 0.5, while adapting w3 to keep the addition
of both weights equal to 1. In Figures 7–12, we demonstrate graphs showing the effect of
w1 and w3 on the surface and vertices. In Figure 7, most of the clusters have big surface

Sensors 2024, 24, 5851 18 of 30

areas. Figure 8 shows that even though the clusters have big surface areas, they also have
high vertex numbers. This behavior is expected since w1 has a big weight on the objective
function. In addition, the number of clusters is equal to 22, meaning that a lot of merges
occurred during the execution of the algorithm, increasing the cluster’s surfaces. Notice
that zones 14 and 15 have surface areas equal to 0 while having 0 vertices. This indicates
that these two devices are excluded from all clusters while minimizing their covered zone
until having a negligible area due to the coverage zone shrinkage step.

In Figures 9 and 10, w1 is set to 0.75, while w3 is set to 0.25. The surface area of the
clusters decreased, while the number of vertices per zone was reduced. Since w1 decreased
and w3 increased, the number of vertices per cz has a higher impact when merging. A
higher number of clusters are obtained since vertices affect the zone merging process, hence
increasing the number of clusters. We can observe that the average surface per cluster
decreases and is distributed across several clusters.

Figure 7. Cluster surface area for w1 = 0.9 and w3 = 0.1.

Figure 8. Cluster vertex number for w1 = 0.9 and w3 = 0.1.

Sensors 2024, 24, 5851 19 of 30

Figure 9. Clusters surface area for w1 = 0.75 and w3 = 0.25.

Figure 10. Cluster vertex number for w1 = 0.75 and w3 = 0.25.

Figure 11. Cluster surface area for w1 = 0.5 and w3 = 0.5.

Sensors 2024, 24, 5851 20 of 30

Figure 12. Cluster vertex number for w1 = 0.5 and w3 = 0.5.

In Figures 11 and 12, w1 and w3 have both been set to 0.5. Since more weight has been
assigned to w3, fewer vertices are accepted per zone, resulting in a higher number of clusters.

Comparing the aforementioned results, one can conclude that as w1 increases, the
average surface per cluster increases as well, reducing the number of overall covered zones.

8.1.2. Effect of the Power Weight w2 on the Clustering Results

In this experiment, we evaluate the power in wh contained in each cluster while
changing the values of w2 and w3. w1 is set to 0, removing the effect of cz surfaces on the
execution of RDSC. mergeF and deletionR are fixed at 3.5 and 0.3, respectively (Table 3).

Table 3. Variation of the power weight parameter.

Case 1 Case 2 Case 3

w1 0 0 0

w2 0.9 0.75 0.5

w3 0.1 0.25 0.5

mergeF 3.5 3.5 3.5

deletionR 0.3 0.3 0.3

During this experiment, we decreased the value of w2 from 0.9 to 0.5 while adapting
w2 accordingly (w2 + w3 = 1). From Figures 13–18, we demonstrate graphs showing the
effect of w1 and w2 on the power in Wh and on the number of vertices.

In Figure 13, many clusters have a cluster power greater than 10 Wh. Covered zone
15 reaches 60 Wh while having over 25 vertices. The average vertex number is high in most
zones due to the low value of w3 (Figure 14). Due to the many decisions regarding merging
zones, the number of clusters is reduced from 100 singleton clusters to 22 clusters.

In Figure 15, the average power in each cluster drops since more zones having a power
of less than 20 can be distinguished. Several zone vertices drop (compared with Figure 14)
due to the higher importance of w3 on the merging decisions.

Figures 17 and 18 demonstrate a drop in the power of many clusters, while a decrease
in the vertices number is visible. We can also distinguish a high increase in the number of
clusters since it reaches 51 clusters, indicating a big number of singleton and duo clusters.

These graphs show that a higher value of w2 will lead to clusters having high power
capacities, while increasing the value of w3 will result in a higher number of clusters, each
cluster having a smaller value for power and vertices.

Sensors 2024, 24, 5851 21 of 30

Figure 13. Cluster power for w2 = 0.9 and w3 = 0.1.

Figure 14. Cluster vertex number for w2 = 0.9 and w3 = 0.1.

Figure 15. Cluster power for w2 = 0.75 and w3 = 0.25.

Sensors 2024, 24, 5851 22 of 30

Figure 16. Cluster vertex number for w2 = 0.75 and w3 = 0.25.

Figure 17. Cluster power for w2 = 0.5 and w3 = 0.5.

Figure 18. Cluster vertex number for w2 = 0.5 and w3 = 0.5.

Sensors 2024, 24, 5851 23 of 30

8.1.3. Merge Factor Impact

We used the same group of 100 devices generated previously to assess the effects of
the merge factor on the algorithm. We fixed the values w1 = 0.4, w2 = 0.3, w3 = 0.3, and
deletionR = 0.3 and varied the merge factor mergeF (Table 4). Figure 19 shows the density
value compared with the maximum number of devices per cluster. From mergeF = 3 to
mergeF = 11, the max device is constant to 9 devices. This number is not affected by the
merge factor since the first value affected by the merge factor is 100/11 ≈ 9. Then, the
max number of devices decreases from 9 to 4, while the merge factor increases from 11
to 20. In conclusion, the maximum number of devices per cluster decreases as the merge
factor increases.

Table 4. Variation of the mergeF parameter.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

w1 0.4 0.4 0.4 0.4 0.4 0.4 0.4

w2 0.3 0.3 0.3 0.3 0.3 0.3 0.3

w3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

mergeF 3 5 10 11 13 15 20

deletionR 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Figure 19. Merge factor impact.

8.2. 1000 Device Execution

In this experiment, we executed RDSC on a group of 1000 devices (having consecutive
intersections) with the following parameters:

• Surface weight: 0.4;
• Power weight: 0.4;
• Vertex weight: 0.2;
• Merge factor: 3.5; and
• Deletion rate: 0.3.

The devices have a varied capacity between 10 and 30; in other words, they can store a
maximum of 30 vertices. Their range is between 2 and 8 u. Their power is between 1 and
10 Wh. The final result contains 273 clusters.

As Figure 20 shows, most of the clusters have a power between 10 and 40 Wh. Figure 21
illustrates that most of the clusters have a surface greater than 200 u2. On the other hand,
Figure 22 indicates that there are singleton clusters. This is due to the storage and power
limitations of the devices. Last but not least, Figure 23 proves that no device stores a zone
that has more than 30 vertices.

Sensors 2024, 24, 5851 24 of 30

In this experiment, one can deduce that RDSC gives good results for large IoT networks
since it takes the device coverage range, storage capacities, and power storage while clustering.

Figure 20. RDSC device power result for 1000 devices.

Figure 21. RDSC zone surface result for 1000 devices.

Figure 22. RDSC device numbers per cluster result for 1000 devices.

Sensors 2024, 24, 5851 25 of 30

Figure 23. RDSC number of vertices’ result for 1000 devices.

8.3. Algorithms Comparison

In this experiment, we compare the results of DBSCAN and k-means with the RDSC
algorithm. We generated two different groups. The first group has 20 devices, while
the second has 100 devices with consecutive intersections. The algorithms have been
configured as shown in Table 5:

Table 5. List of algorithms’ parameters.

RDSC DBSCAN K-Means

Surface weight: 0.3 EPS: 10 K: 5

Power weight: 0.4 Min samples: 3 -

Vertices weight: 0.3

Merge factor: 3.5

Deletion rate: 0.3

As shown in Figure 24, five clusters of devices were generated, each cluster having a
cluster head that has the highest power resources and that can store all the boundaries of
the zones.

Figure 24. RDSC result for 20 devices.

Sensors 2024, 24, 5851 26 of 30

In Figure 25, the same 100 devices deployed before were used. Numerous clusters
were generated, each cluster having the device with the highest power as ch.

Figure 25. RDSC result for 100 devices.

In Figure 26, DBSCAN was applied on the same example with 20 devices. As shown in
the graph, DBSCAN grouped the devices without taking into account device capacities. No
single device can store the metadata of the entire environment. When devices are grouped
together into a single cluster, a ch must be aware of its cluster members, making it difficult
to store metadata of many devices at the same time due to the capacity limitations of the
devices. In addition, the intersection of sensing areas between clusters will lead to data
redundancy and regression of the network’s performance.

Figure 26. DBSCAN result for 20 devices.

In Figure 27, DBSCAN was applied to 100 devices. DBSCAN clusters the devices
following their density. It groups points where high density is detected. For 100 devices,
DBSCAN gave a better result than the case of 20 devices. However, the intersection between
clusters will cause data redundancy in the network, which can reduce network availability.
Device capacities are also a major problem in that case due to the limitations of IoT devices.

Sensors 2024, 24, 5851 27 of 30

Figure 27. DBSCAN result for 100 devices.

In Figure 28, k-means was applied k (equal to 5 here), which specifies the number of
clusters that must be generated. For 20 devices, k-means gave approximately similar results
to our algorithm except for the intersection between the clusters. Comparing k-means with
RDSC, RDSC automatically gave five clusters, identifying the optimal number of clusters.

Figure 28. K-means result for 20 devices.

In Figure 29, for 100 devices and using the same configuration, k-means gave huge
clusters since it is limited to five clusters only. Huge clusters are not optimal in connected
environments since IoT devices cannot store big data on their physical memories.

In this experiment, RDSC showed that it is effective for small and large groups com-
pared with other clustering techniques.

Sensors 2024, 24, 5851 28 of 30

Figure 29. K-means result for 100 devices.

8.4. Discussion

In these experiments, we demonstrated that our approach clustered the devices, taking
into account their storage capacity by reducing the number of vertices. It also partitioned
their coverage range while removing intersection areas. Last but not least, the power was
taken into consideration by choosing to minimize or maximize the power impact on the
result. The experiments demonstrated that the weights assigned to the objective function
have an important impact on the final result. Increasing the weights of the surface will lead
to more merges occurring. The same for the power weight: increasing w2 will increase cz
combinations. The amplification of w3 will encourage zone splitting. In other words, the
gain part of the objective function G favors merges, while the loss part L leads to splits.
The users must find an equilibrium between G and L that suits their connected environ-
ment needs. Finding this equilibrium depends on the device’s storage capacities, power
capabilities, and coverage range. Meanwhile, this equilibrium can also vary depending on
the user specifications. The users can choose to focus on surface/vertex criteria, neglecting
the power factors. RDSC gave good results compared with other algorithms, especially
in the determination of the number of clusters automatically. Moreover, the experiments
indicated that cluster overlapping is considered in RDSC, while other clustering techniques
do not consider coverage zone overlapping between cluster heads. Following these exper-
iments, the parameters must be chosen wisely, which can be challenging in some cases.
In our approach, the parameters are very important. The number of devices inside the
cluster, their coverage range, and the weights have significant effects on the final result.
For example, by choosing the correct parameters, we can reduce the power consumption
of the devices by choosing the correct power weight, merge factor, and deletion rates. For
other environments, by choosing the correct parameters, the coverage range can be greatly
enhanced compared with the number of devices. In other cases, a better device distribution
can be achieved by varying the merge factor. In other words, the parameters must be
adapted to the user’s needs. Further experiments will be conducted to determine parame-
ter recommendations, depending on user needs and environmental conditions. In addition,
connectivity must be taken into consideration to enhance the network performance.

9. Conclusions and Future Works

In this paper, we presented an approach named Range-Based Device Spatial Clustering
for IoT networks (RDSC). The increase in IoT resources necessitates technologies that
group sensory devices, helping in further network organization and operations. Device

Sensors 2024, 24, 5851 29 of 30

grouping leads to better network scalability, load balancing, data aggregation, and energy
optimization. Device heterogeneity makes device grouping more challenging, especially
due to the limited storage capacity and power of IoT devices. An overview of clustering
algorithms was made while exploring device clustering use cases focusing on the device
coverage ranges’ heterogeneity, energy capabilities, and device storage capacities. The
definitions of the main components of the algorithm were demonstrated while explaining a
new clustering approach that groups the devices into non-overlapping clusters considering
the devices’ coverage ranges, storage capacities, and energy levels. Moreover, a network
partitioning was performed on non-covered areas, gathering additional network metadata
that can be used in further networking operations. Intensive experiments on the algorithm
were executed and gave good results. A comparison of the RDSC technique with other
clustering algorithms was performed, highlighting the varying results produced by these
methods. Parameter recommendation techniques can be implemented in future works
to help users to find appropriate configurations depending on their current needs and
environmental conditions. Moreover, as a future work, we will consider the connectivity to
enhance the network performance.

Author Contributions: Conceptualization, F.A., L.G. and R.C.; Methodology, L.G. and R.C.; Software,
F.A.; Validation, F.A.; Formal analysis, R.C.; Investigation, F.A.; Resources, F.A.; Data curation, F.A.;
Writing—original draft, F.A.; Writing—review & editing, F.A., L.G. and R.C.; Supervision, L.G. and
R.C.; Project administration, R.C.; Funding acquisition, R.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by OpenCEMS industrial chair.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kashani, M.H.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A systematic review of IoT in healthcare: Applications,

techniques, and trends. J. Netw. Comput. Appl. 2021, 192, 103164. [CrossRef]
2. Miraftabzadeh, S.; Colombo, C.; Longo, M.; Foiadelli, F. K-means and alternative clustering methods in modern power systems.

IEEE Access 2023, 11, 119596–119633. [CrossRef]
3. Li, W.; Chen, S.; Peng, X.; Xiao, M.; Gao, L.; Garg, A.; Bao, N. A comprehensive approach for the clustering of similar-performance

cells for the design of a lithium-ion battery module for electric vehicles. Engineering 2019, 5, 795–802. [CrossRef]
4. Yu, X.; Ergan, S. Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response

profiles through machine learning models. Appl. Energy 2022, 310, 118579. [CrossRef]
5. Ding, Y.; Wang, X.; Zhang, D.; Wang, X.; Yang, L.; Pu, T. Research on key node identification scheme for power system considering

malicious data attacks. Energy Rep. 2021, 7, 1289–1296. [CrossRef]
6. Krishnan, G.C.; Nishan, A.h.; Theerthagiri, P. K-means clustering based energy and trust management routing algorithm for

mobile ad-hoc networks. Int. J. Commun. Syst. 2022, 35, e5138.
7. Lai, C.S.; Jia, Y.; McCulloch, M.D.; Xu, Z. Daily clearness index profiles cluster analysis for photovoltaic system. IEEE Trans. Ind.

Inform. 2017, 13, 2322–2332. [CrossRef]
8. Sun, M.; Konstantelos, I.; Strbac, G. C-vine copula mixture model for clustering of residential electrical load pattern data. IEEE

Trans. Power Syst. 2016, 32, 2382–2393. [CrossRef]
9. Zhang, L.; Wan, L.; Xiao, Y.; Li, S.; Zhu, C. Anomaly Detection method of Smart Meters data based on GMM-LDA clustering

feature Learning and PSO Support Vector Machine. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference
(ISPEC), Beijing, China, 21–23 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2407–2412.

10. Diez, M.; Burget, L. Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and
analysis on standard tasks, technical report. arXiv 2024, arXiv:2012.14952.

11. Wade, S.; Ghahramani, Z. Bayesian cluster analysis: Point estimation and credible balls (with discussion). Bayesian Anal. 2018,
13, 559–626. [CrossRef]

12. Wang, S.; Sun, X.; Lall, U. A hierarchical Bayesian regression model for predicting summer residential electricity demand across
the USA. Energy 2017, 140, 601–611. [CrossRef]

http://doi.org/10.1016/j.jnca.2021.103164
http://dx.doi.org/10.1109/ACCESS.2023.3327640
http://dx.doi.org/10.1016/j.eng.2019.07.005
http://dx.doi.org/10.1016/j.apenergy.2022.118579
http://dx.doi.org/10.1016/j.egyr.2021.09.135
http://dx.doi.org/10.1109/TII.2017.2683519
http://dx.doi.org/10.1109/TPWRS.2016.2614366
http://dx.doi.org/10.1214/17-BA1073
http://dx.doi.org/10.1016/j.energy.2017.08.076

Sensors 2024, 24, 5851 30 of 30

13. Wang, X.; Zhou, C.; Yang, Y.; Yang, Y.; Ji, T.; Wang, J.; Chen, J.; Zheng, Y. Electricity market customer segmentation based on
DBSCAN and k-Means:—A case on yunnan electricity market. In Proceedings of the 2020 Asia Energy and Electrical Engineering
Symposium (AEEES), Chengdu, China, 29–31 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 869–874.

14. Kiran, D.; Abhyankar, A.; Panigrahi, B. Hierarchical clustering based zone formation in power networks. In Proceedings of the
2016 National Power Systems Conference (NPSC), Bhubaneswar, India, 19–21 December 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1–6.

15. Barmpas, P.; Tasoulis, S.; Vrahatis, A.G.; Georgakopoulos, S.V.; Anagnostou, P.; Prina, M.; Ayuso-Mateos, J.L.; Bickenbach, J.;
Bayes, I.; Bobak, M.; et al. A divisive hierarchical clustering methodology for enhancing the ensemble prediction power in large
scale population studies: The ATHLOS project. Health Inf. Sci. Syst. 2022, 10, 6. [CrossRef] [PubMed]

16. AlMahamid, F.; Grolinger, K. Agglomerative Hierarchical Clustering with Dynamic Time Warping for Household Load Curve
Clustering. In Proceedings of the 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS,
Canada, 18–20 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 241–247.

17. Li, K.; Ma, Z.; Robinson, D.; Ma, J. Identification of typical building daily electricity usage profiles using Gaussian mixture
model-based clustering and hierarchical clustering. Appl. Energy 2018, 231, 331–342. [CrossRef]

18. Sheng, W.; Liu, K.Y.; Liu, Y.; Meng, X.; Li, Y. Optimal placement and sizing of distributed generation via an improved nondomi-
nated sorting genetic algorithm II. IEEE Trans. Power Deliv. 2014, 30, 569–578. [CrossRef]

19. Ruha, L.; Lähderanta, T.; Lovén, L.; Kuismin, M.; Leppänen, T.; Riekki, J.; Sillanpää, M.J. Capacitated spatial clustering with
multiple constraints and attributes. arXiv 2020, arXiv:2010.06333.

20. El-Sharkawi, M.E.; El-Zawawy, M.A. Algorithm for spatial clustering with obstacles. arXiv 2009, arXiv:0909.4412.
21. Saif, A.; Dimyati, K.; Noordin, K.A.; Shah, N.S.M.; Alsamhi, S.; Abdullah, Q.; Farah, N. Distributed clustering for user devices

under UAV coverage area during disaster recovery. In Proceedings of the 2021 IEEE International Conference in Power
Engineering Application (ICPEA), Shah Alam, Malaysia, 8–9 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 143–148.

22. Mukherjee, A.; Goswami, P.; Yang, L.; Yan, Z.; Daneshmand, M. Dynamic clustering method based on power demand and
information volume for intelligent and green IoT. Comput. Commun. 2020, 152, 119–125. [CrossRef]

23. Lin, Y.; Zhang, R.; Yang, L.; Li, C.; Hanzo, L. User-centric clustering for designing ultradense networks: Architecture, objective
functions, and design guidelines. IEEE Veh. Technol. Mag. 2019, 14, 107–114. [CrossRef]

24. Basavaraj, G.; Jaidhar, C. Intersecting Sensor Range Cluster-based Routing Algorithm for Enhancing Energy in WSN. Int. J. Adv.
Netw. Appl. 2019, 10, 3938–3943.

25. Seema, B.; Yao, N.; Carie, A.; Shah, S.B.H. Efficient data transfer in clustered IoT network with cooperative member nodes.
Multimed. Tools Appl. 2020, 79, 34241–34251. [CrossRef]

26. Rehman, M.A.U.; Ullah, R.; Kim, B.S.; Nour, B.; Mastorakis, S. CCIC-WSN: An architecture for single-channel cluster-based
information-centric wireless sensor networks. IEEE Internet Things J. 2020, 8, 7661–7675. [CrossRef]

27. Rehman, M.A.U.; Ullah, R.; Park, C.W.; Kim, D.H.; Kim, B.s. Improving resource-constrained IoT device lifetimes by mitigating
redundant transmissions across heterogeneous wireless multimedia of things. Digit. Commun. Netw. 2022, 8, 778–790.

28. Essalhi, S.E.; Raiss El Fenni, M.; Chafnaji, H. A new clustering-based optimised energy approach for fog-enabled IoT networks.
IET Netw. 2023, 12, 155–166. [CrossRef]

29. Frigui, H.; Krishnapuram, R. Clustering by competitive agglomeration. Pattern Recognit. 1997, 30, 1109–1119. [CrossRef]
30. Achkouty, F.; Chbeir, R.; Gallon, L.; Mansour, E.; Corral, A. Resource Indexing and Querying in Large Connected Environments.

Future Internet 2023, 16, 15. [CrossRef]
31. Elhabyan, R.; Shi, W.; St-Hilaire, M. Coverage protocols for wireless sensor networks: Review and future directions. J. Commun.

Netw. 2019, 21, 45–60. [CrossRef]
32. Dargie, W.; Wen, J. A simple clustering strategy for wireless sensor networks. IEEE Sens. Lett. 2020, 4, 7500804. [CrossRef]
33. Codecademy. Normalization. 2024. Available online: https://www.codecademy.com/article/normalization (accessed on

1 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13755-022-00171-1
http://www.ncbi.nlm.nih.gov/pubmed/35529251
http://dx.doi.org/10.1016/j.apenergy.2018.09.050
http://dx.doi.org/10.1109/TPWRD.2014.2325938
http://dx.doi.org/10.1016/j.comcom.2020.01.026
http://dx.doi.org/10.1109/MVT.2019.2903741
http://dx.doi.org/10.1007/s11042-020-08775-z
http://dx.doi.org/10.1109/JIOT.2020.3041096
http://dx.doi.org/10.1049/ntw2.12082
http://dx.doi.org/10.1016/S0031-3203(96)00140-9
http://dx.doi.org/10.3390/fi16010015
http://dx.doi.org/10.1109/JCN.2019.000005
http://dx.doi.org/10.1109/LSENS.2020.2991221
https://www.codecademy.com/article/normalization

	Introduction
	Motivating Scenario
	Chiberta Forest Setup
	Device Heterogeneity
	Challenges

	Related Works
	Clustering Background
	Device Clustering
	Agglomerative Hierarchical Clustering
	Comparison Table

	Preliminaries and Assumptions
	Device, Sensor, and Cluster Head
	Zones and Environment

	Proposed Approach
	Pre-Clustering
	Clustering Algorithm Execution
	Post-Clustering

	RDSC Clustering Algorithm
	Equations and Applications
	Objective Function
	Use Cases

	Main Algorithm Execution

	Uncovered Zones Division
	Experiments
	Performance Evaluation
	Effect of the Surface Weight w1 on the Clustering Results
	Effect of the Power Weight w2 on the Clustering Results
	Merge Factor Impact

	1000 Device Execution
	Algorithms Comparison
	Discussion

	Conclusions and Future Works
	References

