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Abstract: The detection of anomalies in dam deformation is paramount for evaluating structural
integrity and facilitating early warnings, representing a critical aspect of dam health monitoring
(DHM). Conventional data-driven methods for dam anomaly detection depend extensively on histor-
ical data; however, obtaining annotated data is both expensive and labor-intensive. Consequently,
methodologies that leverage unlabeled or semi-labeled data are increasingly gaining popularity. This
paper introduces a spatiotemporal contrastive learning pretraining (STCLP) strategy designed to
extract discriminative features from unlabeled datasets of dam deformation. STCLP innovatively
combines spatial contrastive learning based on temporal contrastive learning to capture represen-
tations embodying both spatial and temporal characteristics. Building upon this, a novel anomaly
detection method for dam deformation utilizing STCLP is proposed. This method transfers pretrained
parameters to targeted downstream classification tasks and leverages prior knowledge for enhanced
fine-tuning. For validation, an arch dam serves as the case study. The results reveal that the proposed
method demonstrates excellent performance, surpassing other benchmark models.

Keywords: dam health monitoring; dam deformation; anomaly detection; self-supervised learning

1. Introduction

Structural health monitoring (SHM) is essential for evaluating the safety and opera-
tional status of buildings, playing a key role in preserving structural integrity and ensuring
the safety of human lives [1,2]. DHM serves as a specialized application of SHM, addressing
the challenges associated with the aging and performance of dam structures. The impor-
tance of dam safety has grown in light of numerous accidents and failures, underscoring
the need for effective health monitoring and early warning systems. Dam failure repre-
sents a dynamic, time-evolving process, necessitating continuous surveillance to ensure
structural integrity [3]. Throughout the operational life, dams are subjected to the dual
effects of external loads and the gradual aging of internal materials [4], leading to a gradual
decline in structural safety [5]. This degradation typically manifests as anomalies or sudden
changes in monitoring data, with deformation being a critical metric for assessing a dam’s
operational health [6]. Therefore, conducting in-depth studies on the patterns of dam
deformation and developing robust anomaly detection models are crucial for evaluating
structural safety and implementing timely interventions.

Dam monitoring systems, which include pendulums installed within and on the dam’s
surface, are pivotal for collecting deformation data [7]. However, these data often include
outliers that deviate from expected patterns due to complex factors like physical laws,
structural defects, and instrumentation errors, complicating accurate outlier identification.
These outliers can be categorized as either reasonable or unreasonable based on their origins.
Like other monitoring variables, the deformation series exhibits several characteristics,
including a large number of monitoring points, rich information content, and long-term
and cyclical changes related to environmental factors [8].
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Existing studies about dam anomaly detection generally follow a unified approach,
entailing the creation of a predictive model to establish a baseline series. This is followed by
calculating the residuals between the baseline and observed series and setting confidence
intervals to identify anomalies. For instance, Li et al. [8] introduced an anomaly identifica-
tion and warning system for dams using M-robust regression methods. This was further
refined by Han et al. [9], who enhanced the M-robust linear regression technique and
developed an efficient method for the online identification of anomalies in monitoring data.
Xu et al. [10] devised a model to pinpoint anomalies in dam monitoring data, introducing
a three-stage online process for outlier differentiation. Zhang et al. [11] proposed a data
type-based self-matching model aimed at detecting anomalies in dams, addressing the
limitations of single-method approaches to outlier identification. Despite the significant
role these traditional methods play in processing dam monitoring data, they often struggle
to capture the nonlinear relationships between series, particularly when dealing with data
such as deformation sequences [12].

With advancements in machine learning (ML), the deployment of ML algorithms
for DHM, particularly in anomaly detection, has received heightened interest. The ap-
plication of ML in this context is divided into the following three categories based on
data labeling: supervised learning, which employs classifiers trained on extensive labeled
datasets to detect anomalies; unsupervised learning, which uses models trained on unla-
beled data encompassing both normal and anomalous conditions to identify outliers; and
semi-supervised learning, which begins with model training on unlabeled data, followed by
refinement with a limited amount of labeled data for enhanced anomaly detection accuracy.

Recently, anomaly detection methods based on supervised learning have emerged.
Salazar et al. [13] implemented anomaly detection in dam monitoring data using reinforced
regression tree models and compared the performance of causal models, non-causal models,
and autoregressive models. They emphasized the interpretability benefits of causal and
non-causal models, alongside the simplicity and efficiency offered by autoregressive models.
Further research by Salazar et al. [14] investigated anomaly detection within DHM using
random vector machines and random forests, discussing the potentials and limitations of
multi-class, two-class, and one-class classifiers. Despite the high accuracy of these methods,
their development faces significant challenges, including managing large deformation
monitoring datasets, difficulty in data labeling, and the scarcity of adequate training
samples for supervised learning.

Conversely, unsupervised learning techniques, which do not necessitate labeled
data, encompass a wide array of anomaly detection algorithms, such as clustering-based,
distance-based, density-based, and prediction model-based strategies [15–21]. Researchers
have explored the application of unsupervised learning techniques in detecting anomalies
in DHM. Shao et al. [22] introduced a general and robust method for anomaly detection
from the perspectives of image processing and artificial intelligence. Rong et al. [23] in-
novated a multipoint anomaly identification model, integrating an enhanced local outlier
factor with mutual verification to account for spatiotemporal correlations. Ji et al. [24]
introduced an anomaly detection strategy based on refined spectral clustering. Su et al. [25]
introduced a diagnostic approach for dam structural behavior that combines probabilistic
reasoning and data fusion. Dong et al. [26] presented a monitoring data anomaly identifi-
cation method using an improved cloud model and radial basis function neural network.
Liu et al. [27] developed an arch dam deformation anomaly detection model based on long
short-term memory networks. These unsupervised approaches mitigate the challenge of
label scarcity encountered in supervised methods for dam anomaly detection. Nonetheless,
their effectiveness is significantly dependent on the precision of the models used [28],
which limits their application. In response to these limitations, researchers have advanced
the use of variational autoencoders (VAEs) [29] in anomaly detection, offering a promising
direction for overcoming the obstacles associated with accurate modeling.
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VAEs have become a prominent unsupervised learning technique in dam anomaly
detection, focusing on training classifiers to learn the probability distribution of normal
operational states. Zhou et al. [30] developed an innovative model that merges gener-
ative adversarial networks (GANs) with VAEs. Shu et al. [31] proposed a cutting-edge
anomaly assessment framework based on sequential variational autoencoders coupled
with Evidence Theory, enabling both the detection and fusion of anomalies. Subsequently,
Shu et al. [32] further integrated spatiotemporal correlations into their model, employing
temporal VAEs and graph convolutional neural networks for enhanced anomaly detection.
While VAE-based models exhibit commendable performance in identifying anomalies in
dam monitoring data, they often presuppose a Gaussian distribution of the underlying data,
which is a presumption that may not accurately reflect the true distribution of dam deforma-
tion data. This theoretical discrepancy can affect the accuracy of reconstructing monitoring
data. Furthermore, these methods are generally trained on normal data sequences, which is
a practice that overlooks the presence of random anomalies in sensor-collected data, thereby
complicating data preprocessing and diminishing the methods’ overall effectiveness and
applicability. Despite these challenges, semi-supervised learning, which bridges the gap
between supervised and unsupervised learning by potentially enhancing the accuracy of
anomaly detection without requiring extensive labeled data, presents a viable alternative.
However, the adoption of semi-supervised learning techniques within the DHM sector
is still nascent, with more common use in sectors like mechanics [33] and environmental
studies [34].

Addressing the limitations of current data-driven approaches for anomaly detection
in dam deformation, this study identifies the following three primary challenges: (1) the
dependency of supervised learning on labeled data and complex preprocessing, which
restricts its applicability in large-scale engineering projects; (2) the constraints of unsu-
pervised learning methods due to theoretical inaccuracies and reliance on the quality of
datasets, affecting their precision; and (3) the prevalent focus on temporal characteristics
of deformation, often neglecting or merely qualitatively analyzing spatial correlations,
thereby missing out on the benefits of a detailed spatial analysis for accuracy improvement.
To address these issues, this paper proposes an efficient anomaly detection method for
dam deformation based on self-supervised learning. This novel approach comprehensively
considers both the spatial correlations and temporal attributes of dam deformation, aiming
to overcome the limitations associated with label generation in supervised learning and the
accuracy dependence and theoretical discrepancies characteristic of unsupervised learning.
For details on self-supervised learning, see Section 2.1.

The proposed methodology constructs a correlation matrix incorporating spatial asso-
ciations and employs sliding window techniques to generate time sequences. It integrates
convolutional blocks and transformer technology for effective information extraction and
applies spatiotemporal contrastive learning to pre-train the encoder. This enables the distin-
guishing of unique dataset representations, followed by classifier fine-tuning for anomaly
discrimination. The efficacy of this methodology is demonstrated through a case study.
The primary contributions of this research are summarized as follows: (1) It proposes a
self-supervised spatiotemporal contrastive pretraining (STCLP) method for representation
learning in dam health monitoring, which, to the best of the authors’ knowledge, represents
the first application of contrastive learning in this domain. (2) It proposes an anomaly
detection method for dam deformation based on STCLP, which leverages large unlabeled
data to enhance generalization performance, offering more timely and robust detection
than other state-of-the-art techniques. (3) It improves the integration of spatial relationships
by incorporating spatial contrastive learning on top of temporal ones, fully utilizing the
spatial features of dam deformation for information extraction, thereby increasing the
accuracy and rationale of the method.
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This paper is structured as follows: Section 2 presents the background knowledge and
implementation details of the proposed dam anomaly detection method. Section 3 details
the case study analysis and discussion of results. Finally, Section 4 concludes this study
and suggests directions for future research.

2. Methodology
2.1. Self-Supervised Learning and Contrastive Learning

Self-supervised learning [35], a variant of semi-supervised learning techniques, lever-
ages custom-generated pseudo-labels for supervisory signals, thereby obviating the need
for extensive manually annotated datasets. This approach facilitates the application of
learned representations to a variety of downstream tasks. It can be divided into the
following two categories [36]: generative [20,37] and discriminative [38,39]. Generative
approaches aim to comprehend the underlying data distribution to produce outcomes that
mimic real data closely. Conversely, discriminative techniques strive to differentiate among
data variations, thus enabling precise input classification. While generative strategies are
adept at capturing the data’s global attributes, discriminative methods excel in identifying
local features and discrepancies within the input, making them particularly effective for
sequence learning tasks that encompass a broad range of input variations, including both
normal and anomalous data.

Contrastive learning is a form of discriminative self-supervised learning that brings
the representations of similar samples (positive samples) closer together while pushing the
representations of dissimilar samples (negative samples) apart, thereby enabling the model
to capture essential features of the data. This goal is achieved by measuring the closeness
of two embeddings through similarity metrics. Noteworthy contrastive learning models,
such as SimSiam [40], SwAV [41], and SimCLR [42], have found substantial applications
in image recognition. Building on the research of TS-TCC [43], a framework for learning
representations of time series data through temporal and contextual contrast, this study
proposes an advanced spatiotemporal contrastive learning framework. This framework
is specifically designed to enhance anomaly detection in dam deformation by effectively
capturing and differentiating between the nuanced spatial and temporal variations inherent
in the data.

2.2. Implementation Details

This section introduces a method for dam anomaly detection using spatiotemporal
contrastive learning. As illustrated in Figure 1, the comprehensive framework encompasses
the following three pivotal stages: data acquisition and preprocessing, self-supervised
pretraining, and fine-tuning coupled with anomaly detection. Initially, during the data
collection and preprocessing stage, dam deformation data are automatically gathered
from the dam’s pendulum monitoring system. The data are preprocessed to construct the
dataset, which is subsequently segmented into training, validation, and testing subsets
in predefined ratios, readying it for model ingestion. In the self-supervised pretraining
stage, the method leverages transformer architectures alongside nonlinear projection heads
to extract spatiotemporal features from the datasets. These features undergo pretraining
through a spatiotemporal contrastive training strategy, optimizing the model to recognize
pertinent data characteristics. The final stage, fine-tuning and anomaly detection, involves
adapting the pretrained model parameters for specific downstream applications. Here, the
model is refined using a minimal set of labeled data, after which it is deployed for the task
of anomaly detection, thus concluding the process.
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Figure 1. Overall framework of the proposed method.

2.2.1. Data Processing

The aforementioned method requires the construction of a dataset containing spatial
and temporal features to facilitate model input. Given the premise that a dam experiences
comparable forces and environmental influences, it is hypothesized that the deformation
at any given monitoring point is interrelated with its neighboring points. When a local
anomaly occurs in a certain part of the dam, the likelihood of anomalies in its surrounding
position increases. Consequently, the spatial features of dam deformation can be collectively
determined by the deformation variables of a measuring point and its surrounding points.
Utilizing the dam’s pendulum monitoring system, the deformation field of the dam can be
represented by the time sequences of multiple measuring points, capturing the correlations
and dynamic changes among deformations at different dam locations, it can be expressed
as follows:

Y =

y11 . . . y1n
...

. . .
...

ym1 · · · ymn

(i = 1, 2, . . . , m; t = 1, 2, . . . , n) (1)

Here, yit represents the measured deformation [44], m is the total number of monitoring
points, and n is the monitoring period.

However, deformation patterns vary across different dam regions, necessitating a
nuanced approach to constructing spatial features that considers the varying correlation of
deformation characteristics. Previous methods employed Pearson correlation analysis [45]
to assess the relationship between the prediction target and variables at different locations,
which is as follows:

corrij =

n
∑

t=1
(yit − yi)

(
yjt − yj

)
√

n
∑

t=1
(yit − yi)

2
(

yjt − yj

)2
(i, j = 1, 2, . . . , m; t = 1, 2, . . . , n) (2)
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These methods applied a threshold S to filter correlations, excluding all inputs in
which the correlation coefficient fell below S. While this approach differentiated between
correlated and uncorrelated measurement points, it did not account for the degree of
association between variables at different locations. This paper proposes an improved
method that builds upon the previous approach by introducing a correlation matrix A, as
follows:

A =

 corr11 . . . corr1m
...

. . .
...

corrm1 · · · corrmm

(i, j = 1, 2, . . . , m) (3)

The essence of this matrix lies in its ability to transform the original measurement data
Y into a new matrix Ŷ through multiplication with A. This resultant matrix Ŷ assimilates
insights by accounting for the degrees of variable association across various locations. This
advanced approach ensures a thorough consideration of the interrelationships between
locational variables, transcending mere threshold-based filtering. Such improvements
afford a more precise capture and utilization of spatial features, providing stronger support
for subsequent model training and prediction. After this, sliding window techniques are
employed to slide the information in the matrix along the time axis, constructing continuous
time series sequences with spatial information to form the dataset.

2.2.2. TSCLP for DHM

In this section, a self-supervised pretraining method, TSCLP, that is suitable for DHM
is proposed through comparative learning. Figure 2 depicts the diagram of the proposed
spatiotemporal contrastive learning training method. This method enhances temporal
contrastive learning [43] by integrating spatial correlations pertinent to dam deformation,
thereby making it more effective for dam health monitoring. The method unfolds in the
following three stages: data augmentation, temporal contrastive learning, and spatial
contrastive learning modules. By separately employing temporal and spatial contrastive
techniques, the method captures the independent yet complementary characteristics of both
dimensions. Temporal contrast improves the ability to identify critical changes over time,
while spatial contrast highlights regional patterns and deformations across the structure.
Each stage is described in detail in the following sections.

Figure 2. Diagram of TSCLP.
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Stage 1: Data Augmentation

Data augmentation plays a crucial role in the efficacy of contrastive learning, far
surpassing its importance in supervised learning [46]. There are various signal processing
methods available for 1D signal processing, such as Gaussian noise, amplitude scaling, and
time stretching. Typically, contrastive learning methods utilize identical data augmentation
techniques to construct similar feature samples, but employing varied augmentations can
enhance the robustness of feature learning.

In this context, both weak and strong data augmentation methods are applied. For
a given time series X = [x1, x2, · · · , xn], weak augmentation involves scaling the input
time series data by multiplying each channel by a random factor drawn from a normal
distribution, introducing scale variations.

X’ = X · (1 + ϵ) (4)

where ϵ represents the scaling factor.
Conversely, strong augmentation incorporates permutations and jitter, slightly rear-

ranging the time steps in the first channel of each sample and injecting random noise from
a normal distribution into each time step.

X” = Permute(X) + η (5)

where Permute (X) denotes the random permutation of the time steps of X, and η represents
random noise that follows a normal distribution.

These data augmentation operations contribute to improving the model’s generaliza-
tion ability, enabling it to handle unseen data variations more effectively during training.
As illustrated in Figure 3, The original data are a periodic time series with missing val-
ues. After weak augmentation, the scale of the series is doubled, while the rest remains
unchanged; after strong augmentation, the time steps of the series are randomly permuted,
and random noise is added, resulting in a transformed series without missing values.

Figure 3. Diagram of data augmentation.
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Stage 2: Temporal Contrast Module

The temporal contrast module is integral to contrastive learning, which emphasizes
discerning similarities and differences among samples to derive representations. This
process is facilitated through a contrastive loss function, which is predicated on the idea
that samples belonging to the same category should closely resemble each other, while
those from different categories should not. By integrating contrastive loss with an autore-
gressive model, this module effectively extracts temporal features within a latent space.
Following the application of weak and strong augmentations, samples are processed by an
encoder comprising three convolutional blocks designed to distill local information from
the augmented data into high-dimensional latent features. A transformer, recognized for
its efficiency and rapid processing, serves as the autoregressive model to capture temporal
information, with a sequential architecture [47] primarily consisting of multi-head attention
and MLP blocks. These MLP layers feature two fully connected layers, nonlinear activation
functions, and dropout mechanisms, enhanced by residual connections to stabilize gradi-
ents and optimize temporal analysis. This process involves a cross-view prediction task, in
which information from strongly augmented samples at the current time step is used to
predict the features of weakly augmented samples at future time steps and vice versa. The
goal of the temporal contrastive loss is to minimize the dot product between the predicted
representation and the true representation of the same sample while maximizing the dot
product with other samples within the same batch.

Stage 3: Spatial Contrast Module

Temporal information alone is insufficient for analyzing spatially correlated time
series data, such as those found in dam deformation. The spatial contrast module, when
added to the temporal–spatial contrastive learning pretraining (TSCLP) framework, enables
the extraction of spatiotemporal features. Utilizing contrastive loss alongside nonlinear
transformations, this module extracts spatial features by transforming predictions from
the temporal contrast module through nonlinear projection heads, which facilitate spatial
comparisons. These projection heads consist of two linear layers, including a batch nor-
malization layer and a nonlinear activation function, allowing for the encapsulation of
spatial details across multiple original data samples. Each set of samples, modified through
weak and strong augmentations and transformations, yields two sets of spatial features.
Spatial features generated from two augmented views of the same input are considered
a pair of positive samples, while those from different inputs within the same batch are
treated as a pair of negative samples, as illustrated in Figure 4. The spatial contrastive loss
function aims to maximize the similarity between pairs of positive samples and minimize
the similarity between pairs of negative samples, thereby ensuring the final representation
captures spatial correlations.

Figure 4. Definition of positive and negative samples.

2.2.3. Implementation Procedures of TSCLP

The TSCLP training process is outlined in Algorithm 1. For each input sample x,
weakly augmented sequences xw and strongly augmented sequences xs are obtained
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through data augmentation. An encoder then extracts high-dimensional information to
produce d-dimensional latent features z, as follows:

z = fenc(x), z ∈ Rd (6)

This process results in feature representations zw and zs for weakly and strongly
augmented sequences, respectively. The subsequent step involves the temporal contrast
phase, in which an autoregressive analysis, executed via a transformer model, generates ct
as follows:

ct = ftran(z ≤ t), ct ∈ Rh (7)

where h represents the hidden dimension of the transformer module.
Then, xt+k and ct are operated by the log-bilinear model, yielding the future time step

features zt+k, as follows:

fk(xt+k, ct) = exp
(
(Wk(ck))

Tzt+k

)
, Wk : RRh→d (8)

where Wk represents a linear function that aligns ct to the dimensionality of z. This process
generates two sets of temporal features, cw

t and cs
t , using cross-view prediction.

The core objective of the training is to minimize the dot product between the true
and predicted values for identical samples while amplifying the dot product for different
samples within the same batch. This aim is encapsulated within the temporal loss function
as follows:

Ls
TC = − 1

K

K

∑
k=1

log
exp

(
(Wk(cs

t))
Tzw

t+k

)
∑ n ∈ Nt,k exp

(
(Wk(cs

t))
Tzw

n

) (9)

Lw
TC = − 1

K

K

∑
k=1

log
exp

(
(Wk(cw

t ))
Tzs

t+k

)
∑ n ∈ Nt,k exp

(
(Wk(cw

t ))
Tzs

n

) (10)

After this, the spatial contrast phase involves the transformation of cw
t and cs

t via
nonlinear projection, resulting in two spatial feature sets, Ow and Os, with the number of
features in O equaling the number of input samples N, resulting in 2N spatial features. For
any given feature Oi, the pair

(
Ow

i , Os
i
)

is treated as a positive sample, whereas the other
2N − 2 spatial features from other inputs in the same batch are deemed negative samples
for Ow

i . The goal of this phase is to maximize the similarity of positive sample pairs and
minimize the similarity of negative sample pairs, simplifying the division of the similarities
with the spatial loss function, as follows:

LSC = −
N

∑
i=1

log
exp

(
sim

(
ow

i,t, os
i,t

)
/τ

)
∑2N

m=1 Q[m ̸=i] exp
(

sim
(

ow
i,t, os

i,t

)
/τ

) (11)

where Q[m ̸=i] is an indicator function that is assigned a value of 1 when m ̸= I; τ represents a
temperature parameter; and sim denotes the similarity calculation sim(υ, ν) = υTν/∥υ∥∥ν∥.

Then, the model’s overall loss is a weighted sum of temporal and spatial losses, which
can be described as follows:

L = λ1 · (Ls
TC + Lw

TC) + λ2 · LSC (12)

where λ1 and λ2 are weights. Through this training, the model acquires sequences enriched
with spatiotemporal information.
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Algorithm 1: temporal and spatial contrast training.

Input: sample x, constant t, k, n, weight λ1, λ2,
1 Randomly initialize model parameters
2 for all i = {1, 2, . . . , n} do:
3 //data augmentation
4 xw

i = weak_augmentation(xi)
5 xs

i = strong_augmentation(xi)
6 //Forward calculation
7 zw

i = Encoder
(
xw

i
)

8 zs
i = Encoder

(
xs

i
)

9 for all t = {1, 2, . . . , k} do:

10 cw
i,t = Transformer

(
zw

i,t

)
11 cs

i,t = Transformer
(

zs
i,t

)
12 Get temporal loss Lw

TC by cw
i,t, zs

i,t+k and Ls
TC by cs

i,t, zw
i,t+k

13 end
14 ow

i = NPH
(
cw

i
)

15 os
i = NPH

(
ow

i
)

16 end
17 Get spatial loss LSC by positive sample ow

i , os
i and negative sample in x

18 Get total loss : L = λ1·
(
Lw

TC + Ls
TC

)
+ λ2·LSC

19 Update model by L
Output: Encoder parameters

2.2.4. Fine-Tuning and Anomaly Detection

In unsupervised anomaly detection tasks, the presence of outliers can interfere with
model training and adversely affect detection accuracy. To mitigate this, a semi-supervised
fine-tuning approach is employed. As illustrated in Figure 1, after dataset construction,
the TSCLP model undergoes unsupervised pretraining on the unlabeled dataset, with
the encoder’s parameters being saved upon training completion. Subsequently, these
parameters are transferred to downstream tasks, in which the encoder is fine-tuned in a
supervised manner using a small, labeled dataset curated based on expert experience. After
fine-tuning, the network’s updated parameters are saved. Finally, the fine-tuned network
is applied to the test dataset for anomaly detection, yielding the final detection outcomes.

2.3. Performance Evaluation Metrics

This study evaluates the model’s performance using the following four widely rec-
ognized metrics: accuracy, precision, recall, and F1 score. These metrics are essential for a
comprehensive assessment, each offering insight into different aspects of the model’s effec-
tiveness across positive and negative classifications. Accuracy represents the proportion of
correctly predicted observations (encompassing both true positives and true negatives) to
the total observations, offering a broad view of the model’s overall performance. Precision
is the ratio of correctly predicted positive observations to the total predicted positives,
reflecting the model’s precision in identifying positive classes. Recall, or sensitivity, deter-
mines the proportion of correctly predicted positive observations to all actual positives,
evaluating the model’s ability to detect all pertinent instances. The F1 score, the harmonic
mean of precision and recall, provides a balanced measure that accounts for both precision
and recall. The formulas for these metrics are as follows:

Accuracy =
TP + TN

all
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)
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F1 =
2 × precision × recall

precision + recall
(16)

where true positives (TP) denotes the count of anomalies accurately identified, false posi-
tives (FP) signifies the count of non-anomalies erroneously classified as anomalies, false
negatives (FN) represents the count of anomalies that were overlooked, true negatives (TN)
refers to the count of non-anomalies correctly identified as such, and all is the total number
of data points.

3. Case Study

The proposed anomaly detection method was evaluated using real-world engineering
data on horizontal deformation. The development and testing of the models took place
in a Python 3.7 and PyTorch 1.7 environment on a computer configured with an Intel(R)
Core(TM) i7-8700K CPU at 3.70 GHz and an NVIDIA GeForce RTX 2080 Ti graphics card
with 11 GB of VRAM.

3.1. Data Collection and Processing

The case study focuses on a concrete arch dam in Yunnan Province, China. Figure 5
presents photographs of the dam from upstream and downstream perspectives. Horizontal
deformation, a critical monitoring aspect, is tracked by a pendulum system installed
within the dam structure. Figure 6 illustrates the comprehensive arrangement of the dam’s
pendulum system. In seven dam sections (9#, 15#, 19#, 22#, 25#, 29#, and 35#) across
various gallery levels (at elevations of 1014 m, 1054 m, 1100 m, 1150 m, and 1190 m),
vertical pendulums are strategically placed in segments within the foundation gallery,
grouting gallery, and at the inverted pendulum connections to monitor the dam’s horizontal
deformation and deflection. The pendulums primarily employ automated monitoring with
the use of capacitive pendulum inclinometers, recording observations three times a day.
For additional accuracy, manual observations using optical pendulum inclinometers are
conducted monthly.

Figure 5. Perspectives of the arch dam.

Figure 7 presents the long-term monitoring series of horizontal deformations at vari-
ous measuring points, with the sample series spanning from 1 January 2012, to 3 December
2018, at a daily data sampling frequency. An analysis reveals that changes in upstream
water levels predominantly influence the dam’s horizontal deformation, resulting in down-
stream deformation as water levels increase and an upstream rebound when they decrease.
Moreover, deformation trends and periodic changes at different locations exhibit remark-
able similarity, and nearly all measuring points show anomalies around 1 January 2013,
indicating spatial correlation among the deformations. The collected data contain miss-
ing values and outliers and involve numerous measuring points, making label creation
time-consuming and labor-intensive, thereby rendering supervised learning impractical.
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Figure 6. Pendulum systems for monitoring horizontal deformation.

Figure 7. Deformation series of monitoring data for selected sensors.
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A Pearson correlation analysis was performed on the deformation data from each mea-
suring point, with the results displayed in Figure 8. The color gradient from white to blue
indicates the absolute value of the correlation coefficient, ra nging from 0 to 1, where asterisks
denote significance levels. The analysis reveals that all measuring points are correlated, with
correlation coefficients above 0.5 and significance values (p) less than 0.001, suggesting that the
correlations between measuring points are statistically significant. In this study, a threshold
(S) of 0.6 was selected; points with correlations above this threshold were considered to
have significant relationships. The original data were then multiplied by the corresponding
correlation matrix to generate a sequence with spatial features. This sequence underwent
initialization and sliding window operations to create a dataset with spatiotemporal features,
which was divided into training, testing, and validation sets in a 4:1:1 ratio.

Figure 8. Matrix graph of the deformation correlation coefficient between different monitoring points.

3.2. Implementation Details

After dividing the dataset, fivefold cross-validation was performed using a network
search with different random seeds to identify the optimal hyperparameters for the net-
work’s pretraining and downstream tasks, as detailed in Table 1. The Adam optimizer
was employed for both pretraining and downstream tasks due to its capacity for faster
convergence when training neural networks. During pretraining, the model underwent
100 epochs, with an early stopping algorithm implemented to halt training when optimal
performance was achieved. This optimization revealed that model performance generally
peaked around 40 epochs, which was then adopted for the downstream tasks. After ex-
tensive experimentation and comparison, the optimal weights for temporal and spatial
loss were found to be λ1 = 1 and λ2 = 0.7, respectively; the process is elaborated in the
subsequent sensitivity analysis of parameters.

Table 1. Hyperparameter setting after cross-validation.

Hyperparameter Pre-Train Downstream Task

Batch size 32 32
Optimizer Adam Adam

Learning rate 0.0001 0.0001
Weight decay 0.0001 0.0001

β1 0.9 0.9
β2 0.99 0.99

Epoch 100 40
Timestep 10 10

λ1 1 -
λ2 0.7 -
τ 0.2 -
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Furthermore, in the parameter settings for data augmentation, a scaling factor of 1.1
was used during the weak augmentation phase, while the maximum number of fractional
parts in strong augmentation was set to five, and the standard deviation parameter for
random noise was set to 0.1 to enhance the diversity of the dataset. Such parameters
are designed to foster the model’s capacity to learn robust features amidst diverse and
noisy data. As for the transformer network’s configurations, the hidden dimension was
established at 100, with the network comprising four attention layers, each with four heads,
and the multilayer perceptron’s hidden layer dimension set at 64. These configurations
aim to provide sufficient model complexity to effectively capture the temporal and spatial
dependencies of the input sequences.

3.3. Anomaly Detection

In this setup, the model is initially pretrained on a selection from the unlabeled
training dataset. It is then fine-tuned on a small dataset to which labels have been randomly
assigned. Due to the limited size of the fine-tuning dataset, data augmentation techniques
are employed to enhance data diversity. Taking A09-PL-01 as an example, the processes of
pretraining and fine-tuning are illustrated in Figure 9. The figure demonstrates that during
pretraining, the loss decreases with an increase in the number of training epochs, stabilizing
around 40 epochs. In the fine-tuning phase, the loss continues to decrease, with accuracy
progressively exceeding 0.9. After fine-tuning, the model’s ability to detect anomalies in the
unlabeled test set is evaluated. The model’s predictions are output as probability values,
with probabilities above a certain threshold indicating positive classes (anomalies) and
those below it indicating negative classes (non-anomalies).

Figure 9. Loss and accuracy curves.

3.4. Result Analysis

Following the previous description, the proposed method was applied to detect anoma-
lies in the deformation data of 31 measuring points on the dam, with the results presented
in Table 2. This table provides a detailed breakdown of the evaluation metrics during
the training validation phase and the testing phase. Overall, the model demonstrated
exceptional performance, achieving accuracy and precision rates above 95% and recall
rates above 75%, with F1 scores exceeding 80% across most of the test dataset, except for
a few measuring points. Reduced performance at certain locations, such as A09-PL-01
and A35-PL-02, is linked to an increased presence of outliers in the training set, which
posed challenges to the unsupervised training process and negatively impacted the training
efficiency and anomaly detection capabilities of the model.
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Table 2. Performance of the proposed method.

Measurement
Points

Train Set and Valid Set (%) Test Set (%)

Acc Precision Recall F1 Acc Precision Recall F1

A09-PL-01 97.79 92.01 73.23 79.71 99.80 99.90 87.50 92.81
A09-PL-02 99.76 99.24 98.62 98.93 100.00 100.00 100.00 100.00
A15-PL-01 99.76 99.13 98.41 98.77 100.00 100.00 100.00 100.00
A15-PL-02 98.85 99.41 86.32 91.78 99.80 99.90 75.00 83.28
A15-PL-03 99.72 99.86 94.93 97.26 99.60 99.80 75.00 83.23
A15-PL-04 99.92 99.42 99.42 99.42 99.80 90.00 99.90 94.39
A15-PL-05 99.84 99.92 97.22 98.53 99.80 99.90 91.67 95.40
A19-PL-01 99.09 98.52 93.61 95.91 99.01 91.27 77.68 83.08
A19-PL-02 99.05 97.92 92.56 95.06 100.00 100.00 100.00 100.00
A19-PL-03 99.05 97.92 92.56 95.06 100.00 100.00 100.00 100.00
A19-PL-04 99.76 98.76 98.76 98.76 100.00 100.00 100.00 100.00
A19-PL-05 99.57 97.79 96.42 97.09 100.00 100.00 100.00 100.00
A19-PL-06 99.88 99.01 99.47 99.24 100.00 100.00 100.00 100.00
A22-PL-01 99.45 98.17 96.04 97.08 99.60 97.40 97.40 97.40
A22-PL-02 99.88 99.94 99.11 99.52 100.00 100.00 100.00 100.00
A22-PL-03 99.88 99.32 98.71 99.01 100.00 100.00 100.00 100.00
A22-PL-04 99.88 99.12 99.52 99.32 100.00 100.00 100.00 100.00
A22-PL-05 99.76 98.79 97.76 98.27 100.00 100.00 100.00 100.00
A25-PL-01 98.42 99.12 92.98 95.78 99.21 99.60 66.67 74.80
A25-PL-02 98.50 99.20 90.05 94.07 99.80 99.90 91.67 95.40
A25-PL-03 98.54 99.19 93.71 96.23 99.80 99.90 98.21 99.04
A25-PL-04 99.68 99.84 94.81 97.18 99.60 99.80 75.00 83.23
A25-PL-05 99.68 99.84 94.81 97.18 99.60 99.80 75.00 83.23
A25-PL-06 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
A29-PL-01 99.33 98.67 96.65 97.63 99.21 50.00 100.00 66.67
A29-PL-02 99.60 99.27 95.48 97.29 100.00 100.00 100.00 100.00
A29-PL-03 99.49 99.73 94.40 96.90 100.00 100.00 100.00 100.00
A29-PL-04 99.72 98.02 97.44 97.73 99.80 99.90 91.67 95.40
A29-PL-05 99.96 99.98 99.54 99.76 100.00 100.00 100.00 100.00
A35-PL-01 98.46 98.45 95.03 96.65 99.80 99.90 92.86 96.10
A35-PL-02 98.02 98.25 78.49 85.60 99.41 49.70 50.00 49.85

Additionally, the table indicates a less consistent performance across measuring points
during the testing phase compared to the training and validation phases. In some instances,
the detection rate during the testing phase dropped below that of earlier phases, while in
others, it reached 100%. A thorough analysis of the original data identifies the following
underlying cause of this phenomenon: the random distribution of anomalous data through-
out the dataset. Given the data length ratio of 4:1 between the training validation set and
the test set, the latter has limited data, consequently reducing the number of anomalies.
This results in more extreme detection outcomes under certain conditions.

Figure 10 presents the anomaly detection results for the test sets of seven represen-
tative measuring points. In the figure, black lines represent the data of the test set, red
circles indicate correctly identified anomalies, blue squares denote anomalies that were
not detected, and green triangles signify normal values incorrectly labeled as anomalies.
Observation of the results shows that the proposed method accurately detects both missing
and abrupt values, with instances of false positives and false negatives being exceedingly
rare, underscoring the method’s exceptional performance.
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Figure 10. Anomaly detection results of seven representative measuring points.

3.5. Comparison with Other Methods

To evaluate the performance of the proposed anomaly detection method, it was bench-
marked against the following three leading unsupervised learning approaches: temporal
contrastive learning (TC), transformer-based anomaly detection (TAD), and generative ad-
versarial network variational autoencoder (GAN-VAE). The TC method relies on a temporal
contrast model for training and a small dataset for fine-tuning, employing a classification
task for anomaly detection. The proposed method expands upon TC by integrating spatial
correlations and utilizing spatial contrast for improved performance. The TAD leverages
a transformer to reconstruct normal sequences and calculates anomaly scores based on
reconstruction errors for anomaly detection. Similarly, transformers are used in the pro-
posed method to extract sequence information. GAN-VAE models combine the adversarial
learning power of GANs and the probabilistic generative modeling of VAEs, constructing
samples that closely resemble the original data’s distribution and detecting anomalies
through the relationship between reconstruction errors and thresholds. Unlike the genera-
tive learning approach of GAN-VAE models within the unsupervised learning paradigm,
the proposed method falls under the contrastive learning branch of unsupervised learning.
The proposed method focuses specifically on displacement analysis; therefore, Zhou et al.’s
information fusion component was not included in the calculations.

Similarly, the dataset was divided into training, testing, and validation sets with a
ratio of 4:1:1. The parameter configurations for the three methods are detailed in Table 3.
The parameters for the TC method are identical to those of the proposed method. In the
TAD method, the number of attention heads is four, and the size of the hidden layer is 32.
For the GAN-VAE method, both the encoding and decoding phases use a one-dimensional
convolutional neural network with 32 convolutional kernels and a kernel size of seven. The
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learning rates are set at 0.001 for the VAE and generator and 0.0002 for the discriminator. A
KL loss weighting coefficient of 0.1 is applied, with an additional GAN loss coefficient of
0.5. The noise dimension is set to 100 for GAN training. The threshold values for the TAD
and GAN-VAE methods are set to 10% of the data range.

Table 3. Hyperparameter setting of methods.

Method Hyperparameter

TC [43] Batch size = 32, Learning rate = 0.0001, Epoch = 30

TAD [15] Batch size = 16, Learning rate = 0.001, Epoch = 100,
Num_heads = 4, hidden = 32

VAE [30]

Batch size = 32, Learning rate = 0.001,
Learning rate (Discriminator) = 0.0002, Epoch = 30,

filters = 32, Kernel size = 7, λV= 0.1,
λD= 0.5, N = 100

Figure 11 displays the comparative results of anomaly detection across various meth-
ods for representative measuring points. The four axes represent precision, recall, accuracy,
and F1 score metrics, with identical value ranges and scale sizes across axes. A metric value
closer to one indicates better detection performance. The shaded areas in different colors
illustrate the performance of each method on these metrics, as follows: red for the proposed
method, blue for TC, green for TAD, and black for GAN-VAE. The size of the shaded area
visually represents the method’s overall effectiveness, with larger areas indicating superior
anomaly detection capabilities.

Overall, the red-shaded area completely encompasses the other colored areas, indi-
cating that the proposed model outperforms the other models across all measuring points.
The shape of the red area is nearly square, signifying that the proposed method demon-
strates balanced performance across all four metrics, ensuring stable anomaly detection
capabilities. Although the accuracy values of each method reach around 90%, with minor
differences, significant disparities exist in the other three metrics. This is because the accu-
racy metric reflects the overall detection accuracy across all data, including both normal
and anomalous values. The high proportion of normal values in the original data suggests
that all models exhibit strong detection capabilities for normal values.

Specifically, both the TC and TAD methods exhibit advantages and outperform the
GAN-VAE method. Except for A09-PL-01, the TC method consistently achieves metric
values above 0.7, indicating stable performance capabilities. In contrast, the TAD method
demonstrates high precision values, yet its recall and F1 scores are comparatively lower,
with instances in which precision exceeds recall by 0.6, signifying that while TAD accurately
identifies anomalies, it also has a high rate of false positives. The GAN-VAE method shows
inferior performance in precision, recall, and F1 scores, significantly influenced by its
assumptions about data distribution, the selection of thresholds, and the inherent instability
of adversarial training.

Although the TC method also employs contrastive learning for training, its metric
values are approximately 0.2 lower than those of the proposed method across almost
all indicators, which significantly highlights the importance of spatial correlations in
the analysis of dam deformation. The proposed method enhances the TC approach by
incorporating spatial contrast loss, thus offering a more comprehensive consideration of
spatial correlations. Similar to the proposed method, the TAD approach processes temporal
information using transformers, yet it exhibits a higher rate of missed detections, further
demonstrating the superiority of contrastive training over conventional mean squared error
(MSE) training.

In summary, the proposed method demonstrates exceptional performance in anomaly
detection, particularly when accounting for spatial correlations, which further enhances
its efficacy.
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Figure 11. Comparison with other state-of-the-art methods.
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3.6. Sensitivity Analysis of Parameters

The efficacy of the proposed anomaly detection method is contingent upon the selec-
tion of time steps and the allocation of weights to temporal and spatial losses. This section
provides a preliminary discussion on the choice of time steps and the values of loss weights
λ1 and λ2. Taking the data from the A01-PL-09 measuring point as an example, anomaly
detection was conducted within various ranges of time steps and weights. The preliminary
patterns of these parameters were analyzed with precision as the evaluation metric.

Figure 12a illustrates the impact of time step selection on overall performance, in
which the x-axis represents the proportion of time step length to feature length, and the y-
axis shows the variation in precision values, with all weights set to 1.0. The graph indicates
that moderately increasing the proportion of time steps can enhance performance, but an
excessive proportion may impair it. This is because larger time steps reduce the dataset
available for training, leading to poorer outcomes. In our dataset, the model performs best
when the time step is approximately 30% of the feature length (batch size), thus setting the
time step to 10 in the configuration.

Figure 12. Sensitivity analysis results. (a) The impact of time steps on performance. (b) The impact of
weight changes on performance.

Figure 12b displays the impact of contrast loss weights on overall performance. The
horizontal axis shows the range of weight variations, and the vertical axis displays the
accuracy values. Green markers denote the results of changing λ1 while holding λ2 at 1.0;
orange markers indicate the effects of altering λ2 with λ1 fixed at 1.0. It was observed that
the model exhibits optimal performance when λ2 is 1 and λ1 is 0.3. Moreover, the model
appears to be more sensitive to variations in λ1 than to changes in λ2. This sensitivity can
be attributed to the fact that, under real-world conditions, dam deformation is significantly
influenced by seasonal variations, while the impact of spatial correlations within the dam
structure is comparatively minor. Generally, the spatial relationships in dam deformation
remain at a consistent level.

4. Conclusions

This study introduced a dam deformation anomaly detection method based on self-
supervised spatiotemporal contrastive pretraining. It constructs temporal and spatial
contrast modules that learn similar representations by maximizing the similarity of positive
sample pairs and minimizing the similarity of negative pairs within each module. To extract
temporal and spatial features between inputs, transformers and nonlinear projection heads
were utilized. The framework includes dataset construction, unsupervised pretraining,
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parameter transfer, semi-supervised fine-tuning, and anomaly detection. The performance
of this method was comprehensively studied, yielding the following conclusions:

The model exhibits excellent performance, achieving over 95% in both accuracy and
precision, above 75% in recall, and over 80% in the F1 score, with only a few exceptional
measuring points.

When applied to a real arch dam engineering case and compared with three benchmark
models, the proposed method outperforms other unsupervised learning approaches. The
analysis underscores the critical importance of spatial correlations in dam deformation
analysis, with spatially aware methods showing superior anomaly detection outcomes than
those that do not consider such correlations.

Sensitivity analysis of the model’s hyperparameters indicates that an appropriate
increase in the time step ratio can enhance performance, whereas excessive time steps may
impair it. The model is particularly sensitive to changes in λ1 and less so to changes in λ2.

Proving adept at identifying local changes in input data, the proposed method is not
limited to deformation metrics but is also applicable to detecting anomalies in dam body
stress, seepage, cracks, and other relevant data types. Future research will explore the
application of this method in comprehensive anomaly detection for dams.
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