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Abstract: Social sensing, using humans as sensors to collect disaster data, has emerged as a timely,
cost‑effective, and reliable data source. However, research has focused on the textual data. With
advances in information technology, multimodal data such as images and videos are now shared
on media platforms, aiding in‑depth analysis of social sensing systems. This study proposed an
analytical framework to extract disaster‑related spatiotemporal information frommultimodal social
media data. Using a pre‑trainedmultimodal neural network and a location entity recognitionmodel,
the framework integrates disaster semantics with spatiotemporal information, enhancing situational
awareness. A case study of the April 2024 heavy rain event in Guangdong, China, usingWeibo data,
demonstrates that multimodal content correlates more strongly with rainfall patterns than textual
data alone, offering a dynamic perception of disasters. These findings confirm the utility of multi‑
modal social media data and offer a foundation for future research. The proposed framework offers
valuable applications for emergency response, disaster relief, risk assessment, andwitness discovery,
and presents a viable approach for safety risk monitoring and early warning systems.

Keywords: social sensing; multimodal deep learning; disastermanagement; spatiotemporal analysis

1. Introduction
Natural disasters are sudden, large‑scale public emergencies that cause significant

economic damage and human casualties annually, such as floods, earthquakes, and ty‑
phoons. In 2021, China experienced 42 heavy rainfall events, affecting 59.01 million peo‑
ple, causing 590 deaths and leading to 245.89 billion yuan in economic losses [1]. It is
therefore crucial to quickly and accurately identify potential disaster risks, assess the ex‑
tent of any damage, and make prompt and effective emergency decisions for minimizing
losses and maintaining social stability [2,3]. The collection of disaster information serves
as the foundation for the decision‑making process [4,5]. Traditionally, disaster informa‑
tion is collected via physical sensors and on‑site investigations, but these methods strug‑
gle with efficiency, especially during widespread disasters, causing delays in emergency
response [6,7]. It is therefore essential that new information sources be developed to ad‑
dress these issues.

In recent years, social media has emerged as a key platform for disaster‑related infor‑
mation sharing due to its real‑time nature and broad reach [8–12]. Affected individuals
express opinions, seek help, or organize mutual aid through these platforms [13–15]. So‑
cial sensors can build a low‑cost, wide‑coverage network for efficient information dissem‑
ination [16]. Studies on social media usage during disasters, such as the Northern Ireland
floods, confirm the volume ofmutual aid information shared [17]. The rich personal experi‑
ences expressed through social media provide a deeper understanding of disaster impacts,
driving the development of disaster semantics and spatiotemporal analysis.

Disaster semantic mining extracts information from both textual and visual social me‑
dia content using advanced algorithms [13,18–21]. While text data are highly dense and
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efficient for dissemination, visual data, through object detection, offers a more intuitive
understanding of disaster scenes [22–25]. Multimodal data help capture the full scope of
disaster impacts, making it valuable for emergency management. The number of disaster‑
related posts also serves as a useful indicator of public attitudes toward disaster events,
with post fluctuations reflecting disaster phases and impacts [26–28]. However, geolo‑
cation data are often limited, presenting challenges for spatial analysis [29]. This high‑
lights the importance of integrating multimodal data with spatiotemporal information in
disaster research.

While social media data have advanced disaster informatics, there is room to improve
data analysis efficiency, as most existing methods rely solely on textual data [30–34]. Spa‑
tiotemporal analysis of multimodal content is crucial for intelligent emergency response.
This study introduces a framework that combines text and visual content to extract disaster
categories and assess damage severity. The framework uses multimodal neural networks
and incorporates location data through named entity recognition (NER), addressing geolo‑
cation deficiencies.

A case study on the April 2024 Guangzhou rainstorm demonstrates the framework’s
effectiveness in analyzing Weibo data. Key contributions include:
• A disaster analysis framework is proposed for the extraction of disaster‑related spa‑

tiotemporal information from multimodal social media data. The framework was
demonstrated to be an efficient method for analyzing Weibo data pertaining to the
Guangdong rainstorm.

• The LLM is used for geolocation pre‑processing, whereby supplementary location
information is obtained to refine the modelling of the spatiotemporal distribution of
disaster‑related posts.

• Statistical analysis reveals a strong correlation between the number of disaster‑related
multimodal posts and precipitation levels. The extracted disaster semantics exhibit a
distinctive event‑related spatiotemporal distribution pattern. These findings demon‑
strate that social sensors are able to reflect the varying degrees of impact that disasters
have on different regions.
The paper is structured as follows: Section 2 reviews related literature; Section 3 out‑

lines the framework and materials; Section 4 presents statistical analysis results; Section 5
discusses contributions and limitations; and Section 6 concludes with the study’s findings.

2. Related Works
With the advancement of information technology and the rise of social media, em‑

pirical evidence shows that individuals use these platforms to share and exchange infor‑
mation during crises. Social sensing technology is becoming crucial for gauging human‑
itarian needs, understanding public sentiment, and monitoring disaster progression. Re‑
search in this area is categorized into three main areas: (1) temporal distribution of disas‑
ter posts [35], which analyzes the variation in posts and topics throughout disaster phases;
(2) spatial distribution of disaster posts, examining the relationship between post locations
and disaster impact; and (3) semantic analysis, assessing the public’s reflection on disas‑
ters through social media content. While social media timestamps are easily accessible,
extracting spatial and semantic information remains challenging.

2.1. Spatial Analysis of Disaster Social Media
Geospatial information from social media is vital for spatial analysis and guiding

emergency rescue operations [36]. Most studies treat location data as address entities
identified via NER models, but only 1–7% of posts have cleaned geolocation tags [37–39].
Some studies employ machine learning and natural language processing (NLP) tools for
location extraction from text, though they often struggle with unstructured data. Deep
learning models show improved performance in mapping words to entities for address
extraction [33,40,41]. For example, Yan et al. [29] developed a bidirectional encoder rep‑
resentation from transformers–bidirectional long short‑termmemory‑conditional random
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fields (BERT‑BiLSTM‑CRF) model to classify address words. Despite the accuracy of deep
learning models on established datasets, real‑world social media data’s noise hampers
their performance.

Large languagemodels (LLMs) have exhibited considerable ability to generalize across
a range of text‑based tasks. Their capacity to draw upon a wealth of prior knowledge has
also enabled them to effectively identify addresses. Hu et al. [42] used minimal labelled
data and geographical knowledge in chat‑generative pre‑trained transformer (ChatGPT)
to extract locations via dialogue. Ambiguity in geographic names complicates location
extraction, often requiring additional data for confirmation.

Table 1 compares studies using social media data for spatiotemporal disaster
analysis, highlighting the limitations of relying solely on text and check‑in data. The un‑
supervised methods used for disaster category extraction are data‑dependent and lack
flexibility [26–28,43–46]. Furthermore, studies that employed solely check‑in data
failed to consider a considerable volume of social media content devoid of check‑in
tags [26,27,43–46]. It is crucial to note that the disaster categories extracted through un‑
supervised methods [26,27,43–46] are data‑dependent and cannot be designed to extract
the desired topics. We implemented improvements to address the underutilization of these
data.

Table 1. Comparison of studies related to the spatio‑temporal analysis of disaster‑related
social media.

Reference Study Area Modality Paradigm Geo Information Mean F1‑Score

Yan et al. [29] Province Text + image Supervised Extracted 0.7901
Wang et al. [26] Province Text Unsupervised Check‑in ‑
Li et al. [27] City Text Unsupervised Check‑in ‑

Peng et al. [28] City Text Supervised Extracted + Check‑in 0.7529
Li et al. [43] Province Text Supervised Check‑in 0.7044
Qu et al. [44] City Text Unsupervised Check‑in ‑
Wu et al. [45] City Text Unsupervised Check‑in ‑

Karimiziarani et al. [46] Province Text Unsupervised Check‑in ‑
This study Province Text + image Supervised Extracted + Check‑in 0.8191

2.2. Semantic Analysis of Disaster Social Media
Social media data are often noisy, complicating the extraction of disaster‑related

semantics. Modern platforms allow multimodal data (text, image, video), expanding
disaster‑related insights. Related studies fall into text‑based, image‑based, andmultimodal
categories. Text‑based studies often focus on public sentiment, using statistical, machine
learning, and deep learning methods. Statistical methods focus on keywords [47]. For ex‑
ample, Qian et al. [48] studied the evolution of flood events by analyzing the frequency of
occurrence of 17 disaster‑related words, such as “warning”, “forecast”, “thunderstorm”,
“downpour”, and “flood”. While statistical methods are relatively straightforward to im‑
plement, they do not fully leverage the information present in the text. In contrast, nu‑
merous studies use machine learning models to extract themes from text. Commonly
used machine learning methods include supervised methods such as support vector ma‑
chine, Naïve Bayes, random forest, logistic regression, and unsupervised methods such
as latent Dirichlet allocation (LDA) and K‑means [4,26,44,49]. Additionally, deep learning
methods are used to encode text sequences, including long short‑term memory (LSTM)
and bidirectional encoder representations from transformers (BERT), which can incorpo‑
rate subjectively defined categories for the extraction of specified information [50]. For
example, Zhang et al. [51] classified disaster‑related elements into distinct categories and
employed the NER task to train the BERT model for the extraction of disaster informa‑
tion. Wu et al. [52] used a neural network [53] to investigate the spatial and temporal dis‑
tribution of climate change‑induced affective orientations in microblogging data. Their



Sensors 2024, 24, 5889 4 of 26

findings indicate that the majority of Chinese people have a positive attitude towards cli‑
mate change.

Images provide valuable insights into disaster impact, with visual neural networks
learning disaster‑related features [22,54–58]. For example, Nia et al. [25] estimated finan‑
cial damage by analyzing images of damaged buildings, while Li et al. [59] used class
activation maps for damage localization. Despite the variability of image data, visual net‑
works like the visual geometry group network (VGG) and residual network (ResNet) have
been applied successfully to disaster imagery [60,61].

Combining text and image data inmultimodal datasets offersmore comprehensive in‑
sights than unimodal data alone. Multimodal datasets, though expensive, form
the basis for advanced analysis. However, the limited size of these datasets presents chal‑
lenges for model training. Multimodal models, such as those by Abavisani et al. [62] and
Liang et al. [63], integrate features from both text and images and outperform unimodal
approaches in tasks like humanitarian classification and damage estimation.

While multimodal data offer richer information, their integration with real‑world
events is still limited. We propose a new framework for disaster monitoring through social
sensing, integrating multimodal content analysis with spatiotemporal analysis.

3. Materials and Methods
The workflow of this study is comprised of five steps, as illustrated in Figure 1. The

initial step involved the collection of Weibo data based on pre‑defined keywords, with the
objective of establishing a comprehensive disaster social media database. Secondly, deep
neural network models are trained for the extraction of disaster‑related information and
the recognition of location entities on the publicly available dataset. Thirdly, location infor‑
mation is extracted fromWeibo data by LLM and NERmodels and subsequently encoded
into spatial coordinates. Fourthly, the correlation between the number of Weibo posts and
precipitation is quantified through quantitative analysis. Finally, the multi‑level disaster
semantics are extracted using the classification models, and the social perception of the
disaster situation is investigated in conjunction with spatiotemporal information.

3.1. Study Area
Guangdong province represents the most significant economic centre in the southern

region of China, encompassing an area of about 179,700 square kilometres and a popula‑
tion of approximately 127 million. Given its susceptibility to flooding and heavy precipita‑
tion, the social sensor in this region is particularly sensitive to rainfall patterns. It can thus
reasonably be assumed that the correlation between the multimodal data and rainfall in
this region will be statistically significant. In April 2024, sustained heavy rainfall caused
extensive damage across numerous regions within Guangdong province. According to
data from the Guangdong Meteorological Department, the April average precipitation ex‑
ceeded the historical records. The heavy rainfall resulted in a series of secondary disas‑
ters, including severe urban flooding, river flooding, landslides, house collapses, and road
disruptions. These events resulted in a considerable number of casualties and property
losses. This particular precipitation event was selected for analysis in this research due to
its widespread impact and prolonged impact.

3.2. Data Collection
Weibo is a Chinese social media platform with characteristics similar to those of Twit‑

ter. It allows users to upload, comment on, and retweet text, images, and video content.
The platform has been the subject of numerous studies, which have identified it as a valu‑
able resource. To investigate the impacts of this rainfall event, a corpus ofWeibo posts was
assembled for analysis. A Python‑based web crawler was used to collect data associated
with specific keywords via the advanced search functionality of Weibo. In particular, key‑
words related to rainfall and flooding were selected, including “rainstorm”, “heavy rain”,
“heavy rainfall”, “ponding”, “waterlogging”, “inundation”, and “flood”. These keywords
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were then combined with the names of all prefecture‑level cities in Guangdong in order
to obtain a series of keyword combinations for retrieval. The data collection period was
set from 00:00 on 16 April 2024 to 24:00 on 1 May 2024. The dataset comprised multiple
tags and the contents of Weibo posts were downloaded, including post ID, user ID, user
name, timestamp, and text content. In the case of posts containing visual content, the im‑
ages were downloaded in their entirety. Ultimately, a total of 37,010 posts were collected
for further processing.
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3.3. Data Clean
The raw posts contain a considerable number of irregular terms and repetitive con‑

tent, which impairs the efficiency of content analysis. To enhance the quality of the data,
four steps were performed. The text content was initially normalised, whereby uniform
resource locators (URLs), special characters, emoticons, and meaningless characters were
removed. Secondly, posts with a text length of less than 5 words were considered incom‑
plete and removed. Thirdly, in the case of posts containing duplicate content, one was
randomly retained, while the other redundancies were deleted. Fourthly, accounts that
solely reposted news and did not contribute original content were removed. Following
the aforementioned data‑cleaning steps, a total of 20,977 posts were retained providing
the necessary materials for the subsequent spatial and temporal distribution study.

3.4. Extracting Location Information
Themapping of location information enables the integration of posts into a geospatial

space, thereby establishing a foundation for spatiotemporal analyses. TheWeibo platform
employs two distinct methods for identifying user location: IP‑based location tags and
check‑in tags. The IP location is limited to the provincial level, whereas the check‑in tag can
be used to identify the POI at the local level. However, it is noteworthy that Weibo posts
containing check‑in information are relatively rare, comprising approximately 3% of the to‑
tal dataset. To obtain a greater number of spatial locations, numerous approaches [28,51,64]
use NER models to extract location information directly from the text. The capability of
NER models to extract location elements depends on the quantity and quality of the train‑
ing data. Consequently, NERmodels are unable to make precise predictions when the tex‑
tual content of Weibo does not align with the expression of the training data. To address
the deficiency of location data, a three‑stage methodology was used. Firstly, all potential
locations within the text were extracted through the use of LLM. Subsequently, further
parsing was performed using the NER model. Finally, map services were used to conduct
further verification and geocoding of the locations. The LLM was trained on a consider‑
ably larger scale than the NER model, thereby enabling more effective noise reduction in
the Weibo text. The processed data exhibit enhanced granularity and is better suited to
leveraging the capabilities of the NER model.

3.4.1. LLM‑Based Geolocation Pre‑Processing
LLMs are a class of generative artificial intelligence models that are trained on vast

quantities of data with the objective of developing the capacity to comprehend and gen‑
erate textual content. The Llama 3 model, released by Facebook, is an advanced open‑
source model that has demonstrated excellent performance on a range of textual tasks.
The Llama3 model, which was fine‑tuned on Chinese corpora, was employed for the ex‑
tracting of potential address information from the text. In particular, the model has 8.03
billion parameters with the pre‑trained weights from the Ollama library (https://ollama.
com/wangshenzhi/llama3‑8b‑chinese‑chat‑ollama‑q4, accessed on 1May 2024). The incor‑
poration of extensive prior knowledge in the form of large‑scale pre‑training data enables
the model to effectively mitigate the noise present in non‑standard Weibo text.

Inference is performed by Llama 3 in the form of dialogue, necessitating both texts
and prompts as input. The prompts are the text that directs the LLM in the generation of
specific content and are directly related to the model output. In order to elicit the desired
information, a number of prompts were used, including “This sentence contains location
expressions, extract the relevant words” and “Return the locations in this text without
annotation”. Figure 2a illustrates the visualization workflow of Llama 3. The absence of a
check‑in tag in each social media text is indicative of the need to combine these texts with
prompts asmodel inputs for the extraction of location information. It would be optimal for
the model to provide a response that includes all of the address elements presented in the
input text. Subsequently, all responses were aggregated and de‑duplicated. Furthermore,
a random selection of Weibo texts from the non‑check‑in data was used to evaluate the

https://ollama.com/wangshenzhi/llama3-8b-chinese-chat-ollama-q4
https://ollama.com/wangshenzhi/llama3-8b-chinese-chat-ollama-q4
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performance of LLM in extracting relevant information. On the test set of 200 samples,
the pre‑trained LLM achieved a precision rate of 0.99, a recall rate of 0.95, and an F1‑score
of 0.97. However, the responses invariably included terms that extended beyond mere
addresses, as a consequence of the inherent normality of the LLM outputs. Moreover,
some datasets include multiple locations with varying geographic levels, which presents
challenges in accurately locating them through geocoding services. Therefore, the NER
model was used to further normalize these locations.
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3.4.2. Location Entity Extraction
The BERT‑BiLSTM‑CRFmodel is a frequently used NERmodel in social media analy‑

sis, which is employed for the extraction of geographic entities [28,29]. The model consists
of three base models: BERT, BiLSTM, and CRF. BERT is a sequence model based on a self‑
attention mechanism that encodes words into tokens. The initial parameters for BERT are
derived from pre‑trained weights that have been trained on Chinese corpora [65], thereby
enhancing the efficiency of model training. BiLSTM [66] is a recurrent neural network that
is frequently utilized for establishing the contextual relationships between tokens through
forward and backward computations. CRF [67] is an undirected graphical model, which
can achieve efficient label prediction based on the mutual constraints between tokens. The
Chinese address element recognition dataset from the 2021 China Conference on knowl‑
edge graph and semantic computing (CCKS) NER challenge [68] was used for the model
training. This dataset was divided into 21 geographic levels, such as ‘POI’, ‘City’, ‘Dis‑
trict’, ‘Town’, and ‘Road’. The model was trained to extract address nouns by predicting
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the positions of these labels. The dataset contained 10,826 public address entries and was
partitioned into a training set and a test set comprising 8854 and 1972 samples, respectively.
The hyper‑parameters of themodelwere determined through a 5‑fold cross‑validation pro‑
cedure on the training set. The learning rate was set to 3 × 10−5 for BERT and 3 × 10−3
for the remaining components. The AdamW optimizer was employed to train the model
for 10 epochs. The performance of the model was evaluated using three metrics on the
test set: precision, recall, and F1‑score, which yielded values of 0.93, 0.92, and 0.92, respec‑
tively. The results demonstrated that the model is capable of effectively extracting address
information from high‑quality data.

The model was employed for the examination of LLM outputs, whereby location in‑
formation was extracted from the non‑check‑in data. Figure 2b illustrates the visualiza‑
tion workflow of the BERT‑BiLSTM‑CRF model. The social media texts were encoded
in the form of character sequences by the three models, BERT, BiLSTM and CRF in a se‑
quential manner, thus obtaining annotated sequences. The annotations describe the geo‑
graphic level (City, Road, Other, and so on) of each character and its position in the word
(B‑Begin, I‑Intermediate, E‑End). The aforementioned annotations allow the aggregation
of all address terms within the text. Table 2 shows the function of the LLM and NER mod‑
els through the presentation of several examples. It is evident that the NERmodel is not an
effective means of processing Weibo text. One common issue with the NRR model is the
occurrence of inaccurate segmentation, whereby the city “Wuhan” is output alongside the
adjective “sunny”. Furthermore, themodel occasionally identifies abstract address‑related
terms as actual addresses, such as “city of laborers”, “six villages”, and “Guangdong road”
as observed in these samples. While these phrases are indeed descriptions of addresses,
theNERmodel lacks the capacity to discern the underlying semantics. Consequently, LLM
was used to eliminate superfluous terms, thereby enhancing the performance of the NER
model. Following the incorporation of LLM, the NER model demonstrated enhanced pre‑
dictive accuracy.

Table 2. Examples of location entity extraction fromWeibo texts.

Text NER NER + LLM

深圳不愧是打工城市,每天到上班这个点都要下个大暴雨
Shenzhen is a city of laborers, and it rains heavily every
day when I go to work.

深圳 (Shenzhen),
打工城市 (city of laborers) 深圳 (Shenzhen)

深圳暴雨如注，武汉阳光明媚
Heavy rain in Shenzhen, sunny in Wuhan.

武汉阳光明媚 (sunny in Wuhan),
深圳 (Shenzhen)

武汉 (Wuhan),
深圳 (Shenzhen)

《韶关江湾镇六个村受山体滑坡影响有群众被困，
村民：独自在家的母亲仍失联》4月21日，受强降雨影响，
韶关市武江区江湾镇遭受洪涝灾害
«Six villages in Jiangwan Town, Shaoguan are affected by
landslides and people are trapped» On 21 April, Jiangwan
Town, Wujiang District, Shaoguan City, was affected by
flooding due to heavy rainfall.

韶关 (Shaoguan),
韶关市 (Shaoguan City),
江湾镇 (Jiangwan Town),
武江区 (Wujiang District),
六个村 (six villages)

韶关 (Shaoguan),
江湾镇 (Jiangwan Town),
武江区 (Wujiang District)

#女生自驾去广东一路暴雨带闪电#
# Girls driving to Guangdong all the way in torrential rain
and lightning #

广东一路 (Guangdong road) 广东 (Guangdong)

Table 3 demonstrates the predictive accuracy of the NER model when applied to
200 manually labelled data. The optimal recall is only achieved when all place names
are extracted without any irrelevant words. The criterion is more rigorous than that em‑
ployed in the preceding LLM section, which prioritizes the validation and standardization
of the location data. Following the combination of LLM, a notable enhancement in the per‑
formance of the NER model was observed, with an increase in recall of 34%. The results
demonstrate that the noise in the texts is effectively removed following LLM processing,
which facilitates the extraction of locations. In conclusion, the combined model achieves
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an F1‑score of 0.9186, indicating that it has a robust capacity to extract geographical names
and is well suited to the objectives of the study.

Table 3. Performance comparison on location entity recognition.

Model Precision Recall F1‑Score

BERT‑BiLSTM‑CRF 0.9807 0.5250 0.6798
BERT‑BiLSTM‑CRF + LLM 0.9846 0.8650 0.9186

3.4.3. Geocoding
The locations require additional processing to be transformed into actual geographic

locations. The application programming interface (API) of the Gaode map (https://lbs.
amap.com/ (accessed on 30 June 2024)) was used to ascertain the latitude and longitude
coordinates corresponding to all the place names. Addresses that were not located within
Guangdong province were excluded from the subsequent analysis. Additionally, address
elements with duplicate names were determined based on the information pertaining to
the district, city, and province. Ultimately, a total of 5338 posts with location data were
obtained, and the latitude and longitude of these addresses were mapped to QGIS [69] for
spatial analysis.

3.5. Extracting Disaster Information
The semantics of disasters in social media data are highly heterogeneous, and themix‑

ing of information on different topics reduces their application value [32]. For example,
the objective of identifying victims is primarily focused on human‑related data, while the
objective of disaster reconstruction is centred on damage‑related information [70,71]. For
this reason, multiple classification tasks were established in a hierarchical structure to fa‑
cilitate the efficient extraction of disaster‑related information. Specifically, three subtasks
from the open‑source dataset CrisisMMD [72] were designed as strategies for the hierar‑
chical extraction of disaster‑related information. Firstly, the collected posts were classified
into two categories: “Informative” and “Not informative”. The classification was based on
the presence or absence of disaster‑related information. Secondly, the collected posts were
further classified into a number of fine‑grained humanitarian categories based on semantic
features. Thirdly, the damage severities were evaluated and classified. The detailed defi‑
nitions of these categories are in accordance with those set forth in the CrisisMMD dataset.
Some categories with approximate meanings have been merged, as shown in Table 4.

Table 4. Definitions of disaster categories for the three tasks.

Task Category

Informativeness task (Task 1) Informative (Class 0)
Not informative (Class 1)

Humanitarian categorization
task (Task 2)

Infrastructure, utility, or vehicle damage (Class 0)
Other relevant information (Class 1)
Rescue, volunteering, or donation effort (Class 2)
Affected individuals (injured, dead, missing, found) (Class 3)
Not humanitarian (Class 4)

Damage assessment task
(Task 3)

Mild, little, or no damage (Class 0)
Severe damage (Class 1)

3.5.1. Model Training
A two‑streammultimodal frameworkwas used for the purpose of conducting amulti‑

modal analysis. In this framework, BERT [65] and DenseNet [73] were used as the text and
image encoder, respectively, with the objective of extracting textual and visual features.
Figure 2c illustrates the visualization workflow of the multimodal model. The image and

https://lbs.amap.com/
https://lbs.amap.com/
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text in a social media image–text pair are encoded separately by the encoder of the cor‑
responding modality. The two obtained embeddings are then concatenated to form an
overall embedding of the image–text pair. Finally, a linear classifier is employed to make
a prediction regarding the disaster category, based on the overall information aforemen‑
tioned. Since CrisisMMD is in English, the textwas translated into Chinese using the Baidu
translation API (https://fanyi‑api.baidu.com/ (accessed on 30 June 2024)). Text augmenta‑
tion was achieved through the implementation of the easy data augmentation [74] tech‑
nique. In order to augment the dataset with regard to the image modality, a series of data
augmentation techniques were employed, including random scaling, random cropping,
and random flipping. The learning rate was set to 2 × 10−5, the optimizer was AdamW,
and the number of epochs was 10. To address the issue of class imbalance in the train‑
ing data and to optimize network weights, focal loss [75] was employed. To evaluate the
performance of the model, a series of performance metrics were employed, including pre‑
cision, recall, F1‑score, receiver operating characteristic curve (ROC), and area under the
ROC curve (AUC). The ROC curve is a visual representation of the classification ability of
a model, demonstrating the relationship between the true positive rate (TPR) and the false
positive rate (FPR) at different thresholds.

TPR = TP/TP+ FN
FPR = 1 − TN/FP+ TN (1)

where TP, FP, TN and FN represent the numbers of true‑positive, false‑positive, true‑
negative, and false‑negative samples, respectively. An ideal classifier should be situated
as closely as possible to the upper left corner of the ROC curve, with a false positive rate of
0 and a true positive rate of 1. AUC represents the area under the ROC curve enclosedwith
the horizontal axes. Avalue close to 1 indicates the classifier exhibits excellent performance.
Furthermore, a unimodal BERT model was trained on the text modality for comparative
purposes. A summary of all model and train dataset information is presented in Table 5.

Table 5. Detailed information on all models and train datasets.

Llama 3 BERT‑BiLSTM‑CRF Multimodal Model

Data source Manual labeled CCKS 2021 NER challenge CrisisMMD dataset

Data format Text and label Text and label Text–image pair and label

Dataset split 200 (testing) 8854 (training), 1972 (testing)
Task 1: 8814/1101/1103
Task 2: 5503/686/691
Task 3: 2420/302/305

Backbone layers 32 layers
BERT: 12 layers
BiLSTM: 2 layers
CRF: 1 layer

BERT: 12 layers
DenseNet: 121 layers
Classifier: 1 layer

Deployment Pre‑trained Pre‑trained + Fine‑tuned Pre‑trained + Fine‑tuned

Model selection ‑ 5‑fold cross‑validation Hold‑out method

Learning rate ‑ 3 × 10−5 for BERT, 3 × 10−3 for the rest 2 × 10−5

Optimizer ‑ AdamW AdamW

Epochs ‑ 10 10

As illustrated in Table 6, the multimodal model exhibits superior performance com‑
pared to the unimodal model, achieving F1‑scores of 0.9013, 0.8419, and 0.7140 on the
three tasks, respectively.

https://fanyi-api.baidu.com/


Sensors 2024, 24, 5889 11 of 26

Table 6. Performance comparison on the three disaster information classification tasks.

Task Modality Precision Recall F1‑Score

1
Multimodal 0.9012 0.9021 0.9013
Unimodal 0.8315 0.8341 0.8321

2
Multimodal 0.8441 0.8423 0.8419
Unimodal 0.8181 0.8162 0.8163

3
Multimodal 0.7181 0.7115 0.7140
Unimodal 0.6106 0.6098 0.6102

These results demonstrate that the multimodal approach leads to more accurate and
comprehensive results. The ROC curves and AUC values on the test set are shown in
Figure 3. In particular, the multimodal model achieves macro‑average AUCs of 0.95
(Figure 3b), 0.97 (Figure 3d), and 0.76 (Figure 3f) on the three tasks, which are superior
to the values of 0.89 (Figure 3a), 0.95 (Figure 3c), and 0.63 (Figure 3e) achieved by the uni‑
modal model, respectively. In summary, the multimodal model demonstrates sufficient
accuracy in disaster social media analysis. The superiority of themultimodal model across
all metrics demonstrates that the incorporation of the image modality offers valuable sup‑
plementary information, thus corroborating the hypothesis that multimodal approaches
are more effective in this context. The extracted disaster semantics serve as the foundation
for spatiotemporal semantic analyses, which are conducted in conjunction with time and
location data.

3.5.2. Prediction
The trainedmultimodalmodel is used to predict disaster categories fromWeibo posts.

Prior to this, it is necessary to undertake preprocessing in order to address the discrep‑
ancies between the Weibo data and the training dataset. As illustrated in Figure 4a, the
length of Weibo texts is considerably longer than that of the training dataset. The max‑
imum length of the training dataset is approximately 60, yet there are numerous Weibo
texts that exceed this length. Tomitigate this discrepancy, theWeibo texts were segmented
into shorter sentences with punctuation marks with a maximum length of 60. In addi‑
tion, someWeibo posts contain multiple images, while the multimodal model is unable to
process. The distribution of the number of images in Weibo posts is shown in Figure 4b,
which depicts 7303 (7303 = 3638 + 958 + 676 + 454 + 98 + 442 + 48 + 51 + 938) multimodal
posts and 13,674 unimodal posts. The number of Weibo posts with multiple images
(3665 = 7303 − 3638) is approximately equivalent to that of posts with one image (3638),
and thus cannot be disregarded. In order to utilize all images, each image in the sample
was paired with each text segmentation. Subsequently, a max pooling operation was em‑
ployed to fuse the aforementioned paired features for the purpose of prediction. Similarly,
200 multimodal Weibo posts were randomly selected and manually classified to serve as
the test set. The results for precision, recall, F1‑score, and AUC are listed in Table 7. The F1
scores for the three tasks are 0.8713, 0.8796, and 0.7808, with AUC values of 0.9339, 0.9219
and 0.7102, respectively. These results suggest that the classification outcomes accurately
represent the multimodal content.

Table 7. Performance of the multimodal model on real‑world Weibo data.

Task Precision Recall F1‑Score AUC

1 0.8821 0.8750 0.8713 0.9339
2 0.8870 0.8850 0.8796 0.9219
3 0.8966 0.7150 0.7808 0.7102
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Table 8 presents the results of the predictive analysis on a number of samples, with
the objective of illustrating the various disaster categories. The first sample mentions the
phrase “heavy rain”, but its content is not related to the specified rainfall event. Conse‑
quently, it is classified as “Not informative” in the informativeness task. Conversely, the
second sample mentions that the rainfall occurs on the highway, therefore it is designated
as “Informative”. The image in the third sample depicts a flooded street, thus the predicted
label for this sample in the humanitarian categorization task is “Infrastructure, utility, or
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vehicle damage”, while the label in the damage assessment task is “Severe damage”. The
image and accompanying text in the fourth sample pertain to the act of donating and thus
are classified as “Rescue, volunteering, or donation effort”. The image in the fifth sam‑
ple lacks pertinent content; however, the accompanying text describes the casualty status,
thus the label in the second task is “Affected individuals”. The sixth sample is related to
weather forecasting, and thus its information type is designated as “Other relevant infor‑
mation”. In general, the multimodal models trained with different tasks can effectively
extract disaster‑related information from social media posts.
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Table 8. Some samples and the corresponding predicted labels.

Texts Images Predictions

1

One day in Chaozhou, because of the
heavy rain, we played at a friend’s
house all day and learnt to
play mahjong.
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Half-day trip to Zhaoqing. I was caught in 
the biggest rainstorm ever on the highway. 

 

1. Informative 
2. Not humanitarian 
3. Mild, little, or no damage 

3 

Aerial photograph of Hanguang town 
suffering from flooding. Affected by 
sustained heavy rainfall, Shaoguan and 
Qingyuan in northern Guangdong 
province are flooded. 

 

1. Informative 
2. Infrastructure, utility, or 
vehicle damage 
3. Severe damage 

4 

Chinese Red Cross Foundation provides 
2000 relief boxes to support flood-stricken 
areas in Guangdong. 

 

1. Informative 
2. Rescue, volunteering, or 
donation effort 
3. Mild, little, or no damage 

1. Not informative
2. Not humanitarian
3. Mild, little, or no damage

2

Half‑day trip to Zhaoqing. I was
caught in the biggest rainstorm ever
on the highway.
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Aerial photograph of Hanguang town 
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1. Informative 
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4 

Chinese Red Cross Foundation provides 
2000 relief boxes to support flood-stricken 
areas in Guangdong. 

 

1. Informative 
2. Rescue, volunteering, or 
donation effort 
3. Mild, little, or no damage 

1. Informative
2. Not humanitarian
3. Mild, little, or no damage

3

Aerial photograph of Hanguang
town suffering from flooding.
Affected by sustained heavy rainfall,
Shaoguan and Qingyuan in northern
Guangdong province are flooded.
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vehicle damage
3. Severe damage



Sensors 2024, 24, 5889 14 of 26

Table 8. Cont.

Texts Images Predictions

4

Chinese Red Cross Foundation
provides 2000 relief boxes to support
flood‑stricken areas in Guangdong.
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5

Heavy rains in Guangdong have
resulted in 4 deaths and 10 missing.
(The meaning of the Chinese
characters in the figure is: “News
Express @ ChinaNet Live”.)
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In the past 24 h, the accumulated
rainfall in Jieyang has reached
torrential levels, and the rain is still
ongoing. (The meaning of the
Chinese title in the figure is: “Radar
image at 42 min on 28 April 2024”.)
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3.6. Weibo Activity
The demographic characteristics of Guangdong province, including population size

and age distribution contribute to the inconsistency in the number of Weibo users across
the region. This spatial discrepancy leads to a greater number ofWeibo posts in areas with
a higher concentration of Weibo users, which in turn affects the effectiveness of Weibo as a
disaster indicator. Therefore, the relative number ofWeibo (RWeibo) is employed as ametric
for gauging social media activity, which is defined as follows:

RWeibo = NWeibo/∑ Populationi,j × Weighti,j (2)

where NWeibo is the total number of Weibo posts in a prefecture‑level city, i belongs to
the age group {0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–More}, j belongs to the gender
group {male, female}, Populationi,j is the population of a specific age i and gender j [76],
and Weighti,j is the ratio of users corresponding to age i with gender j [77]. The relative
number ofWeibo users is stratified by age and gender across a range of geographic regions,
allowing for the suppression of spurious spatial characteristics that are dominated by the
majority population.

4. Results
4.1. Spatiotemporal Characteristics of Disaster‑Related Weibo
4.1.1. Temporal Distribution of Weibo

To examine the perception of heavy rainfall by social sensors, the number of daily
Weibo posts from 16 April to 1 May was quantified. To quantify the severity of the disas‑
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ter, daily rainfall data were collected and are presented in Figure 5a. From 16 April to 19th,
the study area experienced minimal rainfall, resulting in a relatively low number of Weibo
posts (Figure 5b). The precipitation on 20 April was twice as high as that of the previous
day, and the number of Weibo posts also doubled, indicating a notable public response to
the rainfall. From 20 April to 28 April, continuous rainfall caused severe damage, resulting
in a sustained period of high Weibo activity with daily posts consistently exceeding 1000.
Then, a further round of precipitation from 21 April to 1 May was accompanied by a rise
in the number of Weibo posts. The peak in the number of Weibo posts occurs earlier than
the peak in precipitation, which may indicate a waning public interest in the ongoing rain‑
fall topic. The fluctuations in the number of Weibo posts largely reflected the patterns of
precipitation, with the exception of 19 April and 25 April. To quantify the consistency of
this relationship, a correlation test was performed using the Pearson correlation coefficient
(PCC). As evidenced in Table 9, the correlation between the number of Weibo and precip‑
itation is 0.6367, with a p‑value less than 0.01, indicating a strong correlation. This result
demonstrates the reliability of Weibo data as a research object.
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Table 9. Temporal correlations between precipitation and Weibo Counts.

Factor 1 Factor 2 PCC p‑Value

Precipitation
Number of Weibo 0.6367 0.0079

Number of unimodal Weibo 0.6125 0.0116
Number of multimodal Weibo 0.6649 0.0049

The daily number of unimodal (Figure 5c) andmultimodal postswere further counted
(Figure 5d) and the correlations with precipitationwere presented in Table 9. A correlation
coefficient of 0.6125 was observed between the number of unimodal Weibo posts and pre‑
cipitation, with a p‑value less than 0.05. In contrast, the result for the multimodal data
is 0.6649 with a p‑value less than 0.01. These findings suggest that the multimodal data
exhibit a stronger correlation with precipitation and is more effective in reflecting rainfall
patterns compared to unimodal data.

4.1.2. Spatial Distribution of Weibo
A total of 1482 addresses within Guangdong province were obtained from the

1797 Weibo posts containing check‑in information. Of these, 519 were identified as non‑
duplicates. A total of 19,180 non‑check‑in Weibo posts were examined, resulting in the
extraction of 3856 addresses, 294 of which were unique. The non‑check‑in data provide
a substantial number of locations, rendering it a valuable data source for spatial analysis.
In the dataset comprising check‑in posts within Guangdong province, the number of mul‑
timodal posts (932) exceeds the number of unimodal posts (550). This implies that users
frequently capture images when checking in, which enables the observation of the disas‑
ter scene. In the non‑check‑in dataset, the number of unimodal posts (2448) exceeds the
number of multimodal posts (1408) due to the higher quantity of unimodal data. In to‑
tal, there are 2340 multimodal locations and 2998 unimodal locations, which demonstrates
that multimodal data are also a significant subject for spatial analysis.

The effects of heavy rainfall vary across different regions, leading to disparate re‑
sponses from social media users. Consequently, data regarding the precipitation and the
number of Weibo posts at the prefecture level were gathered. Figure 6a illustrates the total
precipitation across Guangdong province from 16 April to 1st May, demonstrating that
the majority of rainfall occurred in the central region, with significantly less in the eastern
and western areas. Figure 6b presents a count of the number of Weibo posts in each re‑
gion. It is notable that the distribution of Weibo activity exhibits a pattern that is similar to
that observed in the precipitation distribution. Additionally, the distributions of check‑in
and non‑check‑in data for both unimodal and multimodal sources are further analyzed.
Figure 6c,e present that the check‑in data are concentrated in the central and southern re‑
gions. The multimodal data provide additional insight into the Meizhou and Chaozhou
areas, which is less evident in the unimodal data. The non‑check‑in data presented in
Figure 6d,f provide supplementary information in Jiangmen, Heyuan, and Shanwei. The
spatial distribution of rainfall‑related Weibo posts exhibits a clustering pattern that is re‑
lated to precipitation, rather than a random distribution that lacks meaningful coherence.

The region with the highest number of Weibo posts is Shenzhen, yet it is not the re‑
gion with the highest precipitation. This can be attributed to the number of users on the
platform. The age distribution of Weibo users in 2020 indicates that the majority of users
are individuals under the age of 30, representing nearly 80% of the total users. Shenzhen
has the largest population of young people in Guangdong province, which results in a
higher number of Weibo users compared to other regions. To address the issue of con‑
centrated disaster information in densely populated areas, the relative number of Weibo
(Equation (2)) was used as an indicator of Weibo activity. The global bivariate Moran’s I
can be used to quantify the spatial dependence between two variables. In this study, it
is used to measure the correlation between disaster‑related Weibo activities and rainfall
in Guangdong Province. A Moran value exceeding zero indicates a positive spatial corre‑
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lation. Conversely, a negative spatial correlation is indicated by a Moran value less than
zero. The bivariate Moran’s I in GeoDa [78] was used to quantify the spatial distribution
correlation, with the results shown in Table 10. The Moran’s I for the quantity of Weibo
data and precipitation is 0.365, with a high level of significance (p < 0.01, Z = 3.1154). The re‑
sults indicate a significant positive spatial correlation between the quantity of Weibo data
and precipitation. Furthermore, the non‑check‑in data exhibit a correlation of 0.336 with
precipitation, which is identical to that observed in the check‑in data. This suggests that
the proposed location extraction strategy yields accurate location data and can provide
spatial analyses comparable to those derived from check‑in locations. Furthermore, the to‑
tal, non‑check‑in, and check‑in coefficients of multimodal data are 0.397, 0.340, and 0.346,
respectively, which are higher than those of unimodal data (0.339, 0.327, and 0.310). This
suggests that multimodal data correlate more strongly with precipitation than unimodal
data and are more effective at detecting disasters in space.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 6. Spatial distributions of (a) precipitation, (b) the total number of Weibo posts, (c) the num-
ber of multimodal check-in posts, (d) the number of unimodal check-in posts, (e) the number of 
multimodal non-check-in posts, and (f) the number of unimodal non-check-in posts. The blue dots 
represent the actual Weibo address. 

Table 10. Spatial correlations between precipitation and Weibo Counts. 

Factor 1 Factor 2 Moran’s I p-Value Z-Score 

Precipitation 

Rweibo  0.365 0.002 3.1154 
Rweibo (non-check-in) 0.336 0.003 3.0655 

Rweibo (check-in) 0.336 0.003 2.7901 
Rweibo (unimodal) 0.339 0.002 2.8922 

Rweibo (unimodal, non-check-in) 0.327 0.005 2.7828 
Rweibo (unimodal, check-in) 0.310 0.005 2.6523 

Rweibo (multimodal) 0.397 0.001 3.4841 
Rweibo (multimodal, non-check-in) 0.340 0.001 2.9808 

Rweibo (multimodal, check-in) 0.346 0.001 3.0017 

Figure 6. Spatial distributions of (a) precipitation, (b) the total number of Weibo posts, (c) the num‑
ber of multimodal check‑in posts, (d) the number of unimodal check‑in posts, (e) the number of
multimodal non‑check‑in posts, and (f) the number of unimodal non‑check‑in posts. The blue dots
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Table 10. Spatial correlations between precipitation and Weibo Counts.

Factor 1 Factor 2 Moran’s I p‑Value Z‑Score

Precipitation

Rweibo 0.365 0.002 3.1154
Rweibo (non‑check‑in) 0.336 0.003 3.0655
Rweibo (check‑in) 0.336 0.003 2.7901

Rweibo (unimodal) 0.339 0.002 2.8922
Rweibo (unimodal, non‑check‑in) 0.327 0.005 2.7828
Rweibo (unimodal, check‑in) 0.310 0.005 2.6523

Rweibo (multimodal) 0.397 0.001 3.4841
Rweibo (multimodal, non‑check‑in) 0.340 0.001 2.9808
Rweibo (multimodal, check‑in) 0.346 0.001 3.0017

4.2. Spatiotemporal Characteristics of Disaster Categories
4.2.1. Proportion of Different Disaster Categories

The proportions of disaster‑related categories were obtained through the application
of the classification models to the dataset. With regard to Task 1 (Figure 7a), the largest
proportion is “Not informative”, with informative samples accounting for less than 30%.
Figure 7b illustrates the proportion of informative posts within the humanitarian cate‑
gories. A total of 70% or more of the samples contain humanitarian content, with the
largest number of samples falling within the “Other relevant information” category and
the smallest number of samples falling within the “Affected individuals” category. This
proportion is associatedwith the characteristics of heavy rainfall. The impacts of persistent
precipitation accrue gradually, resulting in the continued accumulation of weather‑related
data within the “Other relevant information” category. Furthermore, individuals receive
warning notifications and proactively avoid flood‑prone areas, resulting in a reduction in
observations of affected individuals. Figure 7c depicts the damage estimation for informa‑
tive posts, with approximately half of them classified as severe damage. This suggests that
there is a public awareness of the potential for disasters and that social sensors can be used
as a means of monitoring the emergence of new risks.
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4.2.2. Temporal Statistical Analysis of Disaster Categories
The daily number of Weibo posts pertaining to various humanitarian and damage

categories is presented in Figure 8a,b. For the purpose of qualitative analysis, only those
categories deemed relevant are retained. It is evident that the activity of each category
is closely correlated with the progression of heavy rainfall. In the period preceding the
disaster, up until 19 April, the predominant categories were “Other relevant information”
and “Mild, little, or no damage”. As the precipitation levels increased and persisted from
20 April to 23 April, the number of “Infrastructure, utility, or vehicle damage”, “Rescue,
volunteering, or donation effort”, “Affected individuals” in Figure 8a and “Severe dam‑
age” in Figure 8b exhibited a notable increase. This illustrates that the public is attempting
to disseminate disaster‑related information and seek assistance through social media plat‑
forms. The proportion of the “Affected individuals” category reached its peak on 22 April,
coinciding with the first official report of fatalities [79]. Concurrently, the “Rescue, vol‑
unteering, or donation effort” category exhibited an increase from 22 April to 23 April,
reflecting the implementation of timely emergency relief actions in response to the rainfall
that occurred on 21 April. The precipitation ceased for a brief period on 24 April, result‑
ing in a notable reduction in the number of Weibo posts. Subsequently, another period
of sustained precipitation commenced on 25 April. The highest precipitation levels were
recorded on 26 April, yet the number of damaged posts remained relatively low in com‑
parison to previous observations. This can be attributed to the fact that the public took
the initiative to implement preventive measures based on their experience of a previous
rainfall event, thereby, reducing their sensitivity to disaster‑related damage. The results
demonstrate a strong correlation between the temporal shifts in disaster‑related categories
and the progression of the disaster. In the aftermath of the disaster, social observations
regarding damage and injuries began to emerge.
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The intraday distribution characteristics of public perceptions are further examined
in Figure 9a,b. To gain insight into the distribution of public opinion throughout the day,
all data collected during the study periodwere counted on an hourly basis. Overall, public
activity exhibits a discernible temporal pattern, with activity intensity declining from the
morning (6:00–12:00), afternoon (12:00–18:00), to the evening (18:00–24:00), and reaching
minimal levels during the early morning hours (0:00–6:00). With regard to the human‑
itarian categories (Figure 9a), the “Rescue, volunteering, or donation effort” category is
concentrated during the daytime, while the “Affected individuals” category is mainly dis‑
tributed in the evening. This uneven distribution may be attributed to the data source.
The “Rescue, volunteering, or donation effort” category posts are from relief organiza‑
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tions, which typically operate during daylight hours and disseminate accordingly. The
“Affected individuals” category posts are predominantly sourced from authoritative me‑
dia, which gather data during the daytime and disseminate the findings in the evening.
Regarding the distribution of the “damage” category (Figure 9b), the peak occurs in the
morning due to the fact that reports from the previous night are often included in morn‑
ing news items. Consequently, the number of posts during the morning is approximately
twice that of other times of the day. In conclusion, the distribution of daily and hourlymes‑
sages can assist crisis managers in enhancing the efficacy of their preparation and response
strategies. Moreover, the proposed method uses individual image–text pairs as inputs to
extract disaster‑related information, eliminating the need for a specified number of sample
sets. Therefore, the reducedWeibo activity during the early morning hours does not affect
the performance of the method.
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4.2.3. Spatial Statistical Analysis of Disaster Categories
Figure 10 illustrates the proportion of various categories across different regions. The

different colors within the pie chart represent distinct categories, and the size of the circle
signifies the quantity ofWeibo posts. As illustrated in Figure 10a, the “Other relevant infor‑
mation” category is the most discussed topic across all regions with the exception of two
cities. Some cities have posts of the “Infrastructure, utility, or vehicle damage” and “Res‑
cue, volunteering, or donation effort” categories, which are primarily concentrated in the
central region. The “Affected individuals” category is more concentrated in the central re‑
gion, particularly in Qingyuan in the central‑northern region. As illustrated in Figure 10b,
themajority of cities are predominantly represented by the “Mild, little, or no damage” cat‑
egory, while the “Severe damage” category is concentrated in the central region. Notably,
three adjacent cities in the central‑northern area, namely Qingyuan, Shaoguan, and Zhao‑
qing, collectively account for nearly 50% of the “Severe damage” category. These findings
support the assertion that central‑northern cities are the most severely impacted, which is
consistent with the official reports.
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4.2.4. Transition of Disaster Categories
The study also examines the multiple semantic meanings of samples in order to illus‑

trate the ways in which information varies among the three types of categories. A Sankey
diagram is presented in Figure 11 for the visualization of the paths of information flow. The
left and right endpoints of each strip indicate the multiple semantics of the corresponding
sample subset, and the strip width represents the number of samples in the subset [45].
More than half of the samples in the “Informative” category are transitioned into four spe‑
cific humanitarian categories, while a relatively small proportion are transitioned into the
“Not informative” category. Less than half of “Other relevant information” posts are tran‑
sitioned to the damage category. In contrast, more than half of the “Infrastructure, utility,
or vehicle damage”, “Rescue, volunteering, or donation effort”, and “Affected individu‑
als” posts are transitioned to that category. This indicates that the impacts and damages
resulting from rainfall can be described using predefined damage categories. The examina‑
tion of semantic transitions pertaining to disaster‑related topics enables decision‑makers
to respond effectively to a range of potential hazards.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 27 
 

 

4.2.4. Transition of Disaster Categories 
The study also examines the multiple semantic meanings of samples in order to il-

lustrate the ways in which information varies among the three types of categories. A San-
key diagram is presented in Figure 11 for the visualization of the paths of information 
flow. The left and right endpoints of each strip indicate the multiple semantics of the cor-
responding sample subset, and the strip width represents the number of samples in the 
subset [45]. More than half of the samples in the “Informative” category are transitioned 
into four specific humanitarian categories, while a relatively small proportion are transi-
tioned into the “Not informative” category. Less than half of “Other relevant information” 
posts are transitioned to the damage category. In contrast, more than half of the “Infra-
structure, utility, or vehicle damage”, “Rescue, volunteering, or donation effort”, and “Af-
fected individuals” posts are transitioned to that category. This indicates that the impacts 
and damages resulting from rainfall can be described using predefined damage catego-
ries. The examination of semantic transitions pertaining to disaster-related topics enables 
decision-makers to respond effectively to a range of potential hazards. 

 
Figure 11. Visualization of semantic transitions across the three tasks. 

5. Discussion 
The examination of actual occurrences within cyberspace can provide invaluable in-

sights for the advancement of disaster research. This study employs a quantitative ap-
proach to examine the temporal and spatial correlations between rainfall patterns and 
Weibo activity in Guangdong province. The findings support the effectiveness of social 
media can serve as an effective social sensor during this extensive precipitation event. 
Furthermore, the number of multimodal posts exhibited a slightly higher temporal and 
spatial correlation with rainfall than the unimodal data, indicating that multimodal data 
are a valuable research object in disaster informatics. Table 1 presents a comparative anal-
ysis of the performance of relevant studies, employing the mean F1-score on the three 
topic extraction tasks as the evaluation metric. It should be noted that unsupervised mod-
els require subjective understanding to specify topic categories and therefore cannot be 
used to make objective comparisons. It can be seen that the multimodal models outper-
formed the unimodal model [28,43], which suggests that multimodal applications may 
offer a promising avenue for future research. The proposed model employed a more ad-
vanced visual backbone, which contributed to its superior performance compared to the 
existing literature [29]. This result highlights the importance of developing advanced 
models to enhance the efficiency of information extraction. 

The analyses of public reactions indicate that in the early phase of the event, public 
attention was aligned with the onset of the heavy rainfall. The peak in Weibo activity co-
incides with a peak in precipitation on 21 April, exhibiting minimal temporal lag. How-

Figure 11. Visualization of semantic transitions across the three tasks.

5. Discussion
The examination of actual occurrences within cyberspace can provide invaluable in‑

sights for the advancement of disaster research. This study employs a quantitative ap‑
proach to examine the temporal and spatial correlations between rainfall patterns and
Weibo activity in Guangdong province. The findings support the effectiveness of social
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media can serve as an effective social sensor during this extensive precipitation event. Fur‑
thermore, the number of multimodal posts exhibited a slightly higher temporal and spa‑
tial correlation with rainfall than the unimodal data, indicating that multimodal data are
a valuable research object in disaster informatics. Table 1 presents a comparative analysis
of the performance of relevant studies, employing the mean F1‑score on the three topic
extraction tasks as the evaluation metric. It should be noted that unsupervised models re‑
quire subjective understanding to specify topic categories and therefore cannot be used to
make objective comparisons. It can be seen that the multimodal models outperformed the
unimodal model [28,43], which suggests that multimodal applications may offer a promis‑
ing avenue for future research. The proposed model employed a more advanced visual
backbone, which contributed to its superior performance compared to the existing litera‑
ture [29]. This result highlights the importance of developing advancedmodels to enhance
the efficiency of information extraction.

The analyses of public reactions indicate that in the early phase of the event, public
attention was aligned with the onset of the heavy rainfall. The peak in Weibo activity coin‑
cides with a peak in precipitation on 21 April, exhibiting minimal temporal lag. However,
as the event continues, there is a discernible shift in public attention, which is reflected in
a decline in the number of Weibo posts during the subsequent period of rainfall. Further‑
more, the shift in various categories demonstrates that messages about rescue efforts and
casualties are delayed, whereas posts concerning facility damages and other matters are
concurrentwith the onset of rainfall. This is due to the fact that the preparation of rescue op‑
erations and the gathering of casualty data necessitate a greater investment of time, while
other messages are more straightforward to confirm and post. Furthermore, the discrep‑
ancy illustrates the real‑time character of social media in disseminating disaster‑related
information. The spatial statistical analysis indicates a notable level of Weibo activity in
the affected areas. This suggests that social media can be used to estimate the impact range
of disaster events.

Many studies have demonstrated the capability of social sensors in extracting topics,
identifying affected areas, and tracking the spatiotemporal evolution of disasters. How‑
ever, most of these studies [27,28,43,44] focus on mining content from social media to ex‑
plore the potential of social sensors, with few utilizing statistical methods to character‑
ize the spatiotemporal correlation between rainfall and social media posts. For example,
Wang et al. [26] collected rainfall data and Weibo posts during the Zhengzhou rainstorm,
analyzing the spatiotemporal evolution of related topics in disaster scenarios. They found
that help‑seeking messages spiked and then gradually decreased after the disaster, consis‑
tent with our findings. However, the lack of quantitative analysis reduces the reliability of
using precipitation as a basis for dividing event stages. Wu et al. [45] examined topic tran‑
sition patterns on social media during heavy rainfall in Hefei. We further characterized
the transitions between different thematic categories. Although they presented spatiotem‑
poral distributions for each topic, the absence of statistical indicators makes it difficult to
uncover underlying patterns. Yan et al. [29] demonstrated the spatiotemporal distribution
ofWeibo flood points and rainfall during the Anhui Province rainstorm, confirming the ef‑
fectiveness of social sensors in revealing affected locations. However, they only analyzed
data from two days, limiting insights into the entire event. In contrast, this study quanti‑
fies the spatial and temporal correlations between precipitation and social media activity
using statistical methods, yielding more compelling results. Although this study makes a
notable contribution to the field, it is essential to recognize the limitations of the research.
Firstly, the quality of the training data limits the performance of multimodal models. The
lack of Chinese multimodal datasets is a significant impediment to the analysis of Chinese
social media. Additionally, the majority of commonly used datasets are single‑label, yet
real‑world posts may encompass multiple pieces of information, thereby necessitating the
availability of multi‑labelled datasets. It is therefore imperative to develop high‑quality
datasets. Secondly, the current feature fusion methods are not sufficiently interpretable
with regard to disaster elements in text and images. This results in the inability to develop
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targeted emergency response strategies for disaster entities. Accordingly, subsequent re‑
search will concentrate on enhancing the interpretability of multimodal models.

6. Conclusions
This study examines the effectiveness of multimodal social sensors in enhancing sit‑

uation awareness in disaster scenarios, with a particular focus on a widespread and sus‑
tained rainfall event. A novel framework is proposed for the extraction of multimodal
disaster semantics from the Chinese Weibo platform for the purpose of tracking social
reflections. Firstly, this study demonstrates that the combination of location extraction
methods with large language models can effectively mine address information from text,
thereby providing a feasible path for obtaining the spatial distribution from non‑check‑in
data. Secondly, the classification outcomes provide evidence that multimodal models are
effective in discerning disaster‑related data within authentic social media data, thereby en‑
hancing disaster awareness. Thirdly, the results of the quantitative analysis demonstrate a
significant correlation between the quantity of multimodal data and the precipitation level.
Furthermore, the correlation between multimodal data and precipitation is stronger than
that of unimodal data, indicating that multimodal data are a more reliable source of infor‑
mation regarding disasters. The disaster information extracted by the proposed method
from social media platforms can provide support for a number of important emergency
response activities, such as emergency rescue, victim discovery, public opinion analysis,
post‑disaster reconstruction, and other projects during emergencies. In conclusion, these
findings substantiate the utility of multimodal social media data in disaster informatics
and offer a foundation for future research on multimodal data.

From a practical perspective, future researchwill focusmore on two key areas. Firstly,
the development of more high‑quality datasets, especially those that are multi‑labeled,
multi‑scenario, and contain more modalities, will enhance the efficiency of models oper‑
ating with disparate event types. Secondly, an investigation into the interpretability of
disaster‑related content on social media could provide more direct evidence for the en‑
hancement of emergency response operations.
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