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Abstract

:

Due to the difficulty in distinguishing transparent and white foreign fibers from seed cotton in RGB images and in order to improve the recognition ability of deep learning (DL) algorithms for white, transparent, and multi-class mixed foreign fibers with different sizes in seed cotton, this paper proposes a method of combining hyperspectral imaging technology with a multi-module joint hierarchical residue network (MJHResNet). Firstly, a series of preprocessing methods are performed on the hyperspectral image (HSI) to reduce the interference of noise. Secondly, a double-hierarchical residual (DHR) structure is designed, which can not only obtain multi-scale information, but also avoid gradient vanishing to some extent. After that, a squeeze-and-excitation network (SENet) is integrated to reduce redundant information, improve the expression of model features, and improve the accuracy of foreign fiber identification in seed cotton. Finally, by analyzing the experimental results with advanced classifiers, this method has significant advantages. The average accuracy is 98.71% and the overall accuracy is 99.28%. This method has great potential for application in the field of foreign fiber identification in seed cotton.
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1. Introduction


As one of the best textile raw materials, cotton plays an important role in the textile industry and in the lives of people [1,2]. In recent years, due to the shrinking of cotton planting land in central and eastern China, the area of cotton planting in China has been gradually reduced, from 57 million mu in 2015 to 45 million mu in 2022, a decrease of about 21%. Ranging from 5.9 million tons in 2015 to 5.97 million tons in 2022, the annual output also fluctuated in this interval, albeit maintaining a relatively stable state. The stability of production benefits from the progress of science and technology and advanced management policies [3]. However, up to now, the yield of high-quality cotton in China has still been at a low level, which directly affects economic benefits and influence in the international market [4]. The production of high-quality cotton is a major problem in China’s cotton industry. The climate in Xinjiang is dry, the temperature difference between day and night is large, and water evaporation is fast. It is generally planted with colorless transparent plastic film and black plastic film. On the one hand, it can accumulate the temperature of soil and cultivated land, while on the other hand, it can effectively reduce the evaporation of surface water and improve the survival rate of cotton [5,6]. However, colorless transparent film and black film is mixed into seed cotton in the picking stage, which becomes a key factor affecting the quality of cotton. In the process of collecting bags and processing, white label paper scraps, various color plastic strapping ropes, and transparent foam boards may be mixed into them, which also becomes a factor affecting the quality of cotton. Because the impurities are mostly transparent and white, it is difficult to distinguish them from seed cotton by the naked eye, and naked eye recognition of many kinds of impurities is very time-consuming and laborious. Therefore, a method is needed to identify colorless transparent films, plastic strapping ropes, white paper scraps, foam boards and black films in seed cotton well and conveniently, so as to improve the quality of seed cotton [7].



At present, color image recognition technology has achieved good results in the field of target recognition and classification [8,9,10,11]. However, when recognizing targets with similar colors, the recognition results are unsatisfactory. This is mainly because the color information of the captured images is close, and the deep learning (DL) training model cannot learn features and distinguish well based on the input color information. Hyperspectral imaging technology can solve the problems faced by color image recognition technology. By dividing the spectral wavelength into many bands, according to the different reflectance characteristics of each material in the same or similar bands, the hyperspectral imaging system measures each continuous band to obtain the spectral information of the object in each band, so that different materials can be distinguished [12,13,14,15].



Hyperspectral images often have rich bands, and there is information redundancy between a large number of bands, which not only increases hardware pressure but also suppresses the learning ability of the model. Numerous studies have shown that dimensionality reduction in hyperspectral images can effectively improve accuracy. Zhang et al. [16] proposed a novel unsupervised BS method based on a band correlation analysis (BCA), which can accurately identify bands with a high information content and low redundancy through iteration and correlation calculation, effectively improving the recognition rate of hyperspectral images. Ou et al. [17] proposed a band selection method based on a multi-objective cuckoo search algorithm (MOCS), which improves the focus on overall features, balances the search ability between global exploration and local exploitation, and enhances the interaction ability between individuals. It has been verified that this method has better robustness. Kang et al. [18] proposed a dimensionality reduction method combining principal component analysis and edge-preserving features, which can highlight pixel separability. Experimental verification shows that this method greatly improves the accuracy of the classifier.



With the advancement of image classification and recognition technology [19,20,21,22], a large number of scholars from different fields are gradually combining hyperspectral imaging technology with DL models to extract more feature information on the measured object, effectively improving the recognition rate of targets that are difficult to distinguish with the naked eye. Ni et al. [23] proposed an online detection method for identifying cotton mulch in hyperspectral images (HSIs) by combining a variable weighted stacked autoencoder (VW-SAE), artificial neural network (ANN), and extreme learning machine. Firstly, VW-SAE was used to extract the HSI features, then ANN was used to optimize the VW-SAE parameters, and finally, an extreme learning machine was used for classification. The overall recognition accuracy of this method was 95.58%, and after morphological processing, it can achieve accurate recognition of mulch. However, this method has lower recognition of mulch in the background and requires more computing resources, requiring high equipment requirements. Du et al. [24] proposed a method combining near-infrared spectroscopy and a convolutional neural network (CNN) and temporal convolutional network to identify foreign fibers in cotton. The original data were pre-smoothed and a feature wavelength extraction was performed, with a recognition accuracy of up to 99%. This is a promising classification algorithm. Xue et al. [25] proposed a dual-branch hierarchical residual network (Hierarchical ResNet) with an attention mechanism by improving the Hierarchical ResNet, which separates spectral and spatial dimensions for calculation purposes. This method has shown significant advantages in remote sensing land feature recognition. Collins et al. [26] used hyperspectral imaging technology combined with a three-dimensional convolutional neural network (3D-CNN) to automatically identify colon cancer and esophageal gastric cancer. The recognition accuracy of this study is as high as 93%, which provides a good technical examination method for the discovery and treatment of early cancer. Huang et al. [27] proposed a 1D CNN combined with HSIs to identify and classify textile fibers. The recognition accuracy of this study is as high as 98.6%, which provides a good technical means for archaeology, public security, and other industries. Liu et al. [28] used a 2D-CNN to identify and separate the plastic film in seed cotton, achieving an accuracy of 98.5%. Hong et al. [29] proposed a SpectralFormer model specifically designed for remote sensing, which has strong global information capture capabilities. By designing CAF and GSE blocks, the extraction of local information is improved, but the acquisition of local information is still inferior to CNN. Zhu et al. [30] designed a degradation indicator species CNN combined with HSIs to identify grassland grass species. The overall recognition accuracy of grassland species reached 98.78%, which provided a technical reference for grassland degradation monitoring and small target classification and recognition. However, there are also some defects in this study; for example, the large amount of calculations, low efficiency, excess of limited conditions in the experimental environment, and the generalization and robustness of the model need to be considered.



With the advancement of DL technology and the shortcomings of traditional classifier algorithms such as high data dependence, weak multi-classification recognition for large datasets, and poor robustness, more and more DL algorithms are gradually replacing traditional classifiers in the hyperspectral field, bringing recognition accuracy to a new level. In recent years, DL models have gradually developed towards hierarchical structures, achieving multi-layer feature extraction and effectively improving efficiency and accuracy [31,32].



Due to the weak robustness of the support vector machine (SVM) [33], ordinary CNNs lack the ability to extract multi-scale information. In order to solve the poor recognition of transparent and white impurities in cotton by color image recognition, as well as improve the recognition ability of multi-class mixed foreign fibers with different sizes in seed cotton, this paper proposes a seed cotton foreign fiber recognition method combining hyperspectral imaging technology and a multi-module joint hierarchical residual network (MJHResNet) DL algorithm. Compared with the Hierarchical ResNet structure [25], this structure has the following innovations:



(1) The channel number bisection processing of the input information of the Hierarchical ResNet is cancelled to avoid the negative impact of data randomness on the recognition results.



(2) The hierarchical structure has more parallel branches. The aim is to obtain and fuse richer scale information.



(3) Constructing a double-hierarchical residual (DHR) structure block intended to obtain and integrate richer scale information while solving the problem of gradient vanishing in layered residual structures with too many branches, resulting in the inability to obtain the maximum receptive field.



(4) The DHR module integrates a squeeze-and-excitation network (SENet) attention mechanism with the aim of reducing redundant information transmission and adaptively enhancing the model expression ability.



The method is compared with SVM, ResNet-18, 2D-CNN, Fast3D-CNN, SpectralFormer, and Hierarchical ResNet algorithms. It is concluded that the method proposed in this paper has certain advantages in terms of recognition accuracy. This method has the ability to extract multi-scale information, which can extract both global and local information and has certain application potentials in cotton processing factories, the textile industry, and other fields, which can effectively improve the quality of seed cotton, economic benefits, and influence in the cotton market. Based on its structural characteristics and the ability to extract information from small and large targets, it can also be applied in fields such as remote sensing and medicine.




2. Materials and Methods


2.1. Experimental Materials and Equipment


In this experiment, 5 kg of high-quality Xinjiang cotton, transparent films of different shapes and sizes, white paper scraps, multicolored plastic strapping ropes, white foam boards, black films, and other impurities were selected, and one or more impurities were randomly placed on the seed cotton. For the experiment, we used a hyperspectral camera (GaiaField Pro-V10E, Dualix Spectral Imaging Technology Ltd., Wuxi, Jiangsu, China) with a wavelength range of 400–1000 nm, a total of 328 bands, an exposure time of 30 ms, a frame rate of 14 frames per second, and a resolution of 2.8 nm. The experimental shooting environment was in the laboratory dark box, which can better reduce the interference of external light to improve the imaging quality. Four 50 W halogen lamps and a platform tray (the tray was 500 mm away from the hyperspectral camera objective) were used in the dark box. The experimental computer used a 12×Intel® Xeon® Gold 5318Y processor, 350 G hard drive, 86 G memory, NVIDIA A40 graphics card, 48 G graphics memory, python3.9, pytorch2.1.1 DL architecture, and win11 operating system.




2.2. Experiment Workflow


This study was based on hyperspectral imaging and a multi-module joint hierarchical residual network to conduct research on the recognition algorithm of seed cotton foreign fibers. For the experiment, the process shown in Figure 1 was adopted. First, the collected images of seed cotton and transparent films, white paper scraps, black films, multicolored plastic strapping ropes, white foam boards, and other mixed images were preprocessed, including black-and-white correction, image cutting and label making, standardization processing, multiple scattering correction (MSC) processing, and principal component analysis (PCA) processing in sequence. After that, the preprocessed image was sliced to form a large number of small-size images of the same size and a data set was constructed for DL model training. The models included SVM, ResNet-18, 2D-CNN, Fast3D-CNN, Hierarchical ResNet, SpectralFormer, and MJHResNet, and then the average accuracy (AA), overall accuracy (OA), and recall and precision were evaluated to compare the performance of the models. Finally, in order to find the best parameters of the MJHResNet model proposed in this paper, 18 sets of experiments were carried out, and the best parameter values were obtained by comparing the AA and OA of the experimental results.




2.3. Preprocessing


Preprocessing is an important part of improving the accuracy of image classification and recognition. This process can remove most of the interference information, improve the quality of HSIs, and help simplify the complexity of spectral feature learning for subsequent models [34,35,36]. The preprocessing process conducted in this study was as follows.



Step 1: Black-and-white correction.



In the absence of light, the image sensor of the hyperspectral camera will also produce a small amount of electrical signal, mainly because the photodiode will release the charge, and the photodiode of each pixel acts as a capacitor at the same time, which will slowly discharge and form a so-called dark current. The dark current has a considerable influence on the imaging quality of the hyperspectral camera. The dark current will bring a lot of noise to the image, especially in a low-light environment and long-exposure environment, which greatly reduces the quality of the image. We used Formula (1) for the image black-and-white correction.


  R =    L − B   W − B     



(1)




where   L   represents the original image,   B   represents the image taken against a pure black background (covered by the camera cover),   W   represents the standard whiteboard image taken, and   R   represents the image after the black-and-white correction.



Step 2: Image cutting and label making.



The black-and-white corrected image was cut in three dimensions, which retained important and effective information, reduced the image size, and provided help for subsequent training. After that, ENVI5.3 was used to establish the region of interest for different categories of cut images, a spectral analysis was performed to select the band with the largest difference in reflectivity between the background, various impurities, and seed cotton, and label production was performed under this band. In these bands, various impurities had a good discrimination between them, whether in the gray single channel or the RGB pseudo color three channels, which mean that the labels produced in this band were more accurate.



Step 3: Standardization



Due to significant differences in some spectral data, it was not conducive to subsequent analysis. Standardization processing reduces the fluctuation of spectral data, which helps improve the convergence speed and learning ability of subsequent models, thereby enhancing the accuracy of subsequent processing and analysis. Using Formula (2) for standardized processing, this presents a normal distribution of spectral information with a mean of 0 and a standard deviation of 1.


  Z =    A − μ   σ     



(2)




where   Z   represents the spectral data after standardized processing,   A   represents the input spectral data,   μ   represents the mean value of the input spectral data, and   σ   represents the standard deviation of the input spectral data.



Step 4: Multiple scattering correction



Multiple scattering correction is a data processing method mainly used to eliminate the spectral baseline shift and baseline offset caused by scattering effects. The goal of this method is to calibrate the measured spectrum to a reference spectrum, thereby reducing these irrelevant changes and improving the accuracy and reliability of the analysis. Firstly, we used Formula (3) to calculate the average spectrum of the image, then we used Formula (4) to perform a univariate linear regression calculation on the average spectrum and to calculate the baseline shift (regression constant) and baseline offset (regression coefficient) of each spectrum relative to the average spectrum, and finally we used Formula (5) to complete the dispersion correction [34].


    Z  ¯  =      ∑  i = 1   n      Z   i , j       n     



(3)






    Z   i   =   m   i     Z  ¯  +   b   i    



(4)






    Z   i   ( M S C )   =      Z   i   −   b   i       m   i       



(5)




where     Z   i , j     represents the spatial position of the hyperspectral image sample of seed cotton foreign fiber,   n   represents the spectral band,     Z  ¯    represents the average spectral vector obtained by averaging the original spectral data of all samples at each wavelength,     Z   i     is a   1 × n   dimensional matrix, which represents the spectral vector of a single sample,     b   i     and     m   i     represent the baseline translation and offset of each sample obtained by the unary linear regression of the near-infrared spectrum     Z   i     and the average spectrum     Z  ¯   , respectively, and     Z   i   ( M S C )     represents the hyperspectral image that has completed the multiple scattering correction.



Step 5: Principal component analysis.



The information between each band in hyperspectral images has a strong correlation, which can cause a large amount of redundant information, increase the storage and computing pressure of hardware devices, and increase the risk of overfitting. Dimensionality reduction techniques can solve the catastrophic problem of redundant and complex high-dimensional data. PCA and autoencoders are both technical methods for data dimensionality reduction. Compared with autoencoders, PCA has the advantages of fast calculation speed, low model complexity, and strong interpretability. It maps high-dimensional spatial features to low-dimensional space through linear transformation, which preserves as much original data as possible while reducing image dimensionality and noise, resulting in image compression to a large extent. The dimensionality reduction of hyperspectral data in this article is beneficial for subsequent data analysis and visualization processing. We centralized the input sample set   D =     z     ( 1 )   ,   z     ( 2 )   , … ,   z     ( m )       using PCA, then calculated the covariance matrix   Z   Z   T     of the sample and performed eigenvalue decomposition. The eigenvector       w   1   ,   w   2   , … ,       w   p       corresponding to the largest   p   eigenvalues was taken out, and all the eigenvectors were standardized to form the eigenvector matrix   W  , and then each sample     z     ( i )     was converted into a new sample     x     ( i )    , and finally the output sample set   X =     x     ( 1 )   ,   x     ( 2 )   , … ,   x     ( m )       was obtained (Formulas (6) and (7)). This paper specifies a principal component proportion threshold   b  . Then   p   can be obtained by Formula (8).


     z     ( i )   =   z     ( i )   −    1   m      ∑  j = 1   m      z     ( j )       ,   ( i   ,   j   = 1,2 , … , m  )  



(6)






    x     ( i )   =   W   T     z     ( i )    



(7)






       ∑  i = 1   p      λ   i         ∑  i = 1   n      λ   i        ≧ b  



(8)




where     z     ( i )    ,     z     ( j )     are   n   dimensional samples of the image to be processed,     x     ( i )     is   p   dimensional samples, and     W   T     represents the transpose of the eigenvector matrix   W  .




2.4. Multi-Module Joint Hierarchical Residual Network


At present, many CNNs mainly improve the information extraction ability of their models by increasing the number of network layers. As the number of network layers increases, there will inevitably be gradient disappearance and network degradation, which will lead to problems such as increased training difficulty and a sudden decrease in accuracy, thus hindering training. Additionally, due to the high-dimensional nature of HSIs, which contain a large amount of data information, extracting information becomes more cumbersome, making the degradation of network performance more apparent [25,31]. However, the identity mapping structure of residual structures [37] and the multi-branch structure of hierarchical structures [32] can effectively solve the problems of gradient disappearance and network degradation and single-scale information. Given the good performance of the Hierarchical ResNet composed of a residual structure and hierarchical structure in image recognition and classification, and in order to better extract multi-scale information from HSIs and solve the problem of identifying seed cotton foreign fibers, this paper proposes an innovative MJHResNet model. The model is shown in Figure 2. It contains a Conv0 block, a DHR structure, a SENet attention structure, a 7 × 7 average pooling layer, and a fully connected layer.



2.4.1. Double-Hierarchical Residual Structure


This MJHResNet designs a novel DHR structure, which concatenates two hierarchical residual structures of different sizes and adds branches of the hierarchical residual structure to improve the model’s ability to extract multi-scale features. However, research has found that increasing the number of branches in the hierarchical residual structure without restraint does not necessarily result in rich scale information, but rather increases the risk of gradient disappearance. So, after adding 5 branches to this structure, the other two branches are combined to form a second hierarchical residual structure, which is connected to the first hierarchical residual structure; each branch that performs convolution operations contains 6 BN-ReLU-Conv convolution blocks, as shown in the black dashed box in Figure 2. This structural design will reduce the risk of gradient disappearance, obtain richer scale information, and obtain feature maps with a larger receptive field. At the same time, the input information of each branch of the structure is no longer subjected to channel number split processing, which can easily generate data randomness. The key information may not be learned by the deep network, so full channel information is adopted, as shown in the red dashed box in Figure 2. The input information   x   is Conv0 to obtain     x   n    , which is then passed into the DHR structure. After convolution operations   C ( · )   and feature information cascading   ⊕  , a multi-scale feature map is obtained    Y  . The information transformation is shown in the Formulas (9)–(13), and the detailed parameter information is shown in Table 1.



The relationship is as follows:


    y   i   =         x   n           C   ( x   n   )          C     x   n   +   y   1         C   (   x   n   +   y   2   )     C   (   x   n   +   y   3   )          ( i = 0 , 1 , 2 , 3 , 4 )    



(9)






    x   p   =   ∑  i = 0   4      y   i      



(10)






    y   j   =         x   p         C   (   x   p   )       C   (   x   p   +   y   6   )       ( j = 5 , 6 , 7 )    



(11)






   Y   =   ∑  i = 5   7      y   j       



(12)




where     y   i     is the output information of each branch in the first hierarchical residual structure, and     y   j     is the output information for each branch in the second hierarchical residual structure.     x   p     represents the fusion information of the first hierarchical residual structure.




2.4.2. Squeeze-and-Excitation Network Attention


Due to the characteristics of hierarchical residual structures, the fused multi-scale feature maps contain a large amount of redundant information, which can affect the learning ability of the model [38]. SENet [39] can adaptively learn the importance of different feature channels, reducing the weight of invalid or unimportant feature maps, thereby reducing information redundancy and enhancing the model’s expression ability. The principle is to sequentially use     F   t r     conversion, Squeeze, Excitation, and Fscale, as shown in Figure 3.



    F   t r     conversion converts input   Y   to output   U   through a convolution operation, as shown in Formula (13).


    U   C   =   V   C   × Y  



(13)




where     V   C     represents the C-th convolutional kernel,     U   C     represents the C-th input of   U  , and   C   represents the number of channels.



Squeeze is a global average pooling process that converts the input of H × W × C into an output of 1 × 1 × C, obtaining the global information of the input information   U  , as shown in Formula (14) [39].


    z   C   =   F   s q     (   U   C   ) =    1   W × H      ∑  i = 1   W      ∑  j = 1   H      U   C     ( i , j )      



(14)




where   W   represents the width of feature map   U  ,   H   represents height, and     U   C     ( i , j )   represents the point in     U   C     where the width is   i  , height is   j  , and     z   C     represents the output 1 × 1 × C.



Excitation is a two-time full connection process. The first full connection is used for dimensionality reduction, and then the nonlinear transformation is performed by the ReLU activation function. The second full connection is restored to the original dimension, and is mapped to 0 and 1 by the sigmoid activation function to obtain the weight of each channel [36], as shown in Formula (15).


  s =   F   e x     z , W   = σ   g   z , W     = σ (   W   2   δ     W   1   z   )  



(15)




where     W   1     represents the dimension reduction parameter,   z   represents the sum of     z   C    ,     W   2     represents the dimension-up parameter.   δ   represents ReLU,   σ   represents sigmoid, and   s   represents the weight of the output; the size is 1 × 1 × C.



The Fscale operation multiplies the obtained weight   s   with the original feature map   U   to complete the recalibration of the original features on the channel dimension [39], as shown in Formula (16).


      X   C    ~  =   F   s c a l e       U   C   ,   s   C     =   s   C   ·   U   C    



(16)




where     s   C     represents the weight,       X   C    ~    represents the final output, and the size is H × W × C.



The SENet module is fused with the DHR module to form the DHR–SE module. This module can not only improve the extraction ability of multi-scale information of the network, but also avoid the disappearance of gradient, reduce information redundancy, and improve the recognition rate of foreign fibers in seed cotton.





2.5. Model Evaluation Methods


To compare the performance of network models, this paper evaluates them using methods such as   R e c a l l  ,   P r e c i s i o n  ,   O A  , and   A A  . Recall and precision reflects the model’s ability to recognize positive and negative samples (Formulas (20) and (21)). The   A A   method reflects the average level of prediction by the model for each category, which is the sum of the accuracies of all the categories divided by the number of categories (Formula (18)). The   O A   method reflects the overall prediction level of the model, which is determined by the proportion of correctly identified samples of all the categories to the total samples of all the categories (Formula (19)). All four perspectives presented are the most important methods for evaluating the quality of the model currently.



These evaluation methods are as follows:


  R e c a l l =    T P   T P + F P     



(17)






  P r e c i s i o n =    T P   T P + F N     



(18)






  A A =      ∑  i = 1   C    R e c a l l     C      ( i = 1,2 , … , C )  



(19)






  O A =      ∑  i = 1   C    T P       ∑  i = 1   C      ( T P + F P )      =      ∑  i = 1   C    T P       ∑  i = 1   C      ( T P + F N )        ( i = 1,2 , … , C )    



(20)




where   i   represents category,   C   represents the total number of categories,   T P    represents the number of samples that are actually positive examples and are judged as positive examples by the classifier,   F P   represents the number of samples that are actually negative and judged as positive by the classifier, and   F N   represents the number of samples that are actually positive but judged as negative by the classifier.





3. Results and Discussion


A total of 50 HSIs of seed cotton mixed with various impurities were taken in the dark box environment. The image specification was 1800 × 1538 × 328.



3.1. Preprocessing


After preprocessing, image samples can effectively improve spectral features, reduce interference information, enhance spectral information, and improve the analytical expression ability of subsequent models.



3.1.1. Image Cutting and Label Making


The black-and-white corrected image with a size of 1800 × 1538 × 328 was subjected to redundant black background cutting. The processing procedure is shown in Figure 4. After cutting, images with different spatial sizes and the same spectral size, such as 971 × 841 × 328, 1161 × 761 × 328, and 1241 × 1081 × 328, were obtained, and the cut images were labeled. After cutting, a size of 971 × 841 × 328, 1161 × 761 × 328, 1241 × 1081 × 328 and other images with different spatial dimensions and the same spectral dimension as in Figure 4 were achieved, and the cut images were labeled. There were nine label categories: seed cotton, plastic film, paper scraps, background, black film, transparent plastic rope, white plastic rope, red plastic rope, and foam board.



Regions of interest were established and spectral curves generated for each category. As shown in Figure 5, the wavelength range with the greatest difference in reflectance between various impurities and seed cotton was identified, and labels were created at wavelengths with significant differences.




3.1.2. Standardized Processing


After standardization processing, the image data had a regular distribution (Figure 6), symmetrically distributed around 0.




3.1.3. MSC Processing


Figure 7 shows the visualization of the processing for MSC. The vertical absorbance is obtained by logarithmic conversion formula   −     log   10    ⁡    (    I   I 0      )   between the measured light intensity   I   (MSC corrected light intensity) and the reference light intensity   I 0   (light intensity without absorption). It can be seen from Figure 7a that the sample data are more concentrated after MSC, which reduces the sample difference. It can be seen from Figure 7b that most of the data are concentrated near 0 after standardization and MSC. The data are simpler and more regular, which effectively eliminates the influence of scattering level difference and is conducive to the analysis and processing of sample data by later models.




3.1.4. PCA Processing


According to the analysis in Figure 8a, the variance explanatory values of the first three principal components are 97%, indicating that the first three principal components can effectively capture the variability of the original data and can be used to represent the original data. The experimental dimensions retain 4, 7, 10, 13, 16, and 19 dimensions, respectively. As shown in Figure 8b, after experimental verification, After the experimental verification shown in Figure 8b, under the same experimental conditions, the OA of each group obtained by only changing the number of retained dimensions showed that the OA varied greatly from 4 to 13 dimensions and tended to stabilize from 16 to 19 dimensions. In this study, 16 dimensions were selected as the experimental benchmark to balance accuracy and device performance, which not only retained the original information to the greatest extent but also significantly reduced the image dimension.





3.2. Ablation Experiment on Sample 1 and Sample 2


In this section, ablation experiments were carried out on sample 1 and sample 2. By increasing or decreasing the branches of the DHR structure and increasing the SENet, experiments were carried out one by one to evaluate the effectiveness of a double residual structure instead of a single residual structure and a fusion SENet module. Table 2 shows the results of the ablation experiments, and the training parameters of all the models are the same.



According to the experimental results shown in Table 2, exceeding a certain number of branches in the hierarchical residual structure does not increase the recognition accuracy, but has the opposite effect, mainly due to the gradient vanishing caused by the excessive number of convolutions used to obtain advanced features. Using a double-hierarchical residual structures instead of a single hierarchical residual structure with the same number of convolutional branches can effectively improve accuracy. The integrated SENet module is beneficial for improving recognition accuracy and enhancing the feature expression ability of the model.




3.3. Model Complexity Analysis


This section conducted a complexity analysis of deep learning models, using two metrics: parameters and FLOPs. The specific data are shown in Table 3.



According to the data shown in Table 3, MJHResNet has advantages in terms of parameter count and FLOPs compared to ResNet-18, 2D-CNN, and Fast3D CNN. However, compared to HResNet, MJHResNet has higher complexity, mainly due to having more convolutional branches and modules to obtain multi-scale information.




3.4. Optimal Parameter Experiment


In order to find the optimal parameters for MJHResNet, this study conducted 18 experiments on sample (4) by changing the size of the convolution kernels (3 × 3, 5 × 5, 7 × 7) and patch sizes (9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 19 × 19). The experimental results shown in Figure 9 and Figure 10 show that the highest AA value (99.36%) is achieved at the convolution kernel of 7 × 7 and the patch size of 13 × 13, with a prediction time of 11.7 s. The highest OA value (99.50%) is achieved at the convolution kernel of 3 × 3 and the patch size of 17 × 17, with a prediction time of 14 s. The optimal value is evaluated comprehensively at the convolution kernel of 7 × 7 and the patch size of 13 × 13 (AA: 99.36%; OA: 99.47%). Large convolutional kernels and patch sizes not only improve accuracy, but also increase the running pressure on computers, resulting in a longer computation time and affecting efficiency. The convolution kernel is 3 × 3, the patch size is 9 × 9, and the prediction time is 5.2 s. Finally, considering the performance bottleneck of the computer in this study, we chose to sacrifice a small part of accuracy to improve the computational efficiency without affecting the target extraction. In this paper, we chose a 3 × 3 convolution kernel and a 9 × 9 patch for the experiments. Afterwards, six experiments were conducted with learning rates of 1.0, 0.1, 0.01 (1.0, 0.1), (1.0, 0.01), and (0.1, 0.01). According to the experimental results shown in Table 4, the combination of learning rates (1.0, 0.1) yielded the best results.




3.5. Model Training


In this experiment, 50 preprocessed image samples (including transparent film, paper scraps, black film, transparent plastic strapping rope, white plastic strapping rope, red plastic strapping rope, white foam board, cotton, and background) were sliced to form a large number of 9 × 9 × 16 patches, and a data set was constructed. We used 8% of the dataset samples as the training set, which was imported into SVM, ResNet-18, 2D-CNN, Fast3D-CNN, Hierarchical ResNet, SpectralFormer, and MJHResNet models for recognition and classification experiments.



3.5.1. Model Parameter Settings


This model uses an Adadelta optimizer, ReLU activation function, CrossEntropyLoss function, and has been trained for 100 epochs. The first 70 epochs have a learning rate of 1.0, and the last 30 epochs have a learning rate of 0.1. The batch size is 1024.




3.5.2. Model Training Results


In Figure 11, the recognition and classification results of the MJHResNet model proposed in this paper and the comparison models SVM [33], ResNet-18 [37], 2D-CNN [28], Fast3D-CNN, SpectralFormer [29], and Hierarchical ResNet [25] are shown. From the recognition result graph, it can be seen that the MJHResNet model has the best performance, with a more accurate recognition of various impurities and fewer false recognitions of impurities, proving that this method is scientifically effective. Each algorithm has good recognition performance for sample (1) in Figure 11A and sample (5) in Figure 11B. In the result graphs of the other samples, the recognition ability of Fast3D-CNN is weaker than that of other DL models, with more misrecognition areas. SVM has weak generalization and poor recognition of impurities such as plastic film and transparent rope.



According to the confusion matrix of the seven types of models shown in Figure 12, it can be intuitively seen that all the foreign fibers identified by the seven types of models are mistakenly identified as seed cotton, mainly because the foreign fibers are located on the seed cotton, which is caused by the inaccurate recognition of some edges. At the same time, according to the confusion matrix, the recognition results of each type of model can be calculated statistically (Table 5). In Table 5, it can be seen that, compared with other impurities, each type of model has relatively weak recognition of transparent film and transparent rope, mainly because the light will pass through them and shine on the seed cotton, which is similar to the reflectivity change of the seed cotton, and the difference is small. According to the obtained results, it can be seen that the MJHResNet model improved various indicators compared to the Hierarchical ResNet model, and compared with the advanced SpectralFormer classifier it also has advantages, proving that our improvement is successful. SVM has weak robustness and significant differences in recognition accuracy between different categories, resulting in the lowest AA of 94.98%. In addition, compared with the other six models, the MJHResNet model proposed in this paper has better performance in the experiment of seed cotton foreign fiber recognition and classification, with the AA and OA reaching 98.71%, 99.28%, respectively. Furthermore, the recall and precision of each category are both above 96%.



In Figure 13, the horizontal and vertical coordinates show the recognition recall and precision of seven types of models for nine types of samples. In Figure 13a, it can be clearly seen that each type of model has relatively weak recognition of transparent rope, red rope, and white rope, especially for the SVM model, which may be affected by the number of samples. Due to the small volume of transparent rope, white rope, and red rope, the number of samples is small, which leads to insufficient network learning. In Figure 13b, it can be seen that the precision values of the first four types of models fluctuate greatly, reflecting weaker robustness of the models, while the latter three types of models are more concentrated and have better robustness. From Figure 13a,b, it can be seen that the MJHResNet model has significant advantages compared to the other six types of models, fully demonstrating the feasibility of this model.



The experimental results show that the MJHResNet model proposed in this paper is feasible. It can complete the task well in the work of seed cotton foreign fiber classification and recognition, and the pretreatment process promotes the accurate recognition and classification of seed cotton foreign fiber to a certain extent. It has great potential for application in fields such as medicine, the textile industry, and industrial materials.






4. Conclusions


In order to solve the problem of the difficulty of identifying white paper scraps, foam boards, colorless transparent films, and other foreign fibers in seed cotton, this paper proposes a method combining hyperspectral imaging technology in the 400–1000 nm spectral range with the MJHResNet algorithm. This method performs black-and-white correction, image cutting, standardization processing, MSC processing, and PCA processing on the original image in advance to effectively enhance the spectral feature information. This method has shown good performance in identifying seed cotton foreign fibers, with an AA and OA of 98.71% and 99.28%. It can complete the recognition and classification of seed cotton foreign fibers excellently, and has good generalization ability and robustness. It has great potential for application in the field of seed cotton foreign fiber recognition. Due to the consideration of device performance, the experiment did not use large convolutional kernels, large patch sizes, and data parallel computing. In addition, whether the accuracy could be further improved by using a spatial–spectral combination will be discussed. In future research, we will expand the dataset and use more types of seed cotton fibers to design and train an optimal autoencoder for more complex tasks. Moreover, the hardware equipment will be upgraded and a spatial–spectral combination and multi-scale convolution kernel will be used. Further research will be carried out in the direction of large patch size experiments and multi-GPU parallel computing, which will increase the accuracy, shorten the prediction time, and provide a more accurate and efficient method for identifying seed cotton foreign fiber.
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Figure 1. Experimental Flow Diagram. 
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Figure 2. MJHResNet structure diagram. 
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Figure 3. SENet structure diagram. 
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Figure 4. Hyperspectral image cropping image. 
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Figure 5. Spectral curve diagram. 
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Figure 6. Visualization of standardized processing. 
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Figure 7. Visualization of MSC processing. (a) Visualization image after MSC processing only; (b) Visualization image after standardization and MSC processing in sequence. 
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Figure 8. Experimental diagram of PCA. (a) Explanation of variance of the first three principal components; (b) OA diagram of PCA experiment. 
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Figure 9. Experimental diagram of optimal parameter distribution. (a) AA values corresponding to different sizes of convolution kernels and patches; (b) OA values corresponding to different sizes of convolution kernels and patches. 
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Figure 10. Prediction time of each experimental parameter. 
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Figure 11. Classification diagram for identifying different fibers in seed cotton. (A) the original image sample (1), sample (2), sample (3) experimental results; (B) the original image sample (4), sample (5), sample (6) experimental results; (a) Original image; (b) Label; (c) SVM; (d) ResNet-18; (e) 2D-CNN; (f) Fast3D-CNN; (g) Hierarchical ResNet; (h) SpectralFormer; (i) MJHResNet. 
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Figure 12. Confusion matrix of all models. (A) SVM; (B) ResNet-18; (C) 2D-CNN; (D) Fast3D-CNN; (E) Hierarchical ResNet; (F) SpectralFormer; (G) MJHResNet. 
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Figure 13. Recall and Precision Description Charts of all models. (a) Recall curves of seven types of models; (b) Precision distribution map of seven types of models. 
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Table 1. MJHResNet parameters.
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Layer Name

	
Output Shape

	
Convolution Kernel

	
Step

	
Padding






	
Input

	
9 × 9 × 16




	
Conv0

	
7 × 7 × 64 (1)

	
3 × 3 × 16 (1)

	
1

	
(0,0)




	
Conv1

	
7 × 7 × 64 (6)

	
3 × 3 × 64 (6)

	
1

	
(1,1)




	
Conv2

	
7 × 7 × 64 (6)

	
3 × 3 × 64 (6)

	
1

	
(1,1)




	
Conv3

	
7 × 7 × 64 (6)

	
3 × 3 × 64 (6)

	
1

	
(1,1)




	
Conv4

	
7 × 7 × 64 (6)

	
3 × 3 × 64 (6)

	
1

	
(1,1)




	
Conv6

	
7 × 7 × 64 (6)

	
3 × 3 × 64 (6)

	
1

	
(1,1)




	
Conv7

	
7 × 7 × 64 (6)

	
1 × 1 × 64 (6)

	
1

	
(1,1)




	
SENet

	
7 × 7 × 128

	

	

	




	
Avg_pool

	
1 × 1 × 128

	
7 × 7 × 128

	




	
Output

	
Class (9)











 





Table 2. Ablation experiment.
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Method

	
Sample 1

	
Sample 2




	
AA

	
OA

	
AA

	
OA






	
The first hierarchical residual structure in the DHR structure

	
98.1653

	
98.1888

	
97.0243

	
97.3698




	
Single multi-branch residual structure replaced by DHR

	
97.6769

	
98.2116

	
96.7951

	
96.129




	
DHR

	
98.209

	
98.3196

	
97.8793

	
98.2809




	
DHR + SENet

	
98.4296

	
98.43

	
98.0765

	
98.6844








With the best results highlighted in bold.













 





Table 3. Model complexity analysis.
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	Model
	ResNet-18
	2D-CNN
	3D-CNN
	HResNet
	MJHResNet





	Parameters (M)
	11.4
	2.16
	2.43
	0.46
	1.06



	FLOPs (G)
	561.5
	41.3
	40.6
	22.8
	33.6










 





Table 4. Optimal learning rate results.
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	Group
	Epoch_a
	Epoch_b
	Learning Rate_a
	Learning Rate_b
	AA
	OA





	1
	70
	30
	1.0
	1.0
	98.21%
	99.03%



	2
	70
	30
	0.1
	0.1
	98.77%
	99.21%



	3
	70
	30
	0.01
	0.01
	98.62%
	99.12%



	4
	70
	30
	1.0
	0.1
	98.98%
	99.37%



	5
	70
	30
	1.0
	0.01
	98.83%
	99.21%



	6
	70
	30
	0.1
	0.01
	98.67%
	99.28%







With the best results highlighted in bold.













 





Table 5. Recognition result data for all models.
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Film

	
Cotton

	
Paper

	
Black Film

	
White Rope

	
Red Rope

	
Transparent Rope

	
Foam Board

	
Background

	
AA

	
OA






	
SVM

	
Recall

	
86.8235

	
98.0455

	
98.6301

	
98.3645

	
95.2278

	
96.7608

	
84.9696

	
97.0863

	
98.8814

	
94.9766

	
97.903




	
Precision

	
90.9006

	
97.7881

	
98.9456

	
98.7808

	
95.8998

	
95.9646

	
87.5719

	
95.2839

	
98.7247




	
ResNet-18

	
Recall

	
96.1599

	
97.3134

	
97.4137

	
97.2909

	
96.3791

	
96.6651

	
94.261

	
96.9235

	
97.4283

	
96.6483

	
97.2988




	
Precision

	
93.9774

	
97.2228

	
98.3318

	
97.43

	
94.7973

	
90.0015

	
86.2653

	
96.3892

	
97.8117




	
2D-CNN

	
Recall

	
95.8156

	
97.2287

	
97.5728

	
97.3524

	
96.4459

	
96.3619

	
93.6848

	
96.9339

	
97.4663

	
96.5403

	
97.2641




	
Precision

	
93.3931

	
97.237

	
97.9277

	
97.8681

	
96.173

	
91.9598

	
88.2743

	
96.4427

	
97.7488




	
Fast3D-CNN

	
Recall

	
92.458

	
96.783

	
97.334

	
96.992

	
96.613

	
96.761

	
90.949

	
96.276

	
97.174

	
95.7043

	
96.7677




	
Precision

	
89.9768

	
96.6984

	
97.952

	
97.0584

	
92.9971

	
92.2843

	
84.6436

	
95.5835

	
97.6




	
Hierarchical ResNet

	
Recall

	
96.2931

	
97.2018

	
97.5367

	
97.1944

	
96.5627

	
95.6119

	
94.3426

	
97.1903

	
97.4518

	
96.5984

	
97.2646




	
Precision

	
94.3262

	
97.2587

	
97.9325

	
97.8863

	
95.1027

	
93.2897

	
88.7803

	
96.3028

	
97.6254




	
SpectralFormer

	
Recall

	
97.6044

	
98.7398

	
98.7538

	
98.8123

	
97.3135

	
97.6703

	
95.3362

	
96.3519

	
98.6456

	
97.692

	
98.6204




	
Precision

	
96.0401

	
98.4894

	
99.3733

	
98.7755

	
95.2474

	
95.9705

	
95.0215

	
98.1611

	
99.0187




	
MJHResNet

	
Recall

	
98.386

	
99.296

	
99.449

	
99.581

	
98.265

	
98.5

	
96.107

	
99.453

	
99.373

	
98.7122

	
99.2835




	
Precision

	
98.097

	
99.2573

	
99.5542

	
99.3038

	
98.0683

	
97.8288

	
96.5851

	
98.809

	
99.4507








With the best results highlighted in bold.
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