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Abstract: Aiming at the problems of a large volume, slow processing speed, and difficult deployment
in the edge terminal, this paper proposes a lightweight insulator detection algorithm based on an
improved SSD. Firstly, the original feature extraction network VGG-16 is replaced by a lightweight
Ghost Module network to initially achieve the lightweight model. A Feature Pyramid structure and
Feature Pyramid Network (FPN+PAN) are integrated into the Neck part and a Simplified Spatial
Pyramid Pooling Fast (SimSPPF) module is introduced to realize the integration of local features
and global features. Secondly, multiple Spatial and Channel Squeeze-and-Excitation (scSE) attention
mechanisms are introduced in the Neck part to make the model pay more attention to the channels
containing important feature information. The original six detection heads are reduced to four
to improve the inference speed of the network. In order to improve the recognition performance
of occluded and overlapping targets, DIoU-NMS was used to replace the original non-maximum
suppression (NMS). Furthermore, the channel pruning strategy is used to reduce the unimportant
weight matrix of the model, and the knowledge distillation strategy is used to fine-adjust the network
model after pruning, so as to ensure the detection accuracy. The experimental results show that the
parameter number of the proposed model is reduced from 26.15 M to 0.61 M, the computational load
is reduced from 118.95 G to 1.49 G, and the mAP is increased from 96.8% to 98%. Compared with
other models, the proposed model not only guarantees the detection accuracy of the algorithm, but
also greatly reduces the model volume, which provides support for the realization of visible light
insulator target detection based on edge intelligence.

Keywords: SSD; insulator; lightweight; channel pruning; target detection

1. Introduction

Insulators are essential components in power transmission lines, primarily functioning
to provide electrical insulation and mechanical anchorage. However, due to their prolonged
exposure to outdoor environments and the effects of overvoltage, they are susceptible to
damage, which can impair the stable operation of the transmission lines and potentially
lead to large-scale power outages, resulting in significant economic and social losses [1].
Therefore, to ensure the secure operation of power transmission lines, conducting the safety
inspections of these lines is imperative. Conventional inspection methods entail visual
examination by human operators or the use of specialized equipment to detect defects in
insulators. Nonetheless, such approaches are prone to missing defects, making erroneous
judgments, and are inefficient [2]. With the ongoing development of deep learning and
drone technologies, they have come to play a crucial role in the safety inspections of power
transmission lines [3]. Initially, drones equipped with high-definition cameras are utilized
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to conduct aerial photography of insulators on power transmission lines, capturing high-
resolution images. Subsequently, deep learning techniques are employed to accurately
identify and analyze defects within these images of the insulators.

In the realm of insulator object detection in power transmission lines, numerous
scholars have conducted related research. The two-stage target detection algorithms include
R-CNN [4], Fast R-CNN [5], and Faster R-CNN [6], which show an excellent performance
and high detection accuracy in the field of target detection. Zhao [7] et al. present an
improved Faster R-CNN-based method for insulator object detection, which achieves
the precise detection of insulators under various aspect ratios, scales, and conditions of
mutual occlusion by enhancing the anchor generation method within the Region Proposal
Network (RPN) and refining the non-maximum suppression (NMS) strategy. Haijian [8]
et al. propose a transmission line insulator detection method based on an improved Faster
R-CNN, substituting the original VGG-16 network with a deeper Resnet-50 network and
incorporating attention mechanism modules, and the target detection accuracy is improved
by 1.63%, albeit at a cost of a slower detection speed. To address the issue of the slow
recognition speed inherent in R-CNN series algorithms, Redmond et al. [9] introduced the
YOLO (You Only Look Once) series of algorithms, which, as a type of single-stage object
detection algorithm, offer a high detection speed but compromise on the detection precision
to some extent. Juping [10] et al. proposed an overhead power transmission line object
detection method based on an improved YOLOv5, which enhances the detection accuracy
of small objects by incorporating larger-scale detection layers and skip connections into the
algorithm. In addition, a small object-enhanced Complete Intersection over Union (CIoU) is
put forward as the loss function of the bounding box regression. And pruning methods are
adopted to lighten the model. The results indicate that this method achieves a 4% increase
in the detection accuracy, a 58% reduction in the model size, and a 3.3% improvement
in the detection speed. Wang [11] et al. introduced an insulator defect detection method
based on ML-YOLOv5, in which the depthwise separable convolutions is employed as
the backbone feature extraction network and the feature fusion module is improved by
adopting an Enhanced Feature Pyramid Network (MFPN), and utilizing YOLOv5m as a
teacher model for knowledge distillation. The experimental outcomes demonstrate that this
algorithm boasts high detection accuracy and rapid detection speeds. In addition, Liu [12]
et al. proposed a multi-scale detection algorithm, the SSD (Single-Shot MultiBox Detector)
algorithm, which overcomes the shortcomings of the R-CNN series and YOLO series and
has advantages in speed and accuracy. Xuan [13] et al. presented an improved SSD for
the online detection of Insulators and Spacers Based on a UAV System. This approach
utilizes the lightweight MnasNet network as the feature extraction network to generate
feature maps and employs two multi-scale feature fusion strategies to integrate multiple
feature maps. The outcomes illustrate that the algorithm excels in both a high detection
accuracy and fast detection speed; however, there remains room for further reductions in
the algorithm’s size.

Prior to inspecting defects on insulators, a preprocessing stage is indispensable: the
identification and localization of insulators within images through object detection tech-
niques. This preliminary step lays the groundwork for subsequent defect detection, en-
abling the system to focus its analysis on areas of potential defects in insulators, thereby
enhancing the overall efficiency and accuracy of the inspection process. In pursuit of
a balance between the detection accuracy, recognition speed, and a smaller algorithmic
footprint, numerous scholars have adopted more lightweight convolutional neural net-
work models; however, these still entail substantial computational loads and parameter
counts [14]. Against this backdrop, this paper proposes a lightweight visible-light insulator
object detection algorithm based on an improved SSD. First, improvements are made to the
base model to enhance its detection accuracy, followed by pruning operations to achieve
model lightweighting. To mitigate the decline in precision typically associated with prun-
ing, knowledge distillation is employed to fine-tune the lightweight model. Ultimately,
the performance of the proposed algorithm is validated using a visible-light insulator
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dataset, with a comparative analysis against classic object detection algorithms to confirm
the efficacy of the improvement strategies outlined herein. The algorithm proposed in this
paper can effectively solve the problem that the detection accuracy of the algorithm is not
high in the insulator target detection task and the algorithm is too large to be deployed to a
mobile terminal, such as the UAV.

2. SSD Network Model

The SSD object detection algorithm is characterized by multi-prediction layers and
multi-scale features [15]. Its network architecture can be divided into three parts: First, the
base network utilizes the VGG-16 structure to extract multi-scale feature information from
the target. Second, auxiliary convolutional layers are connected to the final feature map
of VGG-16, constructing deeper output layers for object detection. Third, the prediction
convolutional layers obtain feature information from the feature maps and utilize NMS to
derive the detection results [16]. The model architecture of the SSD algorithm is depicted
in Figure 1. The input image size for SSD is 300 × 300 pixels, with VGG-16 serving as the
feature extraction layer. Through six convolutional layers, it constructs multi-scale detection
layers to capture feature information at various scales including 38 × 38, 19 × 19, 10 × 10,
5 × 5, 3 × 3, and 1 × 1, forming a multi-scale feature extraction network [17]. By setting
prior boxes on feature maps of different depths and resolutions, and performing category
prediction and location refinement for each prior box boundary, objects are precisely
matched. The fact that different convolutional layers in a CNN have distinct receptive
fields enables the network to effectively recognize targets of different sizes. Ultimately, the
network computes the coordinates and class of candidate boxes through regression [18]. In
the SSD algorithm, the formula for calculating the anchor box scales corresponding to each
feature map is shown in Equation (1). Here, Sm denotes the scale of candidate boxes for the
m-th feature map; Smax represents the maximum scale of candidate boxes, typically set at
0.9; Smin signifies the minimum scale of candidate boxes, usually set to 0.2; and r denotes
the total number of feature maps. The main symbols and their meanings are shown in
Table 1.

Sm = Smin +
Smax − Smin

r − 1
, m ∈ {1, 2, . . . , r} (1)

Sensors 2024, 24, x FOR PEER REVIEW 3 of 16 
 

 

with a comparative analysis against classic object detection algorithms to confirm the ef-

ficacy of the improvement strategies outlined herein. The algorithm proposed in this pa-

per can effectively solve the problem that the detection accuracy of the algorithm is not 

high in the insulator target detection task and the algorithm is too large to be deployed to 

a mobile terminal, such as the UAV. 

2. SSD Network Model 

The SSD object detection algorithm is characterized by multi-prediction layers and 

multi-scale features [15]. Its network architecture can be divided into three parts: First, the 

base network utilizes the VGG-16 structure to extract multi-scale feature information from 

the target. Second, auxiliary convolutional layers are connected to the final feature map of 

VGG-16, constructing deeper output layers for object detection. Third, the prediction con-

volutional layers obtain feature information from the feature maps and utilize NMS to 

derive the detection results [16]. The model architecture of the SSD algorithm is depicted 

in Figure 1. The input image size for SSD is 300 × 300 pixels, with VGG-16 serving as the 

feature extraction layer. Through six convolutional layers, it constructs multi-scale detec-

tion layers to capture feature information at various scales including 38 × 38, 19 × 19, 10 × 

10, 5 × 5, 3 × 3, and 1 × 1, forming a multi-scale feature extraction network [17]. By setting 

prior boxes on feature maps of different depths and resolutions, and performing category 

prediction and location refinement for each prior box boundary, objects are precisely 

matched. The fact that different convolutional layers in a CNN have distinct receptive 

fields enables the network to effectively recognize targets of different sizes. Ultimately, 

the network computes the coordinates and class of candidate boxes through regression 

[18]. In the SSD algorithm, the formula for calculating the anchor box scales corresponding 

to each feature map is shown in Equation (1). Here, mS  denotes the scale of candidate 

boxes for the m-th feature map; maxS  represents the maximum scale of candidate boxes, 

typically set at 0.9; minS  signifies the minimum scale of candidate boxes, usually set to 

0.2; and r  denotes the total number of feature maps. The main symbols and their mean-

ings are shown in Table 1. 

 1,2,...,
1

max min
m min

S S
S S m r

r

−
= + 

−
，  (1) 

300

300

Image

S
S

D

D
et

ec
ti

o
n

 8
7
3

2
 p

er
 C

la
ss

N
o
n
-M

ax
im

u
m

 S
u
p
p
re

ss
io

n

74.3mAP

59FPS

Extra Feature Layers

VGG-16

Through Conv5_3 layer

 

Figure 1. SSD algorithm model. 
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Figure 1. SSD algorithm model.

Table 1. Main symbols and their meanings.

Symbol Description

Sm the scale of candidate boxes for the m-th feature map
Smax the maximum scale of candidate boxes
Smin the minimum scale of candidate boxes
r the total number of feature maps



Sensors 2024, 24, 5910 4 of 15

Table 1. Cont.

Symbol Description

h the picture height
w the picture width
c the picture length
y′i channel feature map
Φi, j undergoes a linear operation
d × d, k × k the size of the linear operation kernel
σ(·) the compressed feature maps are then normalized by the sigmoid function
δ(·) the ReLU function
M the prediction box with a higher prediction score
Bi the other prediction boxes
ρ the Euclidean distance between M and Bi
ε non-zero constant
X the input to the BN layer
Y the output from the BN layer
γ represents the normalized scale factor
σ the variance computed over a mini-batch for the BN layer
µ the mean computed over a mini-batch for the BN layer
β a bias compensation in the normalization process
Γ encompassing all prunable channels
FPS Frame Per Second
Tp true positive predictions
Fp false positive predictions
Fn indicates false negative predictions

3. Improved SSD Network Model

This paper proposes the following improvements to the SSD network model based on
the actual characteristics of power transmission line insulator images, with the enhanced
SSD network structure illustrated in Figure 2.

(1) The original feature extraction network, VGG-16, is replaced with a lightweight Ghost
Module network to initially achieve model lightweighting.

(2) The Neck part of the SSD network adopts an FPN+PAN structure to enhance feature
extraction capabilities. To facilitate the fusion of local and global features, a SimSPPF
structure is introduced at each input end of the Neck.

(3) Multiple Spatial and Channel Squeeze-and-Excitation (scSE) attention mechanism
modules are incorporated into the Neck section, enabling the network to better
focus on channels containing critical feature information while preserving positional
information of feature layers.

(4) The original six detection heads are reduced to four to accelerate the network’s
inference speed. To improve the recognition of occluded and overlapping objects,
DIoU-NMS replaces the conventional non-maximum suppression.

(5) Channel pruning strategies are employed to eliminate unimportant weight matri-
ces, further lightweighting the constructed network model and achieving model
compression objectives.

(6) To mitigate the impact of channel pruning on detection accuracy, knowledge dis-
tillation is applied to fine-tune the lightweight network model, ensuring detection
precision is maintained.
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3.1. Feature Extraction Network

The original SSD network model employs VGG-16 as its feature extraction backbone,
which comprises a stack of numerous convolutional and pooling layers, leading to a deep
network architecture. However, this model is characterized by a substantial number of
parameters, necessitating longer training times and posing significant challenges in the
tuning process, thereby hindering its deployment on mobile devices. Consequently, in
pursuit of maintaining the detection performance while reducing the model size, this study
eschews the VGG-16 network in favor of adopting a lightweight Ghost Module to construct
the primary feature extraction backbone.

The Ghost Module functionally substitutes conventional convolution [19], capable
of generating an equivalent number of feature maps to standard convolutional layers
through a two-step process. Initially, a 1 × 1 convolution with fewer output channels is
employed to perform dimensionality reduction, thereby creating a condensed feature map
from the input feature layer. Subsequently, depthwise separable convolution is applied to
this condensed map to yield similar feature maps. Finally, by concatenating the condensed
feature map with its corresponding similar feature maps, an output feature map is attained,
mirroring the structure of those produced by standard convolutions. The Ghost Module’s
convolution operation encompasses two primary components. The first part involves
obtaining intrinsic feature maps through conventional convolutional operations. If the
input image size is h × w × c, the computational cost of this part is h × w × c × m × w′ × h′.
The other part employs a simple linear operation to generate multiple feature maps, as
illustrated by Equation (2), where depthwise separable convolution is applied to the original
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features. Each channel feature map, y′ i, undergoes a linear operation, Φi, j, to produce
ghost feature maps.

yij = Φi, j(y′ i), ∀i = 1, . . . , m, j = 1, . . . , s (2)

The theoretical acceleration ratio of replacing conventional convolutional modules
with the Ghost Module is given by Equation (3), where d × d denotes the size of the linear
operation kernel, which is comparable in magnitude to k × k and s << c. Consequently,
Equation (3) can be approximated by Equation (4), indicating that the Ghost Module
entails significantly fewer parameters and computational costs compared to standard
convolutions.

rs =
n · h′ · w′ · c · k · k

n
s · h′ · w′ · c · k · k + (s − 1) · n

s · h′ · w′ · d · d
≈ s · c

s + c − 1
≈ s (3)

rc =
n · c · k · k

n
s · c · k · k + (s − 1) · n

s · d · d
≈ s · c

s + c − 1
≈ s (4)

3.2. Feature Fusion Network

In order to solve the influence of different target sizes on the model detection accuracy
caused by the change in shooting angle in the process of transmission line insulator image
acquisition, the FPN+PAN structure is integrated into the Neck part of the SSD network to
enhance feature extraction capabilities, particularly catering to objects of diverse scales [20].
Furthermore, to facilitate the fusion of local and global features, both the SimSPPF structure
and scSE attention mechanism modules are introduced at the inputs of the Neck [21].
The FPN+PAN module is depicted in Figure 3, wherein the Feature Pyramid Network
(FPN) structure performs upsampling from higher to lower dimensions of the backbone
network’s outputs, thereby capturing strong semantic information. Conversely, the Path
Aggregation Network (PAN) structure conducts downsampling from lower to higher
dimensions, acquiring robust location information across various scales. Ultimately, these
features are concatenated across dimensions, enabling the superior recognition of objects
across different scales.
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In the process of feature extraction from power transmission line insulator images,
issues arise due to inconsistencies in image scales and distortions caused by operations such
as resizing, cropping, and grayscale transformations. To circumvent these issues, this study
integrates the SimSPPF module at the input end of the Neck section, facilitating the fusion
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of multi-scale insulator feature maps and global feature maps. The structure of the SimSPPF
module is illustrated in Figure 4. This module processes the input data sequentially through
several Maxpool layers with 5 × 5 kernel sizes. Notably, the combined outputs of two
sequential 5 × 5 Maxpool layers equate to that of a single 9 × 9 Maxpool layer, and
similarly, the combined output of three sequential 5 × 5 Maxpool layers matches that of
a single 13 × 13 Maxpool layer. Consequently, the SimSPPF structure requires only three
5 × 5 convolution kernels to achieve the integration of local and global features, thereby
enhancing computational efficiency and reducing computational overhead. Moreover, the
SimSPPF module employs the ReLU activation function to expedite network inference,
further boosting the detection efficiency.
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To enhance the SSD network model’s capability in capturing and focusing on critical
features in insulator images while preserving positional information in feature layers, this
study incorporates multiple scSE attention mechanism modules into the Neck section [22].
As depicted in Figure 5, the scSE attention mechanism module is comprised of a parallel
combination of a spatial squeeze–excitation (sSE) module and a channel squeeze–excitation
(cSE) module. The sSE module reduces the channel information in feature maps to perform
dimensionality reduction, and the compressed feature maps are then normalized by the
sigmoid function σ(·) to obtain important spatial information, thereby invigorating key
spatial features and increasing focus on crucial channel features. Meanwhile, the cSE
module adjusts feature maps based on feature correlations across different channels. It
compresses the feature map of size H × W × C through global average pooling, followed
by activation through the ReLU function δ(·) and sigmoid normalization σ(·) to derive the
importance of channel features, thereby enhancing attention to vital features [23].
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When UAVs capture images of insulators, variations in the shooting angles often
lead to the occlusion of the insulators in the photographs. To enhance the recognition
of the occluded objects, this paper adopts DIoU-NMS in place of the conventional NMS
technique [24]. The definition of DIoU-NMS is outlined by the following formula:

si =

{
si PIoU − RDIoU(M, Bi) < ε

0 PIoU − RDIoU(M, Bi) ≥ ε
(5)

RDIoU(M, Bi) =
ρ2(M, Bi)

c2 (6)

In the equation, M represents the prediction box with a higher prediction score, Bi
denotes the other prediction boxes, ρ is the Euclidean distance between M and Bi, and c is
the diagonal distance of the smallest enclosing rectangle covering both M and Bi. DIoU-
NMS effectively determines whether two overlapping boxes belong to the same object and
efficiently suppresses bounding boxes. Compared to ground-level natural perspectives, the
overlap rate of insulators is lower when viewed from a UAV perspective; hence, a small
threshold ε is employed in this study to enhance the accuracy of the SSD algorithm in
detecting insulator targets [25].

3.3. Model Compression and Fine-Tuning

To mitigate the reliance of the SSD network model on computational power, storage
space, and other resources of edge intelligent terminals, this study employs channel pruning
strategies to compress the enhanced SSD network model [26]. In order to accelerate the
model convergence, BN layers are introduced after convolutional layers. The BN layers
process the input data through shift and scaling parameters, normalizing the outputs of
each convolutional layer within a reasonable range, as depicted in Equations (7) and (8).

Y = BN(X) = γ
X − µ√
σ2 + ε

+ β (7)

Y = lim
γ→0

γ
X − µ√
σ2 + ε

+ β = β (8)

In this context, X represents the input to the BN layer and Y denotes the output
from the BN layer. σ and µ are, respectively, the variance and mean computed over
a mini-batch for the BN layer. β serves as a bias compensation in the normalization
process, while γ acts as a scaling factor post-normalization, signifying the importance of
channels. ε is a small non-zero constant to prevent division by zero. When γ approaches
zero, the activation function following the BN layer maps the channel inputs to smaller
output values [27], suggesting that the corresponding channel contributes minimally to
the BN layer’s output. Consequently, this redundant channel can be pruned, leading to a
lightweight network architecture.

During conventional training, the model’s loss function does not incorporate γ, result-
ing in a post-training distribution of γ that tends towards a normal distribution with most
values close to 1, making pruning of the model challenging. To identify redundant channels,
γ needs to be incorporated into the loss function for sparsification training, with an L1
regularization imposed on γ to drive the model parameters towards structured sparsity,
thereby facilitating the identification of crucial channels [28]. The modified loss function is
expressed as Equation (9).

L = ∑
(x, y)

l( f (x, W), y) + λ ∑
γ∈Γ

g(γ) (9)

In the equation, the first summation represents the loss function of the conventionally
trained model, while the second summation denotes the L1 regularization penalty term. L
signifies the loss function for sparse training, with Γ encompassing all prunable channels.
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The function g(γ) embodies the L1 regularization, here defined as g(γ) = |γ|. Initially, the
model undergoes standard training. Following this, the well-trained model is subjected
to sparse training via the loss function L, promoting sparsity. Upon the completion of
the sparse training, the relevance γ of redundant channels diminishes towards zero, thus
accomplishing model lightweighting.

To address the degradation in performance resulting from model pruning, this study
employs knowledge distillation to fine-tune the model post-channel pruning [29]. Leverag-
ing transfer learning, complex teacher networks guide simpler student networks, migrating
knowledge to the student model. In this work, YOLOv5 is selected as the teacher network,
as depicted in Figure 6, with the student network adopting a hint-based learning strategy
to imbibe pertinent features from the teacher network [30]. To counteract the imbalance
between insulator targets and the background during object recognition, a weighted cross-
entropy loss is employed in the knowledge distillation network. In pursuit of further
enhancing the network performance, the regression outputs from the teacher network
are used as upper bounds, ensuring that the student network is not penalized even if it
outperforms the teacher, thus fostering an environment conducive to learning without
constraints [31]. This methodology promotes the preservation and enhancement of critical
detection capabilities in the distilled, lightweight model [32,33].

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16 
 

 

       Teacher Hint Self-Attention L2 Loss Adaptation

Detection Classification

Regression

Soft  Label

Weighted

Cross Entropy

Loss

Classification

Regression

Bounded

Regression

Loss

SoftMax &

Smooth L1 Loss

Ground Truth

Label

      Student Guided

Detection

 

Figure 6. Knowledge distillation diagram. 

4. Experimental Results and Analysis 

4.1. Experimental Environment 

The experiments reported herein were conducted on a 64-bit Windows 11 operating 

system, utilizing the deep learning framework PyTorch. The detailed configuration of the 

experimental environment is presented in Table 2. 

Table 2. Experimental environment configuration. 

Category Parameter 

CPU 12th Gen Intel(R) Core(TM) i7-12700KF 3.6 GHz 

Memory 32 G 

GPU NVIDIA GeForce RTX 3090Ti 

GPU memory 24 G 

OS Windows 11 

CUDA version CUDA 11.0 

cuDNN cuDNN 7.6.5 

Language Python 3.6 

4.2. Datasets and Training 

To validate the effectiveness of the algorithm presented in this paper, an open-source 

visible light insulator dataset was selected. In order to enhance the generalization capabil-

ity of the model, data augmentation techniques were applied to a portion of the sample 

images, thereby increasing the diversity of the dataset. These techniques included image 

cropping, stitching, color space transformation, resizing, among others. The augmented 

dataset was then annotated using the LabelImg (version 1.8.6) tool, with insulators in the 

dataset labeled consistently as ‘Insulator’. The annotation format adhered to PascalVOC 

standards, ensuring uniformity across similar objects. Upon the completion of the labeling 

process, XML files were generated and stored within a label directory, each corresponding 

to an annotated image. The annotated files and their respective dataset images were me-

ticulously paired and subsequently split into training and testing sets at an 8:2 ratio. The 

contents of the segmented annotation files were further converted into a training text and 

testing text, formatted according to predefined specifications, to facilitate model training. 

The training set was fed into an improved SSD network model, with the maximum 

learning rate initialized at 0.01 and decreased to a minimum of 0.0001 throughout training. 

A batch size of 16 was employed to balance the computational efficiency and memory 

utilization. The model underwent 300 iterations of training, during which the optimal 

weights were saved for future deployment. The input image resolution was standardized 

to 416 × 416 pixels to accommodate the architecture’s requirements and enhance feature 

extraction. 

Figure 6. Knowledge distillation diagram.

4. Experimental Results and Analysis
4.1. Experimental Environment

The experiments reported herein were conducted on a 64-bit Windows 11 operating
system, utilizing the deep learning framework PyTorch. The detailed configuration of the
experimental environment is presented in Table 2.

Table 2. Experimental environment configuration.

Category Parameter

CPU 12th Gen Intel(R) Core(TM) i7-12700KF 3.6 GHz
Memory 32 G

GPU NVIDIA GeForce RTX 3090Ti
GPU memory 24 G

OS Windows 11
CUDA version CUDA 11.0

cuDNN cuDNN 7.6.5
Language Python 3.6

4.2. Datasets and Training

To validate the effectiveness of the algorithm presented in this paper, an open-source
visible light insulator dataset was selected. In order to enhance the generalization capability
of the model, data augmentation techniques were applied to a portion of the sample images,
thereby increasing the diversity of the dataset. These techniques included image cropping,
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stitching, color space transformation, resizing, among others. The augmented dataset
was then annotated using the LabelImg (version 1.8.6) tool, with insulators in the dataset
labeled consistently as ‘Insulator’. The annotation format adhered to PascalVOC standards,
ensuring uniformity across similar objects. Upon the completion of the labeling process,
XML files were generated and stored within a label directory, each corresponding to an
annotated image. The annotated files and their respective dataset images were meticulously
paired and subsequently split into training and testing sets at an 8:2 ratio. The contents of
the segmented annotation files were further converted into a training text and testing text,
formatted according to predefined specifications, to facilitate model training.

The training set was fed into an improved SSD network model, with the maximum
learning rate initialized at 0.01 and decreased to a minimum of 0.0001 throughout training.
A batch size of 16 was employed to balance the computational efficiency and memory
utilization. The model underwent 300 iterations of training, during which the optimal
weights were saved for future deployment. The input image resolution was standard-
ized to 416 × 416 pixels to accommodate the architecture’s requirements and enhance
feature extraction.

The convergence curve of the training loss for the enhanced SSD model is illustrated
in Figure 7, demonstrating the model’s learning progression and stability over the course
of the training epochs. The pseudo-code of the proposed model (Algorithm 1) is presented
in the following form:

Algorithm 1: pseudo-code of the proposed model

Input: An image to be detected
Output: An image with detection results
1: Resize the input image to 416 × 416 and normalize it.
2: Pass the processed image through the backbone network to extract features.
3: Feed the extracted features into the network model (backbone, neck, and head) to obtain
candidate bounding boxes.
4: For each candidate bounding box:

Perform classification and bounding box regression;
Decode the regression results to determine the final position of the bounding box;
Apply DIoU-NMS to filter out overlapping detections;
Map the detection result onto the original image.

5: Return the image with the overlaid detection results.
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4.3. Evaluating Indicator

This paper evaluates the enhanced SSD algorithm as using metrics including mean
Average Precision (mAP), Precision (P), Recall (R), Frames Per Second (FPS), the number of
parameters, and Floating-point Operations Per Second (FLOPs). A higher mAP indicates
greater detection accuracy, while larger numbers of parameters and higher computational
loads signify a bulkier algorithm. Particularly, smart edge devices impose stringent con-
straints on the model size in terms of both the parameter count and computational demands.
The term mAP@0.5 signifies the average precision across all classes when the Intersection
over Union (IoU) threshold is set to 0.5, reflecting the trend of precision as recall varies.
R measures the proportion of true positive samples correctly identified, thereby gauging
the extent of missed detections. P, on the other hand, assesses the fraction of predicted
positive samples that are indeed true positives, indicating the rate of false alarms [34]. FPS
quantifies the speed of detection, with a higher FPS translating to faster detection. FLOPs
is used to evaluate the computational complexity of the model. The relevant formulas are
as follows, where Tp denotes true-positive predictions, Fp represents false-positive predic-
tions (negative samples incorrectly labeled as positive), and Fn indicates false-negative
predictions (positive samples mislabeled as negative).

P = Tp/(Tp + Fp) (10)

R = Tp/(Tp + Fn) (11)

AP =
∫ 1

0
P(R)dR (12)

mAP =

N
∑

i=1
APi

N
(13)

4.4. Ablation Experiment

To verify the performance of the improved SSD model in detecting insulator targets,
ablation experiments were conducted to compare the original SSD network with the
model proposed in this paper. The setup for these ablation experiments is summarized in
Table 3, where “

√
” denotes the inclusion of a module, and “×” indicates its exclusion. The

outcomes of these ablation experiments are presented in Table 4.

Table 3. Ablation experimental design.

Models VGG-16 Ghost Module SimSPPF scSE FPN+PAN Lightweight

SSD
√

× × × × ×
A ×

√
× × × ×

B ×
√ √

× × ×
C ×

√ √ √
× ×

D ×
√ √ √ √ √

Table 4. Ablation experimental results.

Models Parameters FLOPs P R FPS f/s mAP@0.5/%

SSD 26.15 M 118.95 G 0.95 0.81 132 96.8%
A 5.07 M 3.21 G 0.96 0.79 111 93.2%
B 5.20 M 3.38 G 0.97 0.77 101 94.8%
C 7.04 M 3.39 G 0.94 0.81 101 95.6%
D 0.61 M 1.49 G 0.78 1 67 98.0%
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According to Table 3, comparing Model A with the original SSD algorithm reveals that
after replacing the SSD’s backbone feature extraction network, VGG-16, with the Ghost
Module, the model size is reduced by 80.6%, albeit at the expense of a decrease in the
detection accuracy. This confirms that while the Ghost Module employs fewer parameters,
leading to a smaller model size, it also has an adverse effect on the detection precision.
Comparing Models A, B, and C illustrates that the introduction of the SimSPPF structure
and scSE attention mechanism leads to negligible changes in the model size, but improves
the accuracy, validating that these enhancements strengthen the model’s comprehension
and processing of input data, thereby enhancing the detection accuracy. The comparison
between Models C and D shows that Model D, which incorporates the FPN+PAN structure
and undergoes channel pruning and knowledge distillation, achieves a 91.3% reduction in
model size while improving the detection accuracy by 2.4%. This evidence supports the
notion that the FPN+PAN structure, along with knowledge distillation and channel pruning,
significantly reduces the model size while effectively boosting the detection accuracy.

4.5. Comparison of Different Algorithm Effects

To validate the efficacy of the proposed algorithm, comparative experiments were
conducted against classical object detection algorithms using the same dataset. The experi-
mental environment was consistent with that of the ablation experiments, with all models
trained for 300 iterations. The results of these comparative experiments are summarized in
Table 5.

Table 5. Improved SSD algorithm compared with mainstream target detection algorithm.

Models Lightweight FPS/f/s P R Parameters FLOPs mAP@0.5/%

SSD 132 0.95 0.81 26.15 M 118.95 G 96.8%
YOLOv3 71 0.80 0.98 61.52 M 65.60 G 96.9%
YOLOv5 94 0.94 0.99 47.06 M 115.92 G 98.2%

Faster-RCNN 22 0.70 1 137.10 M 370.21 G 98.6%
Ghost-YOLOv3

√
55 0.77 0.98 46.45 M 25.32 G 95.5%

YOLOv3-Tiny
√

142 0.62 0.81 8.67 M 5.49 G 73.8%
Ours

√
67 0.78 1 0.61 M 1.49 G 98.0%

According to the results in Table 5, it can be seen that the algorithm in this paper
has the smallest computational and parameter requirements. Compared with algorithms
such as YOLOv3, YOLOv5, and Faster RCNN, the model has significantly reduced com-
putational and parameter requirements, with an average accuracy of 98%, slightly lower
than YOLOv5 and Faster RCNN. Compared with lightweight algorithms such as Ghost-
YOLOv3 and YOLOv3-Tiny, our algorithm has a lower parameter and computational
complexity, and higher detection accuracy. In summary, while maintaining high accuracy,
the algorithm proposed in this article has the lowest number of model parameters and
computational complexity.

Figure 8 illustrates the detection results of various algorithms. The figure indicates
that the proposed algorithm and Faster-RCNN achieve the highest accuracy in detecting
insulators in Figure 8a. In the insulator images depicted in Figure 8b,c, the original SSD,
YOLOv3-tiny, and YOLOv3 all exhibit varying degrees of missed detections. Faster-RCNN
achieves the highest detection accuracy; however, Table 4 reveals that it is larger in size and
slower in detection speed. Upon a comprehensive comparison, the proposed algorithm
shows a superior overall performance, confirming the effectiveness of the improvement
strategies outlined herein.
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Figure 8. Detection results of insulator detection models on different data sets. (a) shows the results
of different algorithms on a single insulator. (b) shows the detection results of different models when
the insulators in the photos are incomplete and the scales are different. (c) shows the detection results
of different models with different insulator scales.

5. Conclusions

Addressing the challenge of balancing the detection accuracy with the model size in
power transmission line insulator inspection algorithms, which hampers their deployment
on embedded devices, this paper presents a lightweight insulator target detection model
based on improved SSD. The main contents of this paper are as follows:

(1) Through the introduction of the lightweight Ghost Module network, the initial
lightweight of the model is realized. (2) By introducing a SimSPPF structure and FPN+PAN
structure, the fusion of the local and global features of the model is promoted, and the
feature extraction capability of the model is enhanced. (3) By introducing multiple spatial
and channel squeeze incentive (scSE) attention mechanism modules, the model’s ability to
focus on key features is improved. (4) By reducing the number of detection headers and
introducing the DIoU-NMS mechanism, the detection speed is improved, and the model’s
recognition ability of occluded and overlapping targets is improved. At the same time,
through channel pruning and knowledge distillation, the number of model parameters is
further reduced and the accuracy of model detection is improved.

The major conclusions in this paper are listed as follows.
By using the lightweight Ghost Module network to replace the original feature extrac-

tion network, VGG-16, the model size is reduced by 80.6%, indicating that the lightweight
module can effectively reduce the model size. However, the model detection accuracy is
also reduced.

With the introduction of the SimSPPF structure and scSE attention mechanism, al-
though the model size is not significantly reduced, the detection accuracy is effectively
improved, which proved that the SimSPPF structure and scSE attention mechanism can ef-
fectively improve the model’s ability to understand and process input data, thus effectively
improving the detection accuracy.

Combined with the FPN+PAN structure, channel pruning and knowledge distillation
were performed on the model. The number of parameters decreased by 91.3%, from 7.04 M
to 0.61 M, and the detection accuracy increased by 2.4%, from 95.6% to 98.0%, which
verified the effectiveness of the improvement measures taken in this paper.
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Compared with other models, the proposed model has the lowest number of parame-
ters while maintaining high detection precision, and other parameters have been effectively
improved, which shows that the improvement strategy in this paper can significantly
improve the model performance. The model in this paper not only ensures the detection
accuracy, but also minimizes the consumption of hardware resources, and can meet the
requirements of the deployment and application on edge intelligent terminals. However,
the resource utilization and energy consumption of the algorithm have not been deeply
studied in this paper. In the future, how to reduce the resource utilization rate and energy
consumption of the algorithm at the edge intelligent terminal will be deeply studied, and
the endurance time of the UAV can be further improved while ensuring the accuracy and
efficiency of target detection and defect identification.
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