
Citation: He, L.; Li, S.; Qiu, J.; Zhang,

C. DIO-SLAM: A Dynamic RGB-D

SLAM Method Combining Instance

Segmentation and Optical Flow.

Sensors 2024, 24, 5929. https://

doi.org/10.3390/s24185929

Academic Editor: Andrew R. Willis

Received: 19 July 2024

Revised: 3 September 2024

Accepted: 11 September 2024

Published: 12 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DIO-SLAM: A Dynamic RGB-D SLAM Method Combining
Instance Segmentation and Optical Flow
Lang He 1 , Shiyun Li 1,*, Junting Qiu 2 and Chenhaomin Zhang 1

1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology,
Kunming 650500, China; 20222203185@stu.kust.edu.cn (L.H.)

2 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
qiujt@zjut.edu.cn

* Correspondence: li_shiyun65@126.com

Abstract: Feature points from moving objects can negatively impact the accuracy of Visual Simultane-
ous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based
VSLAM approaches often fail to accurately determine the true motion state of objects. To address this
challenge, this paper introduces DIO-SLAM: Dynamic Instance Optical Flow SLAM, a VSLAM system
specifically designed for dynamic environments. Initially, the detection thread employs YOLACT
(You Only Look At CoefficienTs) to distinguish between rigid and non-rigid objects within the scene.
Subsequently, the optical flow thread estimates optical flow and introduces a novel approach to
capture the optical flow of moving objects by leveraging optical flow residuals. Following this, an
optical flow consistency method is implemented to assess the dynamic nature of rigid object mask
regions, classifying them as either moving or stationary rigid objects. To mitigate errors caused by
missed detections or motion blur, a motion frame propagation method is employed. Lastly, a dense
mapping thread is incorporated to filter out non-rigid objects using semantic information, track
the point clouds of rigid objects, reconstruct the static background, and store the resulting map in
an octree format. Experimental results demonstrate that the proposed method surpasses current
mainstream dynamic VSLAM techniques in both localization accuracy and real-time performance.

Keywords: dynamic SLAM; instance segmentation; dense optical flow; dynamic feature point
removal; point cloud reconstruction; octree

1. Introduction

Simultaneous Localization and Mapping (SLAM) technology is fundamental to robotic
perception, enabling autonomous navigation and exploration of unknown environments.
It utilizes sensors such as LiDAR, cameras, and Inertial Measurement Units (IMUs) to
perceive unknown environments and progressively construct a globally consistent map
that reflects the real-world environment while continuously updating the robot’s current
position during dynamic processes [1]. In recent years, with the advancement of computer
vision and deep learning technologies, camera-based visual SLAM has become integral to
applications like autonomous driving, virtual reality (VR), and augmented reality (AR).
Compared to LiDAR-based SLAM technology, VSLAM relies on images as the primary
medium of environmental perception, making it more aligned with human understand-
ing [2,3]. Visual sensors encompass a variety of cameras, including monocular, stereo,
event-based, and RGB-D (Red–Green–Blue–Depth) cameras. Among these, RGB-D cam-
eras, which utilize depth sensors to capture depth information, are particularly promising
due to their ease of configuration, compactness, and cost-effectiveness [4,5].

The mainstream techniques in visual SLAM include the direct method and the feature-
based method. The direct method estimates camera motion based on pixel intensity infor-
mation, eliminating the need for keypoints or descriptors. In contrast, the feature-based

Sensors 2024, 24, 5929. https://doi.org/10.3390/s24185929 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24185929
https://doi.org/10.3390/s24185929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-7651-1147
https://doi.org/10.3390/s24185929
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24185929?type=check_update&version=2

Sensors 2024, 24, 5929 2 of 29

method, which dominates VSLAM, extracts feature points from real-time images, estab-
lishes an optimization model to estimate the camera pose, and constructs an environmental
map by analyzing the relationships between these feature points [6]. Among feature-based
RGB-D SLAM algorithms, the ORB-SLAM series is the most representative. Introduced
in 2015, ORB-SLAM is one of the most comprehensive and user-friendly SLAM systems,
standing as the pinnacle of mainstream feature-based SLAM algorithms. ORB-SLAM2 [7],
building on ORB-SLAM [8], introduced a global optimization module, enhancing the sys-
tem’s robustness, accuracy, and efficiency. ORB-SLAM3 [9] further extended ORB-SLAM2
by adding the multi-map functionality Atlas [10], which allows the system to immediately
reconstruct a new sub-map during tracking loss, thus preventing interruptions in map
updates. Additionally, ORB-SLAM3 supports the integration of visual and inertial sensors,
improving the stability of feature point tracking in low-texture environments.

The ORB-SLAM series algorithms discussed above are all based on the assumption
of a static environment. However, in the real world, many dynamic objects exist that can
cause pose tracking failures or irreversible damage to the map. As illustrated in Figure 1a, a
highly dynamic scene is depicted, with two people walking back and forth while dragging
a chair. Extracting feature points from Figure 1a results in Figure 1b, where a significant
number of dynamic ORB feature points cluster around the moving objects within the yellow
box. This incorrect feature extraction leads to pose estimation errors or even failures, as seen
in Figure 1c. This issue arises because, although ORB-SLAM3 performs exceptionally well
in purely static environments, the algorithm uses feature points from dynamic objects to
estimate the camera’s pose when such objects enter the camera’s field of view. Furthermore,
during dense point cloud reconstruction, as shown in Figure 1d, the algorithm fails to
filter out dynamic point clouds, making it difficult to obtain accurate 3D scene information.
Additionally, for manually moved rigid objects in the scene, such as balloons, boxes, and
chairs, the traditional ORB-SLAM3 algorithm struggles to effectively track their true motion
state. Therefore, developing a VSLAM system capable of efficiently handling dynamic
scenes is of great practical significance.

To address the aforementioned issues, this paper introduces DIO-SLAM, which inte-
grates instance segmentation with dense optical flow algorithms via optical flow consistency.
This integration effectively distinguishes between non-rigid objects, stationary rigid objects,
and moving rigid objects in the scene. Once moving rigid objects become stationary, their
static feature points are retained for tracking, optimization, and map construction. The
primary innovations of this paper are summarized as follows:

1. To deal with the issue of excessive noise in existing dense optical flow algorithms,
which makes it difficult to accurately identify moving objects, this paper proposes
an optical flow consistency method based on optical flow residuals. This method
effectively removes optical flow noise caused by camera movement, providing a solid
foundation for the tight coupling of dense optical flow and instance segmentation
algorithms.

2. A motion frame propagation method is proposed, which transfers dynamic informa-
tion from dynamic frames to subsequent frames and estimates the location of dynamic
masks based on the camera’s motion matrix. By compensating for missed detections or
blurring caused by significant object or camera movements, this approach reduces the
likelihood of detection thread failure, thereby enhancing the accuracy and robustness
of the system.

The remainder of this paper is organized as follows. Section 2 provides an overview
of related work. Section 3 introduces the overall system framework and working prin-
ciples of DIO-SLAM. Section 4 details how the detection and optical flow threads are
combined to determine the motion state of rigid objects, explaining the principles of optical
flow residuals, optical flow consistency, and the motion frame propagation method. It
also describes the method for tracking the point clouds of moving rigid objects within
the dense mapping thread. Section 5 evaluates the accuracy of DIO-SLAM on relevant
datasets, compares camera pose accuracy with state-of-the-art dynamic VSLAM systems,

Sensors 2024, 24, 5929 3 of 29

and demonstrates the effectiveness of each module through ablation experiments. The
accuracy of the point clouds obtained from dense mapping is also verified. Finally, tests are
conducted in real-world scenarios. Section 6 provides a summary of the paper.

Sensors 2024, 24, x FOR PEER REVIEW 2 of 29

establishes an optimization model to estimate the camera pose, and constructs an envi-

ronmental map by analyzing the relationships between these feature points [6]. Among

feature-based RGB-D SLAM algorithms, the ORB-SLAM series is the most representative.

Introduced in 2015, ORB-SLAM is one of the most comprehensive and user-friendly

SLAM systems, standing as the pinnacle of mainstream feature-based SLAM algorithms.

ORB-SLAM2 [7], building on ORB-SLAM [8], introduced a global optimization module, en-

hancing the system’s robustness, accuracy, and efficiency. ORB-SLAM3 [9] further extended

ORB-SLAM2 by adding the multi-map functionality Atlas [10], which allows the system to

immediately reconstruct a new sub-map during tracking loss, thus preventing interruptions

in map updates. Additionally, ORB-SLAM3 supports the integration of visual and inertial

sensors, improving the stability of feature point tracking in low-texture environments.

The ORB-SLAM series algorithms discussed above are all based on the assumption

of a static environment. However, in the real world, many dynamic objects exist that can

cause pose tracking failures or irreversible damage to the map. As illustrated in Figure 1a,

a highly dynamic scene is depicted, with two people walking back and forth while drag-

ging a chair. Extracting feature points from Figure 1a results in Figure 1b, where a signif-

icant number of dynamic ORB feature points cluster around the moving objects within

the yellow box. This incorrect feature extraction leads to pose estimation errors or even

failures, as seen in Figure 1c. This issue arises because, although ORB-SLAM3 performs

exceptionally well in purely static environments, the algorithm uses feature points from

dynamic objects to estimate the camera’s pose when such objects enter the camera’s field

of view. Furthermore, during dense point cloud reconstruction, as shown in Figure 1d,

the algorithm fails to filter out dynamic point clouds, making it difficult to obtain accurate

3D scene information. Additionally, for manually moved rigid objects in the scene, such

as balloons, boxes, and chairs, the traditional ORB-SLAM3 algorithm struggles to effec-

tively track their true motion state. Therefore, developing a VSLAM system capable of

efficiently handling dynamic scenes is of great practical significance.

(a) (b)

(c) (d)

Figure 1. Performance of the traditional ORB-SLAM3 algorithm in highly dynamic environments.

(a) Image of the highly dynamic scene. (b) Feature point extraction in the highly dynamic scene,

where yellow boxes indicate moving objects and dynamic feature points are marked in red. (c) Com-

parison between the estimated camera pose and the ground truth camera pose. (d) Reconstruction

results of dense mapping.

Figure 1. Performance of the traditional ORB-SLAM3 algorithm in highly dynamic environments.
(a) Image of the highly dynamic scene. (b) Feature point extraction in the highly dynamic scene, where
yellow boxes indicate moving objects and dynamic feature points are marked in red. (c) Comparison
between the estimated camera pose and the ground truth camera pose. (d) Reconstruction results of
dense mapping.

2. Related Work
2.1. Algorithms Based on Geometric Constraints and Detection Segmentation

In recent years, several dynamic VSLAM algorithms have been introduced that use
detection or segmentation methods to extract and remove a priori objects. Detect-SLAM,
introduced in [11], utilizes SSD [12] (Single Shot Multibox Detector) for object detection only
on keyframes, while the remaining frames propagate motion probability frame by frame.
However, this method cannot accurately determine the true motion of a priori dynamic ob-
jects, potentially leading to the erroneous removal of static feature points. MaskFusion [13]
employs Mask R-CNN [14] for instance segmentation of objects in images and combines it
with ElasticFusion [15] to track dynamic objects and reconstruct a 3D map. DS-SLAM [16]
employs the SegNet [17] deep fully convolutional neural network for semantic segmenta-
tion, combined with motion consistency detection to identify dynamic regions, but it can
only remove dynamic feature points from human bodies. SOLO-SLAM [18] utilizes the
SOLO-V2 [19] instance segmentation algorithm as a replacement for Dyna-SLAM’s Mask
R-CNN algorithm, addressing Dyna-SLAM’s real-time performance issues, but it still lacks
the capability to accurately determine the true motion state of a priori dynamic objects.

Most of these approaches avoid the impact of moving objects on VSLAM performance
by removing a priori feature points, without precisely identifying dynamic regions on
objects, and instead directly removing the entire a priori object. To determine the motion
state of objects without prior information, several methods based on geometric constraints
have been suggested. Dyna-SLAM [20] and its successor, Dyna-SLAM II [21], which
enhances multi-object tracking capabilities, accurately remove dynamic feature points

Sensors 2024, 24, 5929 4 of 29

by combining Mask R-CNN instance segmentation results with multi-view geometry.
Dyna-SLAM also repairs static backgrounds using a missing map completion algorithm,
but it suffers from significant time consumption and poor real-time performance. The
literature [22] proposes an accurate geometric constraint recognition method based on the
invariance of static point positions, which can complement semantic segmentation to jointly
eliminate dynamic feature points. MVS-SLAM [23] introduces a self-motion estimation
module that enhances both the speed and accuracy of initial camera pose estimation. It also
tightly integrates semantic information with multi-view geometry to effectively remove
dynamic feature points.

2.2. Algorithms Based on Optical Flow and Detection Segmentation

To resolve the aforementioned issues, some approaches have introduced optical flow
methods to accurately detect the actual motion state of objects, thereby obtaining more
stable feature points for recovering camera poses. FlowFusion [24] compares an optical
flow map, generated by offsetting the previous frame based on a fully static assumption,
with the actual optical flow obtained through the PWC Net [25] to identify moving objects
and remove their point clouds during reconstruction. The combination of deep learning
methods with optical flow can effectively locate dynamic objects, offering better resistance
to interference from moving objects compared to using optical flow or deep learning alone.
Several related works have presented solutions. References [26–28] suggest using object
detection algorithms in conjunction with the Lucas-Kanade [29] (LK) optical flow algorithm
to reject dynamic points in keyframes. Nevertheless, object detection algorithms may not
accurately detect objects, potentially leading to the erroneous removal of static feature
points. To address this issue, DM-SLAM [30] combines optical flow, Mask R-CNN, and
epipolar constraints for dynamic point detection, although it does not consider real-time
performance. ACE-Fusion [31] employs an instance segmentation algorithm based on a
Dynamic Neural Network (DNN) structure, combined with optical flow, to accurately
detect the edges of dynamic objects. However, it does not utilize the surface features of
objects when they are stationary for optimizing camera poses. RSO-SLAM [32] proposes an
algorithm based on KMC (K-means + Connectivity) that seamlessly integrates semantic
information with optical flow information to detect moving regions in the scene, followed
by precise motion probability calculation through optical flow decay propagation. VDO-
SLAM [33] uses instance segmentation and dense optical flow to accurately identify and
track dynamic objects, integrating robot pose, dynamic objects, and static structures into a
unified VSLAM framework.

In summary, the existing solutions exhibit several key issues:
First, they do not account for the presence of moving rigid objects. Dynamic VSLAM

approaches that focus on removing dynamic features may result in an insufficient number
of remaining static feature points after the dynamic points are removed, which leads to
decreased stability and localization accuracy in the VSLAM system.

Second, most methods for testing dynamic feature points based on geometric in-
formation rely on constraints such as epipolar lines, fundamental matrix estimation, or
reprojection errors. However, each of these constraint methods has its own limitations. For
instance, using the distance from matching points to the corresponding epipolar line to
determine true dynamicity fails when the moving object travels along the direction of the
epipolar line. Additionally, methods that calculate reprojection errors on the imaging plane
lose dynamic information in the depth direction.

3. Overall System Framework

As illustrated in Figure 2, the overall framework of the DIO-SLAM algorithm is
presented. The extraction of ORB features follows the same procedure as in the original
ORB-SLAM3, extracting both static and dynamic feature points. The algorithm introduces
an additional dynamic feature point filtering module atop the original main thread. This
filtering module comprises a detection thread and an optical flow thread, which collaborate

Sensors 2024, 24, 5929 5 of 29

to effectively remove dynamic feature points. Initially, the detection thread processes the
current RGB frame through the YOLACT [34] network for instance segmentation, detecting
the masks of all potential moving objects and separately isolating the masks of non-rigid
objects. Feature points on non-rigid objects are then removed. Subsequently, the parallel
optical flow thread inputs RGB images from the previous and current frames into the
FastFlowNet [35] network for real-time optical flow estimation. This method removes
the camera’s self-motion flow by calculating optical flow residuals, thereby isolating the
optical flow of moving objects. Following this, optical flow consistency is employed to
evaluate the motion of all rigid object masks, leading to the identification of masks for
moving rigid objects. The feature points on these moving rigid objects are then removed.
Finally, a nonlinear optimization method is utilized to track the 6D pose of moving rigid
objects, which is then integrated into the dense mapping thread. When the system detects a
dynamic frame, the motion frame propagation method can be employed to mitigate errors
caused by missed detections. Notably, when a moving rigid object ceases movement, the
optical flow thread will respond accordingly, causing the optical flow region of the moving
rigid object to disappear, reverting its state to that of a potentially moving rigid object, thus
allowing it to re-engage in dense reconstruction and camera pose estimation.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 29

filtering module comprises a detection thread and an optical flow thread, which collabo-

rate to effectively remove dynamic feature points. Initially, the detection thread processes

the current RGB frame through the YOLACT [34] network for instance segmentation, de-

tecting the masks of all potential moving objects and separately isolating the masks of

non-rigid objects. Feature points on non-rigid objects are then removed. Subsequently, the

parallel optical flow thread inputs RGB images from the previous and current frames into

the FastFlowNet [35] network for real-time optical flow estimation. This method removes

the camera’s self-motion flow by calculating optical flow residuals, thereby isolating the

optical flow of moving objects. Following this, optical flow consistency is employed to

evaluate the motion of all rigid object masks, leading to the identification of masks for

moving rigid objects. The feature points on these moving rigid objects are then removed.

Finally, a nonlinear optimization method is utilized to track the 6D pose of moving rigid

objects, which is then integrated into the dense mapping thread. When the system detects

a dynamic frame, the motion frame propagation method can be employed to mitigate er-

rors caused by missed detections. Notably, when a moving rigid object ceases movement,

the optical flow thread will respond accordingly, causing the optical flow region of the

moving rigid object to disappear, reverting its state to that of a potentially moving rigid

object, thus allowing it to re-engage in dense reconstruction and camera pose estimation.

Figure 2. The overall system framework of DIO-SLAM. Key innovations are highlighted in red font,

while the original ORB-SLAM3 framework is represented by unfilled boxes. (a) Detection thread,

represented by green boxes. (b) Optical flow thread, represented by blue boxes. (c) Dynamic feature

point filtering module, which is composed of both the detection and optical flow threads. (d) Inde-

pendent dense mapping thread.

4. Methodology Overview

4.1. Mask Extraction in the Detection Thread

Compared to object detection algorithms, instance segmentation not only identifies

the category of objects but also precisely delineates the pixel-level contours of each object,

Figure 2. The overall system framework of DIO-SLAM. Key innovations are highlighted in red
font, while the original ORB-SLAM3 framework is represented by unfilled boxes. (a) Detection
thread, represented by green boxes. (b) Optical flow thread, represented by blue boxes. (c) Dynamic
feature point filtering module, which is composed of both the detection and optical flow threads.
(d) Independent dense mapping thread.

4. Methodology Overview
4.1. Mask Extraction in the Detection Thread

Compared to object detection algorithms, instance segmentation not only identifies
the category of objects but also precisely delineates the pixel-level contours of each object,
represented by masks. In dynamic VSLAM, accurate contour information enhances the
understanding and differentiation of various objects within the scene, enabling more precise

Sensors 2024, 24, 5929 6 of 29

removal of dynamic feature points and thereby improving the localization accuracy of
VSLAM algorithms.

YOLACT is a real-time instance segmentation network put forward by Daniel and
others from the University of California. Compared to Mask R-CNN, it achieves true
real-time segmentation. In this paper, the YOLACT network is selected to segment the
instance masks of each input image. Since SLAM systems are often used in unknown
environments, the COCO [36] dataset is used for training.

Based on the segmented semantic information, humans, cats, dogs, horses, sheep,
cows, elephants, bears, zebras, and giraffes are pre-classified as non-rigid objects, meaning
they are considered dynamic in any scenario. Vehicles such as bicycles, cars, motorcycles,
airplanes, buses, trains, trucks, and boats, along with common household items like chairs,
televisions, computers, keyboards, mice, trash cans, and books, are categorized as rigid
objects with the potential to move. Additionally, we included balloons, boxes, rackets,
beverage bottles, and school bags in the instance segmentation network training, classifying
them as rigid objects.

It is assumed that the above 30 categories cover most of the dynamic objects in the
environment. The instance segmentation thread is designed as a relatively independent
module, allowing for the addition of other dynamic objects by retraining the network with
new training data. As shown in Figure 3a, a dynamic scene is presented. After performing
instance segmentation on the RGB image, object detection boxes, confidence scores, and
masks can be obtained, as shown in Figure 3b.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 29

represented by masks. In dynamic VSLAM, accurate contour information enhances the

understanding and differentiation of various objects within the scene, enabling more pre-

cise removal of dynamic feature points and thereby improving the localization accuracy

of VSLAM algorithms.

YOLACT is a real-time instance segmentation network put forward by Daniel and

others from the University of California. Compared to Mask R-CNN, it achieves true real-

time segmentation. In this paper, the YOLACT network is selected to segment the instance

masks of each input image. Since SLAM systems are often used in unknown environ-

ments, the COCO [36] dataset is used for training.

Based on the segmented semantic information, humans, cats, dogs, horses, sheep,

cows, elephants, bears, zebras, and giraffes are pre-classified as non-rigid objects, meaning

they are considered dynamic in any scenario. Vehicles such as bicycles, cars, motorcycles,

airplanes, buses, trains, trucks, and boats, along with common household items like

chairs, televisions, computers, keyboards, mice, trash cans, and books, are categorized as

rigid objects with the potential to move. Additionally, we included balloons, boxes, rack-

ets, beverage bottles, and school bags in the instance segmentation network training, clas-

sifying them as rigid objects.

It is assumed that the above 30 categories cover most of the dynamic objects in the

environment. The instance segmentation thread is designed as a relatively independent

module, allowing for the addition of other dynamic objects by retraining the network with

new training data. As shown in Figure 3a, a dynamic scene is presented. After performing

instance segmentation on the RGB image, object detection boxes, confidence scores, and

masks can be obtained, as shown in Figure 3b.

(a) (b)

Figure 3. Instance segmentation results and non-rigid object mask extraction. (a) RGB frame used

for segmentation. (b) Instance segmentation output.

Feature points on non-rigid objects are considered unreliable, while those on rigid

objects require further evaluation. Thus, the instance segmentation network segments the

content with prior semantic information at the pixel level. Pixels in the rigid object region

are assigned a value of 0, and pixels in the non-rigid object region are assigned a value of

1, resulting in the non-rigid object region shown in Figure 4. Conversely, by setting the

pixel values of the non-rigid object region to 0 and those of the rigid object region to 1, the

rigid object region can be isolated. Let 𝐹𝑛 represent the RGB image of the 𝑛-th frame, and

𝑆𝑛 represent the instance segmentation result of the 𝑛-th frame. The instance segmenta-

tion result returned by the instance segmentation thread can be expressed as

𝑆𝑛 = {(𝑆𝑛,𝑖𝑑
𝑖 , 𝑆𝑛,𝑚𝑎𝑠𝑘

𝑖)|0 ≤ 𝑖 ≤ 𝜔}. (1)

In Equation (1), 𝑆𝑛,𝑖𝑑
𝑖 and 𝑆𝑛,𝑚𝑎𝑠𝑘

𝑖 represent the category and mask of the 𝑖-th a pri-

ori object segmented from 𝐹𝑛, respectively, where 𝜔 denotes the number of instances.

Based on the semantic information, the masks of non-rigid and rigid objects are sep-

arated and assigned new labels as follows:

Figure 3. Instance segmentation results and non-rigid object mask extraction. (a) RGB frame used for
segmentation. (b) Instance segmentation output.

Feature points on non-rigid objects are considered unreliable, while those on rigid
objects require further evaluation. Thus, the instance segmentation network segments the
content with prior semantic information at the pixel level. Pixels in the rigid object region
are assigned a value of 0, and pixels in the non-rigid object region are assigned a value of
1, resulting in the non-rigid object region shown in Figure 4. Conversely, by setting the
pixel values of the non-rigid object region to 0 and those of the rigid object region to 1, the
rigid object region can be isolated. Let Fn represent the RGB image of the n-th frame, and
Sn represent the instance segmentation result of the n-th frame. The instance segmentation
result returned by the instance segmentation thread can be expressed as

Sn =
{(

Si
n,id, Si

n,mask

)∣∣∣0 ≤ i ≤ ω
}

. (1)

Sensors 2024, 24, 5929 7 of 29

Sensors 2024, 24, x FOR PEER REVIEW 7 of 29

𝑆𝑛,𝑚𝑎𝑠𝑘
𝑖 (𝑥, 𝑦) = {

𝑘 𝑖𝑓 𝑖𝑑 ∈ 𝑁𝑜𝑛 − 𝑅𝑖𝑔𝑖𝑑

𝑘′ 𝑖𝑓 𝑖𝑑 ∈ 𝑅𝑖𝑔𝑖𝑑
 (2)

Equation (2) indicates that when the detected object 𝑖𝑑 belongs to the category of

non-rigid objects, the mask is labeled as 𝑘. After removing the non-rigid object portion from

the mask area, the remaining region corresponds to the rigid object area, labeled as 𝑘′.

Figure 4. Separation of non-rigid and rigid object masks based on semantic information.

4.2. Determining Object Motion State in the Optical Flow Thread

In most dynamic scenes, there are not only non-rigid objects like humans and animals

that remain in motion for extended periods, but also rigid objects like chairs, books, and

boxes that have the potential to move. Typically, these rigid objects remain stationary,

with their motion state triggered by human intervention. When in motion, the feature

points of such objects need to be removed. Conversely, when stationary, they should be

included in feature point extraction to ensure the accuracy of camera pose estimation. For

instance, chairs and boxes cannot move on their own but can be moved by people. Clearly,

relying solely on semantic information to classify chairs and boxes as static or dynamic

objects is insufficient. Semantic static regions do not necessarily correspond to truly static

regions; therefore, it is essential to combine semantic information with optical flow to

make a more accurate determination.

Optical flow can be viewed as the problem of finding motion correspondences for

pixels in an image. Given two consecutive RGB frames captured at adjacent times, optical

flow estimates the 2D projection field on the image plane [37]. Unlike sparse optical flow,

which only targets a limited number of feature points, dense optical flow calculates the

displacement of all points in the image, forming a dense optical flow field. This allows for

pixel-level image processing using the dense optical flow field. Figure 5 illustrates the op-

tical flow output process for a person repeatedly tossing a balloon. The previous frame

𝑛 − 1 and the current frame 𝑛, shown in Figure 5a,b, are input into the FastFlowNet net-

work for optical flow estimation, resulting in the dense optical flow map shown in Figure

5c. In the optical flow map, the intensity of the color indicates the motion speed, with

lighter pixels representing optical flow caused by the camera’s own movement. In scenar-

ios involving complex camera motion, calculating the camera self-motion flow induced

by the camera’s movement is crucial. This type of optical flow reflects the effects of the

camera’s movement rather than the independent motion of objects within the scene.

Figure 4. Separation of non-rigid and rigid object masks based on semantic information.

In Equation (1), Si
n,id and Si

n,mask represent the category and mask of the i-th a priori
object segmented from Fn, respectively, where ω denotes the number of instances.

Based on the semantic information, the masks of non-rigid and rigid objects are
separated and assigned new labels as follows:

Si
n,mask(x, y) =

{
k i f id ∈ Non− Rigid
k′ i f id ∈ Rigid

(2)

Equation (2) indicates that when the detected object id belongs to the category of
non-rigid objects, the mask is labeled as k. After removing the non-rigid object portion
from the mask area, the remaining region corresponds to the rigid object area, labeled as k′.

4.2. Determining Object Motion State in the Optical Flow Thread

In most dynamic scenes, there are not only non-rigid objects like humans and animals
that remain in motion for extended periods, but also rigid objects like chairs, books, and
boxes that have the potential to move. Typically, these rigid objects remain stationary, with
their motion state triggered by human intervention. When in motion, the feature points of
such objects need to be removed. Conversely, when stationary, they should be included
in feature point extraction to ensure the accuracy of camera pose estimation. For instance,
chairs and boxes cannot move on their own but can be moved by people. Clearly, relying
solely on semantic information to classify chairs and boxes as static or dynamic objects is
insufficient. Semantic static regions do not necessarily correspond to truly static regions;
therefore, it is essential to combine semantic information with optical flow to make a more
accurate determination.

Optical flow can be viewed as the problem of finding motion correspondences for
pixels in an image. Given two consecutive RGB frames captured at adjacent times, optical
flow estimates the 2D projection field on the image plane [37]. Unlike sparse optical flow,
which only targets a limited number of feature points, dense optical flow calculates the
displacement of all points in the image, forming a dense optical flow field. This allows
for pixel-level image processing using the dense optical flow field. Figure 5 illustrates the
optical flow output process for a person repeatedly tossing a balloon. The previous frame
n− 1 and the current frame n, shown in Figure 5a,b, are input into the FastFlowNet network
for optical flow estimation, resulting in the dense optical flow map shown in Figure 5c. In
the optical flow map, the intensity of the color indicates the motion speed, with lighter
pixels representing optical flow caused by the camera’s own movement. In scenarios
involving complex camera motion, calculating the camera self-motion flow induced by the
camera’s movement is crucial. This type of optical flow reflects the effects of the camera’s
movement rather than the independent motion of objects within the scene.

Sensors 2024, 24, 5929 8 of 29Sensors 2024, 24, x FOR PEER REVIEW 8 of 29

Figure 5. Optical flow network inputs and output. (a) Frame 𝑛 − 1. (b) Frame 𝑛. (c) Dense optical

flow.

The dense optical flow image comprises both the camera self-motion flow, resulting

from camera movement, and the optical flow of moving objects. To eliminate the camera

self-motion flow, this paper employs an iterative calculation of optical flow residuals to

filter out the noise it generates, thereby isolating the optical flow of moving objects.

As shown in Figure 6, the relationship between optical flow changes across different

frames is illustrated. The red arrows connecting 𝑝 and 𝑞 represent the motion of an ob-

ject in 3D space, where 𝑥𝑝 is the pixel coordinate corresponding to the 3D point 𝑝 of the

moving object in frame 𝑛 − 1, and 𝑥𝑞 is the pixel coordinate corresponding to the 3D

point 𝑞 in frame 𝑛. The blue arrow represents the overall optical flow 𝑓𝑛−1,𝑛, which is

derived from the FastFlowNet optical flow calculation network and includes both the

camera self-motion flow and the object motion flow. The yellow arrow represents the cam-

era self-motion flow 𝑒𝑛−1,𝑛. The green arrow is defined as the object motion flow 𝑂𝑛−1,𝑛.

The object motion flow 𝑥𝑝′
𝑥𝑞⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ is

𝑥𝑝′
𝑥𝑞⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝑥𝑝𝑥𝑞⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ − 𝑥𝑝𝑥𝑝′⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑. (3)

In Equation (3), through camera pose transformation, the pixels 𝑥𝑡 ∉ 𝑘 outside the

non-rigid object in frame 𝑛 − 1 can be projected onto frame 𝑛, and the camera self-mo-

tion flow 𝑒𝑛−1,𝑛 is calculated as

𝑒𝑛−1,𝑛 = 𝑥𝑡 − 𝜋[𝑇𝑛−1
−1 ∙ 𝑇𝑛 ∙ 𝜋−1(𝑥𝑡)]. (4)

In Equation (4), 𝜋 represents the projection of a point from 3D space onto a 2D

plane, and 𝜋−1 represents the back-projection of the 2D pixel 𝑥𝑡 into 3D space. 𝑇𝑛−1
−1 is

the inverse of the camera pose matrix at time 𝑛 − 1, and 𝑇𝑛 is the camera pose matrix at

time 𝑛. Finally, the object motion flow can be calculated as shown in Equation (5):

𝑂𝑛−1,𝑛 = ‖𝑓𝑛−1,𝑛 − 𝑒𝑛−1,𝑛‖2
 (5)

that is, the optical flow residual 𝑂𝑛−1,𝑛 is obtained by taking the norm of the difference

between the overall optical flow 𝑓𝑛−1,𝑛 and the camera self-motion flow 𝑒𝑛−1,𝑛.

Figure 5. Optical flow network inputs and output. (a) Frame n− 1. (b) Frame n. (c) Dense optical flow.

The dense optical flow image comprises both the camera self-motion flow, resulting
from camera movement, and the optical flow of moving objects. To eliminate the camera
self-motion flow, this paper employs an iterative calculation of optical flow residuals to
filter out the noise it generates, thereby isolating the optical flow of moving objects.

As shown in Figure 6, the relationship between optical flow changes across different
frames is illustrated. The red arrows connecting p and q represent the motion of an object
in 3D space, where xp is the pixel coordinate corresponding to the 3D point p of the moving
object in frame n− 1, and xq is the pixel coordinate corresponding to the 3D point q in
frame n. The blue arrow represents the overall optical flow fn−1,n, which is derived from
the FastFlowNet optical flow calculation network and includes both the camera self-motion
flow and the object motion flow. The yellow arrow represents the camera self-motion flow
en−1,n. The green arrow is defined as the object motion flow On−1,n. The object motion flow

Sensors 2024, 24, 5929 8 of 29

Figure 5. Optical flow network inputs and output. (a) Frame 𝑛 − 1. (b) Frame 𝑛. (c) Dense optical
flow.

The dense optical flow image comprises both the camera self-motion flow, resulting
from camera movement, and the optical flow of moving objects. To eliminate the camera
self-motion flow, this paper employs an iterative calculation of optical flow residuals to
filter out the noise it generates, thereby isolating the optical flow of moving objects.

As shown in Figure 6, the relationship between optical flow changes across different
frames is illustrated. The red arrows connecting 𝑝 and 𝑞 represent the motion of an ob-
ject in 3D space, where 𝑥 is the pixel coordinate corresponding to the 3D point 𝑝 of the
moving object in frame 𝑛 − 1, and 𝑥 is the pixel coordinate corresponding to the 3D
point 𝑞 in frame 𝑛. The blue arrow represents the overall optical flow 𝑓ିଵ,, which is
derived from the FastFlowNet optical flow calculation network and includes both the
camera self-motion flow and the object motion flow. The yellow arrow represents the cam-
era self-motion flow 𝑒ିଵ,. The green arrow is defined as the object motion flow 𝑂ିଵ,.
The object motion flow 𝑥ᇲ𝑥ሬሬሬሬሬሬሬሬሬሬሬ⃑ is 𝑥ᇲ𝑥ሬሬሬሬሬሬሬሬሬሬሬ⃑ = 𝑥𝑥ሬሬሬሬሬሬሬሬሬሬ⃑ − 𝑥𝑥ᇲሬሬሬሬሬሬሬሬሬሬሬ⃑ . (3)

In Equation (3), through camera pose transformation, the pixels 𝑥௧ ∉ 𝑘 outside the
non-rigid object in frame 𝑛 − 1 can be projected onto frame 𝑛, and the camera self-mo-
tion flow 𝑒ିଵ, is calculated as 𝑒ିଵ, = 𝑥௧ − 𝜋[𝑇ିଵିଵ ∙ 𝑇 ∙ 𝜋ିଵ(𝑥௧)]. (4)

In Equation (4), 𝜋 represents the projection of a point from 3D space onto a 2D
plane, and 𝜋ିଵ represents the back-projection of the 2D pixel 𝑥௧ into 3D space. 𝑇ିଵିଵ is
the inverse of the camera pose matrix at time 𝑛 − 1, and 𝑇 is the camera pose matrix at
time 𝑛. Finally, the object motion flow can be calculated as shown in Equation (5): 𝑂ିଵ, = ฮ𝑓ିଵ, − 𝑒ିଵ,ฮଶ (5)

that is, the optical flow residual 𝑂ିଵ, is obtained by taking the norm of the difference
between the overall optical flow 𝑓ିଵ, and the camera self-motion flow 𝑒ିଵ,.

is

Sensors 2024, 24, 5929 8 of 29

Figure 5. Optical flow network inputs and output. (a) Frame 𝑛 − 1. (b) Frame 𝑛. (c) Dense optical
flow.

The dense optical flow image comprises both the camera self-motion flow, resulting
from camera movement, and the optical flow of moving objects. To eliminate the camera
self-motion flow, this paper employs an iterative calculation of optical flow residuals to
filter out the noise it generates, thereby isolating the optical flow of moving objects.

As shown in Figure 6, the relationship between optical flow changes across different
frames is illustrated. The red arrows connecting 𝑝 and 𝑞 represent the motion of an ob-
ject in 3D space, where 𝑥 is the pixel coordinate corresponding to the 3D point 𝑝 of the
moving object in frame 𝑛 − 1, and 𝑥 is the pixel coordinate corresponding to the 3D
point 𝑞 in frame 𝑛. The blue arrow represents the overall optical flow 𝑓ିଵ,, which is
derived from the FastFlowNet optical flow calculation network and includes both the
camera self-motion flow and the object motion flow. The yellow arrow represents the cam-
era self-motion flow 𝑒ିଵ,. The green arrow is defined as the object motion flow 𝑂ିଵ,.
The object motion flow 𝑥ᇲ𝑥ሬሬሬሬሬሬሬሬሬሬሬ⃑ is 𝑥ᇲ𝑥ሬሬሬሬሬሬሬሬሬሬሬ⃑ = 𝑥𝑥ሬሬሬሬሬሬሬሬሬሬ⃑ − 𝑥𝑥ᇲሬሬሬሬሬሬሬሬሬሬሬ⃑ . (3)

In Equation (3), through camera pose transformation, the pixels 𝑥௧ ∉ 𝑘 outside the
non-rigid object in frame 𝑛 − 1 can be projected onto frame 𝑛, and the camera self-mo-
tion flow 𝑒ିଵ, is calculated as 𝑒ିଵ, = 𝑥௧ − 𝜋[𝑇ିଵିଵ ∙ 𝑇 ∙ 𝜋ିଵ(𝑥௧)]. (4)

In Equation (4), 𝜋 represents the projection of a point from 3D space onto a 2D
plane, and 𝜋ିଵ represents the back-projection of the 2D pixel 𝑥௧ into 3D space. 𝑇ିଵିଵ is
the inverse of the camera pose matrix at time 𝑛 − 1, and 𝑇 is the camera pose matrix at
time 𝑛. Finally, the object motion flow can be calculated as shown in Equation (5): 𝑂ିଵ, = ฮ𝑓ିଵ, − 𝑒ିଵ,ฮଶ (5)

that is, the optical flow residual 𝑂ିଵ, is obtained by taking the norm of the difference
between the overall optical flow 𝑓ିଵ, and the camera self-motion flow 𝑒ିଵ,.

(3)

Sensors 2024, 24, x FOR PEER REVIEW 9 of 29

Figure 6. Optical flow changes between adjacent frames.

With each iteration, a portion of the camera’s self-motion flow is removed based on

the camera’s pose transformation. After multiple iterations, the camera self-motion flow

is eliminated, resulting in the motion object optical flow shown in Figure 7. It can be ob-

served that after 5 iterations, some noise remains in the scene. At 7 iterations, the optical

flow noise is effectively removed, with the loss rate of the motion object’s optical flow

within 10–15%. At 9 iterations, some of the optical flow on the moving object is removed,

with a loss rate of about 30%. The calculation method for the optical flow loss rate 𝐿𝑂
𝑝 is

as follows:

𝐿𝑂
𝑝 =

𝐼𝑂
𝑝

𝑅𝑂
𝑝 × 100% (6)

In Equation 6, 𝐼𝑂
𝑝 represents the optical flow pixel region after iteration, and 𝑅𝑂

𝑝

represents the actual optical flow pixel region of the moving object. It can be concluded

that selecting 7 iterations is optimal for extracting the motion object’s optical flow.

Figure 7. Iterative removal of camera self-motion flow using optical flow residuals. (a) Original

dense optical flow. (b) Number of iterations = 5. (c) Number of iterations = 7. (d) Number of

iterations = 9.

4.3. Optical Flow Consistency

To calculate the true motion state of rigid objects, this paper proposes an optical flow

consistency method. The core idea of this method is to use the rigid object masks obtained

from instance segmentation to mask specific regions in the optical flow image. Then, im-

age matching methods are used to extract structural features in the optical flow image that

are similar to the mask, ensuring these regions are not processed or included in parameter

calculations, thereby facilitating the processing or analysis of non-masked regions. The

process of using optical flow consistency to determine the motion state of rigid object

Figure 6. Optical flow changes between adjacent frames.

Sensors 2024, 24, 5929 9 of 29

In Equation (3), through camera pose transformation, the pixels xt /∈ k outside the
non-rigid object in frame n− 1 can be projected onto frame n, and the camera self-motion
flow en−1,n is calculated as

en−1,n = xt − π
[

T−1
n−1·Tn·π−1(xt)]. (4)

In Equation (4), π represents the projection of a point from 3D space onto a 2D plane,
and π−1 represents the back-projection of the 2D pixel xt into 3D space. T−1

n−1 is the inverse
of the camera pose matrix at time n− 1, and Tn is the camera pose matrix at time n. Finally,
the object motion flow can be calculated as shown in Equation (5):

On−1,n = ∥ fn−1,n − en−1,n∥2 (5)

that is, the optical flow residual On−1,n is obtained by taking the norm of the difference
between the overall optical flow fn−1,n and the camera self-motion flow en−1,n.

With each iteration, a portion of the camera’s self-motion flow is removed based on
the camera’s pose transformation. After multiple iterations, the camera self-motion flow is
eliminated, resulting in the motion object optical flow shown in Figure 7. It can be observed
that after 5 iterations, some noise remains in the scene. At 7 iterations, the optical flow noise
is effectively removed, with the loss rate of the motion object’s optical flow within 10–15%.
At 9 iterations, some of the optical flow on the moving object is removed, with a loss rate of
about 30%. The calculation method for the optical flow loss rate LO

p is as follows:

LO
p =

IO
p

RO
p × 100% (6)

In Equation (6), IO
p represents the optical flow pixel region after iteration, and RO

p

represents the actual optical flow pixel region of the moving object. It can be concluded
that selecting 7 iterations is optimal for extracting the motion object’s optical flow.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 29

Figure 6. Optical flow changes between adjacent frames.

With each iteration, a portion of the camera’s self-motion flow is removed based on

the camera’s pose transformation. After multiple iterations, the camera self-motion flow

is eliminated, resulting in the motion object optical flow shown in Figure 7. It can be ob-

served that after 5 iterations, some noise remains in the scene. At 7 iterations, the optical

flow noise is effectively removed, with the loss rate of the motion object’s optical flow

within 10–15%. At 9 iterations, some of the optical flow on the moving object is removed,

with a loss rate of about 30%. The calculation method for the optical flow loss rate 𝐿𝑂
𝑝 is

as follows:

𝐿𝑂
𝑝 =

𝐼𝑂
𝑝

𝑅𝑂
𝑝 × 100% (6)

In Equation 6, 𝐼𝑂
𝑝 represents the optical flow pixel region after iteration, and 𝑅𝑂

𝑝

represents the actual optical flow pixel region of the moving object. It can be concluded

that selecting 7 iterations is optimal for extracting the motion object’s optical flow.

Figure 7. Iterative removal of camera self-motion flow using optical flow residuals. (a) Original

dense optical flow. (b) Number of iterations = 5. (c) Number of iterations = 7. (d) Number of

iterations = 9.

4.3. Optical Flow Consistency

To calculate the true motion state of rigid objects, this paper proposes an optical flow

consistency method. The core idea of this method is to use the rigid object masks obtained

from instance segmentation to mask specific regions in the optical flow image. Then, im-

age matching methods are used to extract structural features in the optical flow image that

are similar to the mask, ensuring these regions are not processed or included in parameter

calculations, thereby facilitating the processing or analysis of non-masked regions. The

process of using optical flow consistency to determine the motion state of rigid object

Figure 7. Iterative removal of camera self-motion flow using optical flow residuals. (a) Original dense
optical flow. (b) Number of iterations = 5. (c) Number of iterations = 7. (d) Number of iterations = 9.

4.3. Optical Flow Consistency

To calculate the true motion state of rigid objects, this paper proposes an optical flow
consistency method. The core idea of this method is to use the rigid object masks obtained
from instance segmentation to mask specific regions in the optical flow image. Then, image
matching methods are used to extract structural features in the optical flow image that are
similar to the mask, ensuring these regions are not processed or included in parameter
calculations, thereby facilitating the processing or analysis of non-masked regions. The
process of using optical flow consistency to determine the motion state of rigid object
regions is shown in Figure 8. In the instance segmentation thread, regions labeled as k are
excluded, while the mask regions of rigid objects labeled as k′ are retained. These regions
are then combined with the motion object optical flow regions output by the optical flow
thread. Let the rigid object mask segmented in frame n be denoted as SRigid

n,mask, which is
the set of all potential moving rigid object masks. The motion object optical flow region
obtained from the optical flow residuals is denoted as On−1,n, where all pixels are dynamic.

Sensors 2024, 24, 5929 10 of 29

The rigid object mask region is designated as the region of interest (ROI), and the motion
object optical flow region is the image area to be processed, with the pixel set represented as {pi}N

i=1 ∈ SRigid
n,mask{

qj
}M

j=1 ∈ On−1,n
(7)

In Equation (7), N and M represent the number of pixels in the rigid object mask region
and the object motion optical flow region, respectively. pi and qj denote the pixels in these
two regions.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 29

regions is shown in Figure 8. In the instance segmentation thread, regions labeled as 𝑘

are excluded, while the mask regions of rigid objects labeled as 𝑘′ are retained. These

regions are then combined with the motion object optical flow regions output by the op-

tical flow thread. Let the rigid object mask segmented in frame 𝑛 be denoted as 𝑆𝑛,𝑚𝑎𝑠𝑘
𝑅𝑖𝑔𝑖𝑑 ,

which is the set of all potential moving rigid object masks. The motion object optical flow

region obtained from the optical flow residuals is denoted as 𝑂𝑛−1,𝑛, where all pixels are

dynamic. The rigid object mask region is designated as the region of interest (ROI), and

the motion object optical flow region is the image area to be processed, with the pixel set

represented as

{
{𝑝𝑖}𝑖=1

𝑁 ∈ 𝑆𝑛,𝑚𝑎𝑠𝑘
𝑅𝑖𝑔𝑖𝑑

{𝑞𝑗}𝑗=1

𝑀
∈ 𝑂𝑛−1,𝑛

 (7)

In Equation 7, 𝑁 and 𝑀 represent the number of pixels in the rigid object mask region

and the object motion optical flow region, respectively. 𝑝𝑖 and 𝑞𝑗 denote the pixels in

these two regions.

Figure 8. Optical flow consistency for determining the moving rigid object region.

The region of interest is multiplied by the object motion optical flow region to obtain

the optical flow consistency image. The pixel values within the optical flow consistency

image region remain unchanged, while the pixel values outside this region are set to 0

(displayed as black). The intersection of the two pixel sets is given by

{𝑝𝑖}𝑖=1
𝑁 ⋂{𝑞𝑗}𝑗=1

𝑀
= {𝑟𝑘}𝑘=1

𝐿 (8)

In Equation (8), 𝑟𝑘 represents the intersection of the two pixel sets, where 𝐿 is the

number of intersecting pixels.

Figure 8. Optical flow consistency for determining the moving rigid object region.

The region of interest is multiplied by the object motion optical flow region to obtain
the optical flow consistency image. The pixel values within the optical flow consistency
image region remain unchanged, while the pixel values outside this region are set to 0
(displayed as black). The intersection of the two pixel sets is given by

{pi}N
i=1

⋂{
qj
}M

j=1 = {rk}L
k=1 (8)

In Equation (8), rk represents the intersection of the two pixel sets, where L is the
number of intersecting pixels.

The overlap ratio can be expressed as the ratio of the number of intersecting pixels to
the pixel count of the smaller region:

Overlap =
L

min(N, M)
(9)

In Equation (9), if the Overlap ratio is greater than or equal to the threshold of 0.7, the
rigid object mask with the highest overlap ratio is considered the moving rigid object mask

Sensors 2024, 24, 5929 11 of 29

SMv−Rigid
n,mask . If the optical flow consistency check identifies a moving rigid object mask, it is

labeled as k′′ .
The threshold of 0.7 is suitable for most dynamic scenes. In such scenarios, the overlap

ratio between the mask of the moving rigid object and the object motion optical flow region,
calculated through optical flow residuals, can indicate whether the object is truly in motion.
Extensive experiments and data analysis have shown that when the overlap ratio reaches
or exceeds 0.7, the accuracy of motion detection is highest. This effectively separates and re-
moves the feature points of moving rigid objects, preventing interference with camera pose
estimation. Additionally, setting the threshold at 0.7 allows for a certain degree of tolerance
to minor errors and noise in optical flow calculations. This prevents missed detections of
truly moving objects due to an overly high threshold, or false positives that could affect the
system’s stability and accuracy with a lower threshold. Consequently, the 0.7 overlap ratio
threshold is an optimal value, validated through extensive experimentation, that balances
detection accuracy and robustness in dynamic scenes. Algorithm 1 illustrates the process
of the optical flow consistency method.

Algorithm 1 Optical flow consistency calculation

1. Initialize SRigid
n,mask ∈ k′ # Set the rigid object mask region as the ROI region.

2. Initialize On−1,n #Set the optical flow region as the processing image region.

3. Define Function : extract_roi
(

SRigid
n,mask, On−1,n)

Ensure the mask is binary
SRigid

n,mask = SRigid
n,mask/255

Get the pixels from the instance mask region

{pi}N
i=1 ←GetInstanceMaskRegionPixels

(
SRigid

n,mask)
Get the pixels from the optical flow region{

qj

}M

j=1
←GetOpticalFlowRegionPixels(On−1,n)

Multiply the two sets of pixels element-wise

multiply_images
(
{pi}N

i=1 ,
{

qj

}M

j=1
)

{rk}L
k=1 ←GetOpticalFlowConsistencyImage

Return extract_roi
4. # Calculate Overlap, where L is the number of intersecting pixels.

Overlap = L/min(N, M)
5. If Overlap ≥ 0.7 then

SMv−Rigid
n,mask ←GetMovingRigidObjectMask(k′′)

End If

4.4. Motion Frame Propagation

Rotation or blurring caused by object or camera movement can lead to missed detec-
tions in instance segmentation. To address this issue, motion frame propagation is applied
to keyframes. The strategy involves classifying frames with moving rigid object masks as
motion frames, while the remaining frames are considered general frames. The location of
dynamic object regions in general frames is determined by transforming the moving rigid
object mask from the motion frame using the camera pose. Before propagation, feature
point matching is performed. After matching, the pixel coordinates of the static feature
points from the previous frame are assigned to the current frame:

pn(x, y) = KTn−1→ndn−1K−1 pn−1(x, y) (10)

In Equation (10), K represents the camera’s intrinsic matrix, Tn−1→n denotes the camera
pose transformation matrix from frame n− 1 to frame n, dn−1 corresponds to the depth
value of the pixel, pn−1(x, y) and pn(x, y) represent the pixel coordinates in the previous
frame and the current frame, respectively.

Sensors 2024, 24, 5929 12 of 29

As shown in Figure 9, the diagram illustrates motion frame propagation. The blue
box represents feature points located within the moving rigid object mask, which exhibit
dynamic properties. The remaining green points represent feature points on static objects,
which exhibit stationary properties. If frame n− 1 is designated as a motion frame, the
dynamic feature point properties of frame n − 1 need to be propagated to the current
general frame n. The propagation method is as follows:

A(pn−1(x, y)) = A(pn(x, y)), pn−1(x, y)↔ pn(x, y) (11)

In Equation (11), A represents the attribute, and↔ indicates the matching relationship.
The closer the Euclidean distance between the pixel coordinates of the feature points in
consecutive frames and the smaller the difference in depth values, the higher the similarity
of the feature points. As a result, the location of the mask in frame n can be inferred using
the camera pose transformation matrix. If the moving rigid object mask still exists in frame
n, this frame is updated as a motion frame, and the propagation continues.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 29

feature point matching is performed. After matching, the pixel coordinates of the static

feature points from the previous frame are assigned to the current frame:

𝑝𝑛(𝑥, 𝑦) = 𝐾𝑇𝑛−1→𝑛𝑑𝑛−1𝐾
−1𝑝𝑛−1(𝑥, 𝑦) (10)

In Equation (10), 𝐾 represents the camera’s intrinsic matrix, 𝑇𝑛−1→𝑛 denotes the

camera pose transformation matrix from frame 𝑛 − 1 to frame 𝑛, 𝑑𝑛−1 corresponds to
the depth value of the pixel, 𝑝𝑛−1(𝑥, 𝑦) and 𝑝𝑛(𝑥, 𝑦) represent the pixel coordinates in the
previous frame and the current frame, respectively.

As shown in Figure 9, the diagram illustrates motion frame propagation. The blue

box represents feature points located within the moving rigid object mask, which exhibit

dynamic properties. The remaining green points represent feature points on static objects,

which exhibit stationary properties. If frame 𝑛 − 1 is designated as a motion frame, the

dynamic feature point properties of frame 𝑛 − 1 need to be propagated to the current

general frame 𝑛. The propagation method is as follows:

𝐴(𝑝𝑛−1(𝑥, 𝑦)) = 𝐴(𝑝𝑛(𝑥, 𝑦)), 𝑝𝑛−1(𝑥, 𝑦) ↔ 𝑝𝑛(𝑥, 𝑦) (11)

In Equation (11), 𝐴 represents the attribute, and ↔ indicates the matching relation-

ship. The closer the Euclidean distance between the pixel coordinates of the feature points

in consecutive frames and the smaller the difference in depth values, the higher the simi-

larity of the feature points. As a result, the location of the mask in frame 𝑛 can be inferred

using the camera pose transformation matrix. If the moving rigid object mask still exists

in frame 𝑛, this frame is updated as a motion frame, and the propagation continues.

Figure 9. Motion frame propagation.

After completing the motion frame propagation, all subsequent frames will have

mask information for the moving objects. Next, the feature points on all moving objects

are removed. For each mask 𝑆𝑛,𝑚𝑎𝑠𝑘
𝑖 , the feature points on the masks labeled 𝑘 and 𝑘′′

are removed, while the remaining points are considered static feature points.

The result of removing the dynamic feature points from non-rigid objects and mov-

ing rigid objects is shown in Figure 10. The images in Figure 10a–d display dynamic scenes

discussed in earlier sections of this paper. It can be observed that the feature points on

non-rigid objects, specifically the moving people, have been effectively removed in all four

images. Figure 10a,b depict a person dragging a chair and sitting down. Due to the com-

bined effect of the optical flow and detection threads, the rigid objects in the scene are

classified as either moving or stationary rigid objects. The chair being dragged is identified

as a moving rigid object, and its dynamic feature points are removed. Similarly, Figure

10c,d show the process of a person tossing a balloon and it falling back down. The feature

points on the person and the balloon are successfully identified as dynamic points. Nota-

bly, in Figure 10c, only part of the person is visible. However, through motion frame prop-

agation, the mask from the previous frame was successfully transformed and transmitted

Figure 9. Motion frame propagation.

After completing the motion frame propagation, all subsequent frames will have mask
information for the moving objects. Next, the feature points on all moving objects are
removed. For each mask Si

n,mask, the feature points on the masks labeled k and k′′ are
removed, while the remaining points are considered static feature points.

The result of removing the dynamic feature points from non-rigid objects and moving
rigid objects is shown in Figure 10. The images in Figure 10a–d display dynamic scenes
discussed in earlier sections of this paper. It can be observed that the feature points on
non-rigid objects, specifically the moving people, have been effectively removed in all
four images. Figure 10a,b depict a person dragging a chair and sitting down. Due to the
combined effect of the optical flow and detection threads, the rigid objects in the scene are
classified as either moving or stationary rigid objects. The chair being dragged is identified
as a moving rigid object, and its dynamic feature points are removed. Similarly, Figure 10c,d
show the process of a person tossing a balloon and it falling back down. The feature points
on the person and the balloon are successfully identified as dynamic points. Notably, in
Figure 10c, only part of the person is visible. However, through motion frame propagation,
the mask from the previous frame was successfully transformed and transmitted to the
next frame using the camera pose transformation. As a result, the dynamic feature points
on the incomplete human figure were also effectively removed.

Sensors 2024, 24, 5929 13 of 29

Sensors 2024, 24, x FOR PEER REVIEW 13 of 29

to the next frame using the camera pose transformation. As a result, the dynamic feature

points on the incomplete human figure were also effectively removed.

Figure 10. Effect of dynamic feature point removal. The colored areas in the figure depict the opti-

cal flow of moving rigid objects, while the green areas indicate the final extracted feature points.

The feature points of non-rigid objects, such as the human body, are removed in all scenes. (a,b) A

chair is being dragged, with its feature points being removed. (c,d) Hitting a balloon, where the

feature points on the balloon are removed. (e) The box is stationary, and the feature points are

normally extracted. (f) The box is being moved, with its feature points removed. (g,h) The box is

put down, and its feature points are restored.

Figure 10e,h illustrate a sequence of images depicting a person moving a stationary

box from a table to the floor, with the feature points on the stationary rigid object being

retained. In Figure 10e, when the box is stationary, all feature points are extracted nor-

mally. In Figure 10f, when a person picks up the box from the table, the detection thread

removes the feature points on the person. The optical flow thread then determines that

Figure 10. Effect of dynamic feature point removal. The colored areas in the figure depict the optical
flow of moving rigid objects, while the green areas indicate the final extracted feature points. The
feature points of non-rigid objects, such as the human body, are removed in all scenes. (a,b) A chair
is being dragged, with its feature points being removed. (c,d) Hitting a balloon, where the feature
points on the balloon are removed. (e) The box is stationary, and the feature points are normally
extracted. (f) The box is being moved, with its feature points removed. (g,h) The box is put down,
and its feature points are restored.

Figure 10e,h illustrate a sequence of images depicting a person moving a stationary
box from a table to the floor, with the feature points on the stationary rigid object being
retained. In Figure 10e, when the box is stationary, all feature points are extracted normally.
In Figure 10f, when a person picks up the box from the table, the detection thread removes
the feature points on the person. The optical flow thread then determines that the box is a
moving rigid object, leading to the removal of its feature points. In Figure 10g, after the box
is placed on the ground and returns to a stationary state, the optical flow thread responds

Sensors 2024, 24, 5929 14 of 29

accordingly, and the motion object optical flow disappears. At this point, the detection
thread identifies the presence of a non-rigid object, so only the feature points on the person
are removed. Finally, as shown in Figure 10h, with no further interference from dynamic
objects, all remaining feature points are static and are used for camera pose estimation.

4.5. Dense Mapping Thread

Map construction is another key function of VSLAM systems. Compared to dense
point clouds, the sparse point clouds generated by current VSLAM solutions are primar-
ily used for robot localization and cannot provide high-level environmental description
information. Additionally, they do not account for moving objects in the environment,
leading to ghosting effects and reduced map quality. This paper incorporates a dense point
cloud reconstruction thread into the original framework, using the keyframes generated by
ORB-SLAM3 as the foundation for constructing the point cloud map.

For non-rigid objects, the dynamic regions in the image are segmented based on the
original RGB-D camera input, and the static regions are used to generate the point cloud.
But simply separating the relevant regions based on semantic information is insufficient for
moving rigid objects, as these objects may return to a stationary state after moving. Hence,
it is necessary to track their pose and update the position of the moving rigid objects in the
point cloud.

Inspired by the work in [38], the motion model is converted into a 6D pose trajectory for
each moving rigid object in both the camera and global reference frames. Using traditional
visual odometry (VO) for batch estimation to estimate the inliers of each motion model can
only yield the trajectory of the camera relative to the moving object, denoted as ego-motion
Tego

Mn M1
, rather than the trajectory of the moving object in the global reference frame.

Thus, the pose in the first camera frame is used as the global reference frame, with
the camera’s motion represented by Tc. The motion trajectories of the camera and the
moving object in the global reference frame are estimated. The estimated poses are then
used to project the 3D visual features onto the first frame, allowing for the calculation of the
centroid of the surface point set of the moving object. The initial transformation between
the moving object and the camera is denoted as Tini. The centroid is updated over time as
new points are generated through transformations between frames, yielding the motion of
each moving object in the global reference frame TMn M1 :

TMn M1 = TCnC1 Tego
Mn M1

T−1
init (12)

In Equation (12), Tego
Mn M1

represents the relative motion between the camera and the
moving object, and TCnC1 denotes the camera’s pose at frame n.

Let the moving rigid object mask region obtained through optical flow consistency in
Section 4.3 be denoted as SMv−Rigid

n,mask , and the corresponding RGB image frame as RMv−Rigid
n .

The reconstruction of the point cloud for the moving object is performed by combining
RMv−Rigid

n with the depth image Dn corresponding to the current frame n. According to
the camera imaging principle, the coordinates (x, y, z) of a point on the moving object in
3D space are given by

x = (u− cx)/ fx
y =

(
v− cy

)
/ fy

z = d
(13)

In Equation (13), (u, v) represents the pixel coordinates on the RMv−Rigid
n image. The

parameters fx, fy, cx, and cy are the camera intrinsics, obtained through camera calibration,
and will not be further elaborated here. After obtaining the point cloud of the moving rigid
object, the point clouds from consecutive frames are stitched together using the ego-motion
transformation Tego

Mn Mn−1
between two adjacent frames. When the rigid object is in motion,

its point cloud is updated by stitching the new point cloud, and the rigid transformation
TMn M1 is used to transform the moving rigid object into the global reference frame. For

Sensors 2024, 24, 5929 15 of 29

better visual results, the point clouds between frames are aligned using the Iterative Closest
Point (ICP) algorithm. After alignment, the point cloud data is processed using an outlier
removal filter and a voxel grid downsampling filter. The core of the ICP algorithm involves
continuous iteration, where points in two point clouds are rotated and translated within
a specified threshold to achieve registration. Since precise registration requires the point
clouds to be closely aligned, a coarse registration is performed first to roughly merge
the two point clouds, followed by fine registration to further reduce errors. The static
background point cloud data is then transformed into the world coordinate system for
point cloud stitching and global map fusion, resulting in the generation of a dense point
cloud map. Assuming the point clouds generated by the i-th and j-th keyframes are Cloudi
and Cloudj, and the camera poses are Ti and Tj, the transformation of the keyframes into
the world coordinate system is given by Equation (14):

x = (u− cx)/ fx
y =

(
v− cy

)
/ fy

z = d
(14)

Then, the new point cloud is obtained by stitching them together as shown in Equation (15):

Cloud∗ = Cloudi
′ + Cloudj

′ (15)

By stitching the point cloud data generated from the keyframes, a dense point cloud
map can be obtained.

5. Experiments and Results Analysis
5.1. Hardware and Software Platform

The hardware and software configuration of the PC used for testing is shown in Table 1.
The training and testing of the instance segmentation and optical flow estimation networks
were implemented in Python, with the deep learning framework being PyTorch. To meet
real-time requirements, the system converted the deep learning models to ONNX format
and used TensorRT and CUDA for accelerated computation. The SLAM components were
implemented in C++14, with the point cloud processing using the PCL and OctoMap
libraries. The experiments also included several third-party libraries used by the original
ORB-SLAM3, such as Eigen3, g2o, Pangolin, DBoW2, and Sophus.

Table 1. Hardware and software configurations of the experimental platform.

Name Configuration

CPU Intel Core i9-13900HX
(Intel, Santa Clara, CA, USA)

GPU NVIDIA GeForce RTX 4060 8G
(NVIDIA, Santa Clara, CA, USA)

Memory 32GB
Operating system Ubuntu 20.04 64-bit

Python, CUDA, PyTorch versions python3.8, CUDA = 11.8, pytorch = 2.0.0
OpenCV, PCL versions OPENCV = 4.8.0, PCL = 1.10

TensorRT version TensorRT = 8.6.1.6

5.2. Comparative Experiment on Camera Pose Accuracy with ORB-SLAM3

This paper utilizes the TUM [39] open dataset to verify the accuracy of camera poses,
as it includes standard trajectories and comparison tools, making it highly suitable for
SLAM-related research. The fr3_walking and fr3_sitting_static subsequences under the fr3
sequence were selected as the experimental datasets. The fr3_walking sequence is highly
dynamic, while the fr3_sitting_static sequence has lower dynamics. Sequence fr3_walking
also includes four types of camera movements: (1) xyz: the camera moves along the x, y,
and z axes; (2) static: the camera position remains fixed; (3) rpy: the camera rotates along

Sensors 2024, 24, 5929 16 of 29

the roll, pitch, and yaw axes; (4) halfsphere: the camera moves along a hemisphere with a
diameter of 1 m.

The common metrics for evaluating the localization accuracy of SLAM systems are
absolute trajectory error (ATE) and relative pose error (RPE). ATE assesses global consis-
tency by measuring the absolute distance between the estimated and true camera poses
for each frame. The smaller the value, the higher the accuracy of the camera pose, as it
considers only the translation error. RPE calculates the difference in pose change between
the estimated and true camera poses over a fixed time interval, taking into account both
translation and rotation errors. Root Mean Square Error (RMSE) and Standard Deviation
(S.D.) are used as specific quantitative metrics for ATE and RPE. The RMSE value is often
influenced by large unexpected errors, while the S.D. value highlights the stability of the
SLAM system. The formula for calculating the improvement in accuracy is

η =
α− β

α
× 100% (16)

In Equation (16), α represents the results of the algorithm used for comparison, and β
represents the results of the algorithm put forward in this paper.

Figures 11–15 sequentially display the data comparison between ORB-SLAM3 and
DIO-SLAM on five dynamic sequences. In each figure, (a) and (b) show the absolute
trajectory error of the algorithm, while (c) and (d) depict the relative pose error. All data
were obtained using the same equipment. The green line in the figures represents the
ground truth, the blue line represents the estimated trajectory by the algorithm, and the
red line indicates the distance between the ground truth and the estimated value, which is
also the absolute trajectory error. Shorter red segments indicate smaller errors and higher
algorithm accuracy. In the high-dynamic sequences shown in Figures 11–14, the camera
motion trajectory obtained by our method aligns more closely with the true trajectory,
demonstrating that our method can better handle high-dynamic scenes. In all four datasets,
there were actions such as pedestrians walking or dragging chairs, which activated the
optical flow and instance segmentation threads, successfully eliminating the interference
of dynamic points. In the fr3_walking_rpy and fr3_walking_halfsphere sequences, where
camera movement was more extensive, the motion frame propagation method compensated
for missed detections in the instance segmentation, improving pose accuracy. In contrast,
the ORB-SLAM3 algorithm suffered from inaccurate localization due to the presence of
dynamic objects, even producing incorrect trajectories in some regions. In the low-dynamic
sequence fr3_sitting_static shown in Figure 15, the results of our algorithm are similar to
those of the ORB-SLAM3 system, indicating limited room for improvement.

Tables 2–4 present the quantitative data comparing the DIO-SLAM and the ORB-
SLAM3 algorithm. In the first four high-dynamic sequences, the pose estimation accuracy of
the proposed system improved significantly, with the RMSE value of the absolute trajectory
error improving by 91.85% to 98.26%. The RMSE value of the translation component of the
relative pose error improved by 82.44% to 95.92%, while the rotation component improved
by 68.82% to 93.74%. In the fifth low-dynamic sequence, where the movements were limited
to slight body twists and hand gestures without moving rigid objects, the low dynamics
of the scene did not fully utilize the role of optical flow in the algorithm. With very few
dynamic feature points, ORB-SLAM3 was able to handle the situation with its RANSAC
algorithm, retaining more static feature points for optimization. Although optical flow did
not play a significant role, the instance segmentation in the detection thread was still able
to identify the moving person and remove some unstable feature points. Nevertheless, the
motion frame propagation process may have led to some stationary objects (such as parts
of the human body) being incorrectly classified as moving, reducing the number of feature
points participating in pose optimization. As a result, the S.D. value of the relative pose
error is slightly lower than that of the ORB-SLAM3 algorithm.

Sensors 2024, 24, 5929 17 of 29Sensors 2024, 24, x FOR PEER REVIEW 17 of 29

Figure 11. Absolute trajectory error and relative pose error of fr3_walkingx_xyz.

Figure 12. Absolute trajectory error and relative pose error of fr3_walking_static.

Figure 11. Absolute trajectory error and relative pose error of fr3_walkingx_xyz.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 29

Figure 11. Absolute trajectory error and relative pose error of fr3_walkingx_xyz.

Figure 12. Absolute trajectory error and relative pose error of fr3_walking_static.
Figure 12. Absolute trajectory error and relative pose error of fr3_walking_static.

Sensors 2024, 24, 5929 18 of 29Sensors 2024, 24, x FOR PEER REVIEW 18 of 29

Figure 13. Absolute trajectory error and relative pose error of fr3_walking_rpy.

Figure 14. Absolute trajectory error and relative pose error of fr3_walking_halfsphere.

Figure 13. Absolute trajectory error and relative pose error of fr3_walking_rpy.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 29

Figure 13. Absolute trajectory error and relative pose error of fr3_walking_rpy.

Figure 14. Absolute trajectory error and relative pose error of fr3_walking_halfsphere.
Figure 14. Absolute trajectory error and relative pose error of fr3_walking_halfsphere.

Sensors 2024, 24, 5929 19 of 29Sensors 2024, 24, x FOR PEER REVIEW 19 of 29

Figure 15. Absolute trajectory error and relative pose error of fr3_sitting_static.

Tables 2–4 present the quantitative data comparing the DIO-SLAM and the ORB-

SLAM3 algorithm. In the first four high-dynamic sequences, the pose estimation accuracy

of the proposed system improved significantly, with the RMSE value of the absolute tra-

jectory error improving by 91.85% to 98.26%. The RMSE value of the translation compo-

nent of the relative pose error improved by 82.44% to 95.92%, while the rotation compo-

nent improved by 68.82% to 93.74%. In the fifth low-dynamic sequence, where the move-

ments were limited to slight body twists and hand gestures without moving rigid objects,

the low dynamics of the scene did not fully utilize the role of optical flow in the algorithm.

With very few dynamic feature points, ORB-SLAM3 was able to handle the situation with

its RANSAC algorithm, retaining more static feature points for optimization. Although

optical flow did not play a significant role, the instance segmentation in the detection

thread was still able to identify the moving person and remove some unstable feature

points. Nevertheless, the motion frame propagation process may have led to some sta-

tionary objects (such as parts of the human body) being incorrectly classified as moving,

reducing the number of feature points participating in pose optimization. As a result, the

S.D. value of the relative pose error is slightly lower than that of the ORB-SLAM3 algo-

rithm.

Table 2. Results of metric absolute trajectory error (ATE) [m].

Seq.
ORB-SLAM3 DIO-SLAM (Ours) Improvements

RMSE S.D. RMSE RMSE RMSE (%) S.D. (%)

w_xyz 0.8336 0.4761 0.0145 0.0145 98.26 98.53

w_static 0.4078 0.1831 0.0072 0.0072 98.23 98.31

w_rpy 1.1665 0.6294 0.0306 0.0306 97.38 97.47

w_half 0.3178 0.1557 0.0259 0.0259 91.85 91.91

s_static 0.0099 0.0044 0.0062 0.0062 37.37 34.09

Figure 15. Absolute trajectory error and relative pose error of fr3_sitting_static.

Table 2. Results of metric absolute trajectory error (ATE) [m].

Seq.
ORB-SLAM3 DIO-SLAM (Ours) Improvements

RMSE S.D. RMSE RMSE RMSE (%) S.D. (%)

w_xyz 0.8336 0.4761 0.0145 0.0145 98.26 98.53
w_static 0.4078 0.1831 0.0072 0.0072 98.23 98.31
w_rpy 1.1665 0.6294 0.0306 0.0306 97.38 97.47
w_half 0.3178 0.1557 0.0259 0.0259 91.85 91.91
s_static 0.0099 0.0044 0.0062 0.0062 37.37 34.09

Table 3. Results of metric translational drift (RPE) [m/s].

Seq.
ORB-SLAM3 DIO-SLAM (Ours) Improvements

RMSE S.D. RMSE RMSE RMSE (%) S.D. (%)

w_xyz 0.4154 0.2841 0.0186 0.0089 95.52 96.87
w_static 0.2355 0.2123 0.0096 0.0041 95.92 98.07
w_rpy 0.3974 0.2836 0.0426 0.0228 89.28 91.96
w_half 0.1424 0.1075 0.0250 0.0110 82.44 89.77
s_static 0.0092 0.0045 0.0087 0.0047 5.43 −4.44

Table 4. Results of metric rotational drift (RPE) [deg/s].

Seq.
ORB-SLAM3 DIO-SLAM (Ours) Improvements

RMSE S.D. RMSE RMSE RMSE (%) S.D. (%)

w_xyz 8.0130 5.5450 0.5020 0.2455 93.74 95.57
w_static 4.1851 3.7462 0.2708 0.1106 93.53 97.05
w_rpy 7.7448 5.5218 0.8731 0.4221 88.73 92.36
w_half 2.3482 1.6014 0.7321 0.3435 68.82 78.55
s_static 0.2872 0.1265 0.2802 0.1287 2.44 −1.74

Sensors 2024, 24, 5929 20 of 29

5.3. Comparative Experiment on Pose Accuracy with Cutting-Edge Dynamic VSLAM Algorithms

To further validate our algorithm, DIO-SLAM is compared with several leading dy-
namic scene processing algorithms, including Dyna-SLAM, DS-SLAM, RDMO-SLAM [40],
DM-SLAM, RDS-SLAM [41], ACE-Fusion, and SG-SLAM [42]. The results are shown in
Tables 5–7.

Table 5. ATE comparison of the latest algorithms on 5 sequences.

Seq. w_xyz w_static w_rpy w_half s_static

Dyna-SLAM * (N + G)
RMSE 0.0161 0.0067 0.0345 0.0293 0.0108

S.D. 0.0083 0.0038 0.0195 0.0149 0.0056

DS-SLAM *
RMSE 0.0247 0.0081 0.4442 0.0303 0.0065

S.D. 0.0161 0.0067 0.2350 0.0159 0.0033

RDMO-SLAM
RMSE 0.0226 0.0126 0.1283 0.0304 0.0066

S.D. 0.0137 0.0071 0.1047 0.0141 0.0033

DM-SLAM
RMSE 0.0148 0.0079 0.0328 0.0274 0.0063

S.D. 0.0072 0.0040 0.0194 0.0137 0.0032

RDS-SLAM *
RMSE 0.0571 0.0206 0.1604 0.0807 0.0084

S.D. 0.0229 0.0120 0.0873 0.0454 0.0043

ACE-Fusion
RMSE 0.0146 0.0067 0.1869 0.0425 0.0066

S.D. 0.0074 0.0032 0.1467 0.0264 0.0032

SG-SLAM *
RMSE 0.0152 0.0073 0.0324 0.0268 0.0060

S.D. 0.0075 0.0034 0.0187 0.0203 0.0047

DIO-SLAM(Ours)
RMSE 0.0145 0.0072 0.0306 0.0259 0.0062

S.D. 0.0070 0.0031 0.0159 0.0126 0.0029

* Indicates that the algorithm has open-source code available. The highest accuracy among all algorithms is
indicated in bold.

Table 6. RPE (translational drift) comparison of the latest algorithms on 5 sequences.

Seq. w_xyz w_static w_rpy w_half s_static

Dyna-SLAM * (N + G)
RMSE 0.0217 0.0089 0.0448 0.0284 0.0126

S.D. 0.0119 0.0040 0.0262 0.0149 0.0067

DS-SLAM *
RMSE 0.0333 0.0102 0.1503 0.0297 0.0078

S.D. 0.0229 0.0038 0.1168 0.0152 0.0038

RDMO-SLAM
RMSE 0.0299 0.0160 0.1396 0.0294 0.0090

S.D. 0.0188 0.0090 0.1176 0.0130 0.0040

DM-SLAM
RMSE - - - - -

S.D. - - - - -

RDS-SLAM *
RMSE 0.0426 0.0221 0.1320 0.0482 0.0123

S.D. 0.0317 0.0149 0.1067 0.0036 0.0070

ACE-Fusion
RMSE - - - - -

S.D. - - - - -

Sensors 2024, 24, 5929 21 of 29

Table 6. Cont.

Seq. w_xyz w_static w_rpy w_half s_static

SG-SLAM *
RMSE 0.0194 0.0100 0.0450 0.0279 0.0075

S.D. 0.0100 0.0051 0.0262 0.0146 0.0035

DIO-SLAM(Ours)
RMSE 0.0186 0.0096 0.0426 0.0250 0.0087

S.D. 0.0089 0.0041 0.0228 0.0110 0.0047

- Indicates missing data and no open-source code. * Indicates that the algorithm has open-source code available.
The highest accuracy among all algorithms is indicated in bold.

Table 7. RPE (rotational drift) comparison of the latest algorithms on 5 sequences.

Seq. w_xyz w_static w_rpy w_half s_static

Dyna-SLAM * (N + G)
RMSE 0.6284 0.2612 0.9894 0.7842 0.3416

S.D. 0.3848 0.1259 0.5701 0.4012 0.1642

DS-SLAM *
RMSE 0.8266 0.2690 3.0042 0.8142 0.2735

S.D. 0.2826 0.1215 2.3065 0.4101 0.1215

RDMO-SLAM
RMSE 0.7990 0.3385 2.5472 0.7915 0.2910

S.D. 0.5502 0.1612 2.0607 0.3782 0.1330

DM-SLAM
RMSE - - - - -

S.D. - - - - -

RDS-SLAM *
RMSE 0.9222 0.4944 13.1693 1.8828 0.3338

S.D. 0.6509 0.3112 12.0103 1.5250 0.1706

ACE-Fusion
RMSE - - - - -

S.D. - - - - -

SG-SLAM*
RMSE 0.5040 0.2679 0.9565 0.8119 0.2657

S.D. 0.2469 0.1144 0.5487 0.3878 0.1163

DIO-SLAM(Ours)
RMSE 0.5020 0.2708 0.8731 0.7321 0.2802

S.D. 0.2455 0.1106 0.4221 0.3435 0.1287

- Indicates missing data and no open-source code. * Indicates that the algorithm has open-source code available.
The highest accuracy among all algorithms is indicated in bold.

From the tables, it can be analyzed that the first tier is DIO-SLAM. The introduced
optical flow consistency method fully considers objects that are manually moved, and after
dynamic frame propagation, it can effectively optimize scenes with significant camera or
dynamic object movement. For instance, in the fr3_walking_rpy sequence, most algorithms
perform poorly due to the larger camera movements compared to other sequences. Seman-
tic or instance segmentation methods are prone to misjudgment or missed detections of
objects in this sequence. DIO-SLAM effectively addresses this issue, achieving the high-
est accuracy and stability in most dynamic environments. The second tier is SG-SLAM,
which performs best in low-dynamic dataset sequences. This is because SG-SLAM avoids
over-reliance on deep learning for dynamic feature detection, primarily depending on
geometric information. Additionally, by setting a weight threshold, it effectively classifies
objects as dynamic and static, thereby improving pose estimation accuracy in low-dynamic
scenes. The third tier includes Dyna-SLAM, DS-SLAM, and ACE-Fusion. DS-SLAM per-
forms worse than Dyna-SLAM in high-dynamic sequences due to its use of the lightweight
instance segmentation network SegNet, which achieves real-time performance but with
reduced accuracy, leading to segmentation errors. ACE-Fusion combines dense optical
flow and instance segmentation well, achieving high accuracy in the fr3_walking_static se-

Sensors 2024, 24, 5929 22 of 29

quence, where the camera is stationary. However, it does not account for camera self-motion
flow, resulting in lower accuracy than DIO-SLAM in other high-dynamic sequences.

5.4. Ablation Experiment

The DIO-SLAM algorithm we propose is an enhancement of ORB-SLAM3. To evaluate
the impact of each component of the algorithm on the system, the instance segmentation
part (Y), optical flow part (O), and motion frame propagation part (M) were added se-
quentially. Then tested on 16 dynamic scene sequences from the Bonn [43] dataset. These
diverse scenes include playing with balloons (sequences 1–4), dense pedestrian traffic
(sequences 5–7), and moving boxes (sequences 9–16).

As shown in Table 8, DIO-SLAM (Y + O + M) achieved the highest accuracy in 12 of
the sequences, while DIO-SLAM (Y + O) achieved the highest accuracy in 4 sequences. In
contrast, the traditional ORB-SLAM3 algorithm performed very poorly in high-dynamic
scenes. Compared to DIO-SLAM (Y), which only retains instance segmentation, DIO-SLAM
(Y + O), which integrates instance segmentation and optical flow, showed a significant
improvement in pose accuracy, demonstrating the effectiveness of the optical flow consis-
tency method in filtering moving rigid objects. However, in the crowd and moving_o_box
sequences, there is a slight decrease in accuracy after introducing motion frame propaga-
tion. This occurs because, in some frames of these sequences, the camera’s field of view is
largely occupied by moving objects, leading to errors in the instance segmentation mask
extraction. Consequently, the erroneous mask is propagated to subsequent frames by the
motion frame propagation.

Table 8. Comparison of ATE on the Bonn dataset.

Seq.
ORB-SLAM3 DIO-SLAM

(Y)
DIO-SLAM

(Y + O)
DIO-SLAM
(Y + O+M)

RMSE RMSE RMSE Im(%) RMSE Im(%)

1 balloon 0.1762 0.0309 0.0307 0.6 0.0291 5.2

2 balloon2 0.2898 0.0312 0.0296 5.1 0.0284 4.1

3 balloon_tracking 0.0284 0.0280 0.0272 2.9 0.0259 4.8

4 balloon_tracking2 0.1400 0.0992 0.0589 40.6 0.0568 3.6

5 crowd 0.6262 0.0289 0.0289 - 0.0292 −1.0

6 crowd2 1.5959 0.0297 0.0297 - 0.0303 −2.0

7 crowd3 0.9958 0.0281 0.0280 0.3 0.0274 2.1

8 moving_no_box 0.2634 0.0294 0.0196 33.3 0.0173 11.7

9 moving_no_box2 0.0379 0.0477 0.0314 34.2 0.0286 8.9

10 placing_no_box 0.7875 0.0486 0.0201 58.6 0.0189 6.0

11 placing_no_box2 0.0283 0.0290 0.0182 37.2 0.0167 8.2

12 placing_no_box3 0.2076 0.0656 0.0433 34.0 0.0388 10.3

13 removing_no_box 0.0167 0.0161 0.0155 3.7 0.0140 9.7

14 removing_no_box2 0.0225 0.0227 0.0224 1.3 0.0211 5.8

15 moving_o_box 0.6476 0.2628 0.2628 - 0.2633 −0.2

16 moving_o_box2 0.7903 0.1344 0.1241 7.7 0.1248 −0.6

- Indicates missing data and no open-source code. The highest accuracy among all algorithms is indicated in bold.

5.5. Dense Mapping Experiment

In the dense mapping thread, RGB-D keyframes without moving rigid and non-rigid
objects are used as input for reconstructing the static point cloud background. The point
cloud of moving non-rigid objects is updated by tracking their 6D pose and applying

Sensors 2024, 24, 5929 23 of 29

rigid transformations. To validate the tracking effectiveness of moving rigid objects, the
fr3_walking_xyz sequence from the TUM dataset and the moving_nonobstructing_box
sequence from the Bonn dataset were selected for dense point cloud reconstruction.

Figure 16a shows the reconstruction result of the fr3_walking_xyz sequence from
the TUM dataset, which includes a moving rigid object—a chair being manually moved.
Figure 16b shows the reconstruction result of the moving_nonobstructing_box sequence
from the Bonn dataset, where the moving rigid object is a box being carried by a person.
Both sequences have removed the non-rigid objects (walking people). The tracked moving
object 1 is highlighted with an orange point cloud, and moving object 2 is highlighted with
a blue point cloud. The figures demonstrate that the dense mapping thread can accurately
reconstruct the point clouds of the static background and stationary rigid objects. The point
cloud maps generated for scene 1 and scene 2 are 7.4 MB and 11.5 MB in size, respectively.
Such large maps can cause various issues when the algorithm loads or reads data. After
storing the maps in octree format, the map sizes are reduced to 98.5 KB and 183.3 KB,
saving 98.7% and 98.4% of storage space, respectively. The algorithm can visualize the
reconstructed maps in real time, offering practical value for engineering applications.

Sensors 2024, 24, x FOR PEER REVIEW 23 of 29

5.5. Dense Mapping Experiment

In the dense mapping thread, RGB-D keyframes without moving rigid and non-rigid

objects are used as input for reconstructing the static point cloud background. The point

cloud of moving non-rigid objects is updated by tracking their 6D pose and applying rigid

transformations. To validate the tracking effectiveness of moving rigid objects, the

fr3_walking_xyz sequence from the TUM dataset and the moving_nonobstructing_box

sequence from the Bonn dataset were selected for dense point cloud reconstruction.

Figure 16a shows the reconstruction result of the fr3_walking_xyz sequence from the

TUM dataset, which includes a moving rigid object—a chair being manually moved. Fig-

ure 16b shows the reconstruction result of the moving_nonobstructing_box sequence from

the Bonn dataset, where the moving rigid object is a box being carried by a person. Both

sequences have removed the non-rigid objects (walking people). The tracked moving ob-

ject 1 is highlighted with an orange point cloud, and moving object 2 is highlighted with

a blue point cloud. The figures demonstrate that the dense mapping thread can accurately

reconstruct the point clouds of the static background and stationary rigid objects. The

point cloud maps generated for scene 1 and scene 2 are 7.4 MB and 11.5 MB in size, re-

spectively. Such large maps can cause various issues when the algorithm loads or reads

data. After storing the maps in octree format, the map sizes are reduced to 98.5 KB and

183.3 KB, saving 98.7% and 98.4% of storage space, respectively. The algorithm can visualize

the reconstructed maps in real time, offering practical value for engineering applications.

To effectively evaluate the quality of the mapping, dense point cloud reconstruction

was performed on four datasets from the ICL-NUIM [44] (kt0, kt1, kt2, and kt3). The point

clouds reconstructed using DIO-SLAM were aligned with the ground truth 3D models.

Figure 17 shows the heatmaps generated after aligning the point cloud maps with the

ground truth 3D models. Blue and green indicate high overlap of points, while yellow and

red indicate lower overlap.

Additionally, Table 9 presents the mean distance and standard error between the

dense point clouds reconstructed by our method and the standard model. The mean dis-

tance is the average of all point-to-point distances between the two point clouds, used to

measure the overall difference between them. The standard error indicates the distribu-

tion of distances; a larger standard error suggests a more uneven distribution of point-to-

point distances, while a smaller standard error indicates a more concentrated distribution.

The average mean distance across the four sequences is 0.0257 m, and the average stand-

ard error is 0.0198 m. This leads to the conclusion that the dense point cloud maps con-

structed by DIO-SLAM have a high degree of overlap with the ground truth models, ac-

curately reconstructing the real-world scenes.

(a)

Sensors 2024, 24, x FOR PEER REVIEW 24 of 29

(b)

Figure 16. Dense point cloud reconstruction. (a) RGB frame, dense point cloud, and octree map of

the fr3_walking_xyz sequence. (b) RGB frame, dense point cloud, and octree map of the mov-

ing_nonobstructing_box sequence.

(a) (b)

(c) (d)

Figure 17. Point cloud error heatmaps. (a) kt0 sequence. (b) kt1 sequence. (c) kt2 sequence. (d) kt3

sequence.

Figure 16. Dense point cloud reconstruction. (a) RGB frame, dense point cloud, and octree map
of the fr3_walking_xyz sequence. (b) RGB frame, dense point cloud, and octree map of the mov-
ing_nonobstructing_box sequence.

Sensors 2024, 24, 5929 24 of 29

To effectively evaluate the quality of the mapping, dense point cloud reconstruction
was performed on four datasets from the ICL-NUIM [44] (kt0, kt1, kt2, and kt3). The point
clouds reconstructed using DIO-SLAM were aligned with the ground truth 3D models.
Figure 17 shows the heatmaps generated after aligning the point cloud maps with the
ground truth 3D models. Blue and green indicate high overlap of points, while yellow and
red indicate lower overlap.

Sensors 2024, 24, x FOR PEER REVIEW 24 of 29

(b)

Figure 16. Dense point cloud reconstruction. (a) RGB frame, dense point cloud, and octree map of

the fr3_walking_xyz sequence. (b) RGB frame, dense point cloud, and octree map of the mov-

ing_nonobstructing_box sequence.

(a) (b)

(c) (d)

Figure 17. Point cloud error heatmaps. (a) kt0 sequence. (b) kt1 sequence. (c) kt2 sequence. (d) kt3

sequence.

Figure 17. Point cloud error heatmaps. (a) kt0 sequence. (b) kt1 sequence. (c) kt2 sequence.
(d) kt3 sequence.

Additionally, Table 9 presents the mean distance and standard error between the
dense point clouds reconstructed by our method and the standard model. The mean
distance is the average of all point-to-point distances between the two point clouds, used to
measure the overall difference between them. The standard error indicates the distribution
of distances; a larger standard error suggests a more uneven distribution of point-to-point
distances, while a smaller standard error indicates a more concentrated distribution. The
average mean distance across the four sequences is 0.0257 m, and the average standard
error is 0.0198 m. This leads to the conclusion that the dense point cloud maps constructed
by DIO-SLAM have a high degree of overlap with the ground truth models, accurately
reconstructing the real-world scenes.

Table 9. Mean distance and standard error between the dense point clouds reconstructed by the
proposed method and the standard model [m].

Seq. Mean Distance Std Deviation

kt0 0.0253 0.0193

kt1 0.0203 0.0142

Sensors 2024, 24, 5929 25 of 29

Table 9. Cont.

Seq. Mean Distance Std Deviation

kt2 0.0378 0.0296

kt3 0.0193 0.0159

Average 0.0257 0.0198

5.6. Real-World Scenario Testing

To validate the effectiveness of the proposed approach in real-world scenarios, this
section conducts tests on indoor dynamic scenes using an Orbbec Astra depth camera. The
experimental data were processed by recording the camera’s/camera/color/image_raw
and/camera/depth/image_raw topics using the rosbag command in the ROS system. The
bag files were then converted into the TUM dataset format based on their timestamps.

Figure 18 shows the test results of two real-world scenarios, with the chair in Scenario
1 being replaced by a racket in Scenario 2. Figure 18a presents five color image frames from
the dynamic scenes, with dynamic objects outlined in red dashed boxes. In the first row,
a person places a chair with large movements and a long duration. In the second row, a
person picks up a bottle to drink water, with smaller movements, shorter duration, and a
small target object. In the third row, a person moves a stool with large movements and a
short duration. In the fourth row, a person picks up a racket with medium movements and
medium duration. The corresponding depth images are shown in Figure 18b. The optical
flow of moving objects obtained through optical flow residuals is shown in Figure 18c. By
combining the optical flow of moving objects with the masks of rigid objects using optical
flow consistency, the masks of moving rigid objects, as shown in Figure 18d, are obtained.
Figure 18e shows the feature points from ORB-SLAM3, and Figure 18f shows the effect
of DIO-SLAM in filtering out dynamic points. It can be seen that DIO-SLAM successfully
removes the dynamic feature points associated with the moving human body, the chair,
and the racket.

Sensors 2024, 24, x FOR PEER REVIEW 25 of 29

Table 9. Mean distance and standard error between the dense point clouds reconstructed by the

proposed method and the standard model [m].

Seq. Mean Distance Std Deviation

kt0 0.0253 0.0193

kt1 0.0203 0.0142

kt2 0.0378 0.0296

kt3 0.0193 0.0159

Average 0.0257 0.0198

5.6. Real-World Scenario Testing

To validate the effectiveness of the proposed approach in real-world scenarios, this

section conducts tests on indoor dynamic scenes using an Orbbec Astra depth camera. The

experimental data were processed by recording the camera’s/camera/color/image_raw

and/camera/depth/image_raw topics using the rosbag command in the ROS system. The

bag files were then converted into the TUM dataset format based on their timestamps.

Figure 18 shows the test results of two real-world scenarios, with the chair in Scenario

1 being replaced by a racket in Scenario 2. Figure 18a presents five color image frames

from the dynamic scenes, with dynamic objects outlined in red dashed boxes. In the first

row, a person places a chair with large movements and a long duration. In the second

row, a person picks up a bottle to drink water, with smaller movements, shorter duration,

and a small target object. In the third row, a person moves a stool with large movements

and a short duration. In the fourth row, a person picks up a racket with medium move-

ments and medium duration. The corresponding depth images are shown in Figure 18b.

The optical flow of moving objects obtained through optical flow residuals is shown in

Figure 18c. By combining the optical flow of moving objects with the masks of rigid objects

using optical flow consistency, the masks of moving rigid objects, as shown in Figure 18d,

are obtained. Figure 18e shows the feature points from ORB-SLAM3, and Figure 18f shows

the effect of DIO-SLAM in filtering out dynamic points. It can be seen that DIO-SLAM

successfully removes the dynamic feature points associated with the moving human

body, the chair, and the racket.

Figure 18. Real-world scenario test results. (a) Color images. (b) Depth images. (c) Optical flow of

moving objects. (d) Moving rigid object masks. (e) Feature points in traditional ORB-SLAM3. (f)

Feature points in DIO-SLAM.

Figure 18. Real-world scenario test results. (a) Color images. (b) Depth images. (c) Optical flow
of moving objects. (d) Moving rigid object masks. (e) Feature points in traditional ORB-SLAM3.
(f) Feature points in DIO-SLAM.

Sensors 2024, 24, 5929 26 of 29

5.7. Time Analysis

In terms of running speed, experiments show that YOLACT’s processing time per
frame is three times faster than Mask R-CNN, and FastFlowNet reduces the computational
cost by 13.4 times (only 12.2 GFLOPS) while achieving 90% of LiteFlowNet’s [45] perfor-
mance, with the computation time reduced by three times. For this reason, compared to
other deep learning-based SLAM algorithms, the parallel architecture of YOLACT and
FastFlowNet significantly shortens the processing time of the dynamic detection thread,
meeting real-time requirements (approximately 23 frames per second).

Table 10 provides a comparison of computation times between the DIO-SLAM al-
gorithm and other algorithms. Since our method adds a detection thread and an optical
flow thread for handling dynamic scenes, its runtime is longer than that of ORB-SLAM3.
Nonetheless, compared to Dyna-SLAM, DS-SLAM, and RDS-SLAM, the runtime of DIO-
SLAM is significantly reduced. The runtime of DIO-SLAM is similar to that of the latest
algorithm, SG-SLAM, but DIO-SLAM offers higher localization accuracy and better appli-
cability in scenarios involving moving rigid objects. Table 11 lists the real-time runtime of
each module in DIO-SLAM. After feature point extraction, the FastFlowNet and YOLACT
networks are accelerated using CUDA (Compute Unified Device Architecture) and Ten-
sorRT, and since they run in parallel, they do not add additional time. Although the optical
flow consistency (OFC) module has its own processing time, it is not separately listed
or included in the overall per-frame processing time. This is because the OFC module is
triggered under specific detection conditions and is not executed for every frame. Therefore,
it does not directly affect the overall computation time per frame, especially in static or
low-dynamic scenes where the module may not perform any operations, and thus its time
is not separately accounted for in the per-frame processing time. Overall, the processing
time per frame is approximately 43.10 ms, with about 23 frames per second (FPS), meeting
the real-time camera pose estimation and localization requirements for most scenarios.
Additionally, the dense point cloud mapping module is an independent optional module
in this paper. When this module is enabled, the frame rate is approximately 15–20 frames
per second.

Table 10. Time evaluation.

Algorithm Average Processing Time per
Frame (ms) Hardware Platform

ORB-SLAM3 25.46 Intel Core i9-13900HX
Without GPU

Dyna-SLAM # 192.00 (at least) Nvidia Tesla M40 GPU

DS-SLAM # 59.40 Intel i7 CPU, P4000 GPU

RDS-SLAM # 57.50 Nvidia RTX 2080Ti GPU

SG-SLAM # 65.71 Nvidia Jetson AGX Xavier Developer Kit

SG-SLAM # 39.51 AMD Ryzen 7 4800H (AMD, Santa Clara, CA, USA),
Nvidia GTX 1650

DIO-SLAM (Before TensorRT
acceleration) 124.80 Intel Core i9-13900HX

NVIDIA GeForce RTX 4060 8G

DIO-SLAM (TensorRT acceleration) 43.10 Intel Core i9-13900HX
NVIDIA GeForce RTX 4060 8G

Indicates that the data comes from the original literature.

Sensors 2024, 24, 5929 27 of 29

Table 11. Average running time of each module [ms].

Method ORB
Extraction

FastFlowNet
(TensorRT

Acceleration)

YOLACT
(TensorRT

Acceleration)
OFC MFP Each Frame

Time Cost 3.89 18.39 25.20 5.01 14.01 43.10

6. Conclusions

This paper introduces the DIO-SLAM algorithm, designed to achieve a balance be-
tween real-time performance and accuracy. Building upon the traditional ORB-SLAM3, the
system incorporates a dynamic feature point removal module, which consists of detection
and optical flow threads. The detection thread segments masks of potentially moving
objects and removes feature points of prior non-rigid objects based on semantic informa-
tion. Meanwhile, the optical flow thread leverages optical flow residuals to filter out noise
caused by the camera’s self-motion flow. The proposed optical flow consistency method
integrates the detection and optical flow threads, utilizing the YOLACT algorithm to detect
and eliminate non-rigid object feature points. For moving rigid objects, the algorithm
uses the optical flow of these objects to identify their masks and remove dynamic feature
points. When a moving rigid object becomes stationary, the optical flow thread adjusts
accordingly, incorporating its feature points into the camera pose estimation, which signifi-
cantly enhances accuracy. To address missed detections resulting from large movements of
the camera or objects, a motion frame propagation method is introduced, which transfers
the motion attributes of frames and feature points to subsequent frames, improving the
continuity of object motion across frames. Additionally, the algorithm includes an optional
dense mapping thread that tracks the 6D pose of moving rigid objects, updates their po-
sitions in the point cloud in real-time through rigid transformations, and stores the point
cloud in an octree format. Experiments show that DIO-SLAM excels in highly dynamic
scenes and effectively manages significant camera movements. Ablation studies and pose
accuracy experiments further confirm its superior localization accuracy and robustness.

The DIO-SLAM algorithm can still be improved in future work. For example, instance
segmentation and dense optical flow estimation play crucial roles in the system; using more
accurate algorithms while ensuring real-time performance could significantly enhance
system performance. Additionally, the algorithm may fail if a moving object occupies a
large portion of the camera’s field of view during actual testing. Furthermore, the current
algorithm does not incorporate optical flow for determining non-rigid objects. It would be
an interesting research direction to explore how to assess the stationary parts of non-rigid
objects, such as humans. These challenges are expected to be further studied in future work
to develop a more comprehensive and stable algorithmic system.

Author Contributions: Conceptualization, L.H.; methodology, L.H.; software, L.H.; validation, L.H.
and J.Q.; formal analysis, L.H. and S.L.; investigation, L.H. and S.L.; resources, J.Q.; data curation,
C.Z. and L.H.; writing—original draft preparation, L.H. and C.Z.; writing—review and editing, L.H.
and S.L.; visualization, J.Q. and S.L.; supervision, S.L. and J.Q.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request. “COCO dataset” at https://cocodataset.org (accessed
on 19 August 2024). “TUM dataset” at https://vision.in.tum.de/data/datasets/rgbd-dataset/ (accessed
on 19 August 2024). “Bonn dataset” at https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset/
index.html (accessed on 19 August 2024). “ICL-NUIM dataset” at https://www.doc.ic.ac.uk/~ahanda/
VaFRIC/iclnuim.html (accessed on 19 August 2024).

https://cocodataset.org
https://vision.in.tum.de/data/datasets/rgbd-dataset/
https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset/index.html
https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset/index.html
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

Sensors 2024, 24, 5929 28 of 29

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zheng, Z.; Lin, S.; Yang, C. RLD-SLAM: A Robust Lightweight VI-SLAM for Dynamic Environments Leveraging Semantics and

Motion Information. IEEE Trans. Ind. Electron. 2024, 71, 14328–14338. [CrossRef]
2. Jia, G.; Li, X.; Zhang, D.; Xu, W.; Lv, H.; Shi, Y.; Cai, M. Visual-SLAM Classical Framework and Key Techniques: A Review. Sensors

2022, 22, 4582. [CrossRef] [PubMed]
3. Chen, W.; Shang, G.; Ji, A.; Zhou, C.; Wang, X.; Xu, C.; Li, Z.; Hu, K. An Overview on Visual SLAM: From Tradition to Semantic.

Remote Sens. 2022, 14, 3010. [CrossRef]
4. Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A Comprehensive Survey of Visual SLAM Algorithms. Robotics

2022, 11, 24. [CrossRef]
5. Tourani, A.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H. Visual SLAM: What Are the Current Trends and What to Expect? Sensors

2022, 22, 9297. [CrossRef]
6. Zhang, F.; Rui, T.; Yang, C.; Shi, J. LAP-SLAM: A Line-Assisted Point-Based Monocular VSLAM. Electronics 2019, 8, 243. [CrossRef]
7. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.

Robot. 2017, 33, 1255–1262. [CrossRef]
8. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.

2015, 31, 1147–1163. [CrossRef]
9. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]
10. Aad, G.; Anduaga, X.S.; Antonelli, S.; Bendel, M.; Breiler, B.; Castrovillari, F.; Civera, J.V.; Del Prete, T.; Dova, M.T.; Duffin, S.; et al.

The ATLAS Experiment at the CERN Large Hadron Collider. J. Instrum. 2008, 3, S08003. [CrossRef]
11. Zhong, F.; Wang, S.; Zhang, Z.; Chen, C.; Wang, Y. Detect-SLAM: Making Object Detection and SLAM Mutually Beneficial. In

Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March
2018; pp. 1001–1010.

12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2016; pp. 21–37.

13. Runz, M.; Buffier, M.; Agapito, L. MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects.
In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany,
16–20 October 2018; pp. 10–20.

14. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.

15. Whelan, T.; Leutenegger, S.; Salas Moreno, R.; Glocker, B.; Davison, A. ElasticFusion: Dense SLAM Without A Pose Graph. In
Proceedings of the Robotics: Science and Systems XI, Rome, Italy, 13–17 July 2015.

16. Yu, C.; Liu, Z.; Liu, X.-J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 1168–1174.

17. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

18. Sun, L.; Wei, J.; Su, S.; Wu, P. SOLO-SLAM: A Parallel Semantic SLAM Algorithm for Dynamic Scenes. Sensors 2022, 22, 6977.
[CrossRef] [PubMed]

19. Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. SOLOv2: Dynamic and Fast Instance Segmentation. In Proceedings of the Advances
in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 17721–17732.

20. Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083. [CrossRef]

21. Bescos, B.; Campos, C.; Tardós, J.D.; Neira, J. DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE Robot.
Autom. Lett. 2021, 6, 5191–5198. [CrossRef]

22. Wang, X.; Zheng, S.; Lin, X.; Zhu, F. Improving RGB-D SLAM Accuracy in Dynamic Environments Based on Semantic and
Geometric Constraints. Measurement 2023, 217, 113084. [CrossRef]

23. Islam, Q.U.; Ibrahim, H.; Chin, P.K.; Lim, K.; Abdullah, M.Z. MVS-SLAM: Enhanced Multiview Geometry for Improved Semantic
RGBD SLAM in Dynamic Environment. J. Field Robot. 2024, 41, 109–130. [CrossRef]

24. Zhang, T.; Zhang, H.; Li, Y.; Nakamura, Y.; Zhang, L. FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 7322–7328.

25. Sun, D.; Yang, X.; Liu, M.-Y.; Kautz, J. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 8934–8943.

https://doi.org/10.1109/TIE.2024.3363744
https://doi.org/10.3390/s22124582
https://www.ncbi.nlm.nih.gov/pubmed/35746363
https://doi.org/10.3390/rs14133010
https://doi.org/10.3390/robotics11010024
https://doi.org/10.3390/s22239297
https://doi.org/10.3390/electronics8020243
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1109/TPAMI.2016.2644615
https://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.3390/s22186977
https://www.ncbi.nlm.nih.gov/pubmed/36146324
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1109/LRA.2021.3068640
https://doi.org/10.1016/j.measurement.2023.113084
https://doi.org/10.1002/rob.22248

Sensors 2024, 24, 5929 29 of 29

26. Chang, Z.; Wu, H.; Sun, Y.; Li, C. RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment. Micromachines
2022, 13, 230. [CrossRef]

27. Zhang, X.; Zhang, R.; Wang, X. Visual SLAM Mapping Based on YOLOv5 in Dynamic Scenes. Appl. Sci. 2022, 12, 11548.
[CrossRef]

28. Theodorou, C.; Velisavljevic, V.; Dyo, V. Visual SLAM for Dynamic Environments Based on Object Detection and Optical Flow for
Dynamic Object Removal. Sensors 2022, 22, 7553. [CrossRef]

29. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the
IJCAI’81: 7th international joint conference on Artificial intelligence, Vancouver, BC, Canada, 24–28 August 1981; Volume 2,
pp. 674–679.

30. Cheng, J.; Wang, Z.; Zhou, H.; Li, L.; Yao, J. DM-SLAM: A Feature-Based SLAM System for Rigid Dynamic Scenes. ISPRS Int. J.
Geo-Inf. 2020, 9, 202. [CrossRef]

31. Bujanca, M.; Lennox, B.; Luján, M. ACEFusion—Accelerated and Energy-Efficient Semantic 3D Reconstruction of Dynamic
Scenes. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan,
23–27 October 2022; pp. 11063–11070.

32. Qin, L.; Wu, C.; Chen, Z.; Kong, X.; Lv, Z.; Zhao, Z. RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex
Dynamic Environments. IEEE Trans. Intell. Transp. Syst. 2024, 1–16. [CrossRef]

33. Zhang, J.; Henein, M.; Mahony, R.; Ila, V. VDO-SLAM: A Visual Dynamic Object-Aware SLAM System. arXiv 2021,
arXiv:2005.11052.

34. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-Time Instance Segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166.

35. Kong, L.; Shen, C.; Yang, J. FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 10310–10316.

36. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects
in Context. In Proceedings of the Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer
International Publishing: Cham, Switzerland, 2014; pp. 740–755.

37. Xu, H.; Zhang, J.; Cai, J.; Rezatofighi, H.; Tao, D. GMFlow: Learning Optical Flow via Global Matching. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022.

38. Wang, C.; Luo, B.; Zhang, Y.; Zhao, Q.; Yin, L.; Wang, W.; Su, X.; Wang, Y.; Li, C. DymSLAM: 4D Dynamic Scene Reconstruction
Based on Geometrical Motion Segmentation. IEEE Robot. Autom. Lett. 2021, 6, 550–557. [CrossRef]

39. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal,
7–12 October 2012; pp. 573–580.

40. Liu, Y.; Miura, J. RDMO-SLAM: Real-Time Visual SLAM for Dynamic Environments Using Semantic Label Prediction With
Optical Flow. IEEE Access 2021, 9, 106981–106997. [CrossRef]

41. Liu, Y.; Miura, J. RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods. IEEE Access 2021, 9, 23772–23785.
[CrossRef]

42. Cheng, S.; Sun, C.; Zhang, S.; Zhang, D. SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic
and Geometric Information. IEEE Trans. Instrum. Meas. 2023, 72, 7501012. [CrossRef]

43. Palazzolo, E.; Behley, J.; Lottes, P.; Giguère, P.; Stachniss, C. ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D
Cameras Exploiting Residuals. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 3–8 November 2019; pp. 7855–7862.

44. Handa, A.; Whelan, T.; McDonald, J.; Davison, A.J. A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June
2014; pp. 1524–1531.

45. Hui, T.-W.; Tang, X.; Loy, C.C. LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 8981–8989.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/mi13020230
https://doi.org/10.3390/app122211548
https://doi.org/10.3390/s22197553
https://doi.org/10.3390/ijgi9040202
https://doi.org/10.1109/TITS.2024.3402241
https://doi.org/10.1109/LRA.2020.3045647
https://doi.org/10.1109/ACCESS.2021.3100426
https://doi.org/10.1109/ACCESS.2021.3050617
https://doi.org/10.1109/TIM.2022.3228006

	Introduction
	Related Work
	Algorithms Based on Geometric Constraints and Detection Segmentation
	Algorithms Based on Optical Flow and Detection Segmentation

	Overall System Framework
	Methodology Overview
	Mask Extraction in the Detection Thread
	Determining Object Motion State in the Optical Flow Thread
	Optical Flow Consistency
	Motion Frame Propagation
	Dense Mapping Thread

	Experiments and Results Analysis
	Hardware and Software Platform
	Comparative Experiment on Camera Pose Accuracy with ORB-SLAM3
	Comparative Experiment on Pose Accuracy with Cutting-Edge Dynamic VSLAM Algorithms
	Ablation Experiment
	Dense Mapping Experiment
	Real-World Scenario Testing
	Time Analysis

	Conclusions
	References

