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Abstract: This study investigates the efficacy of machine learning models for intrusion detection in the
Internet of Medical Things, aiming to enhance cybersecurity defenses and protect sensitive healthcare
data. The analysis focuses on evaluating the performance of ensemble learning algorithms, specifically
Stacking, Bagging, and Boosting, using Random Forest and Support Vector Machines as base models
on the WUSTL-EHMS-2020 dataset. Through a comprehensive examination of performance metrics
such as accuracy, precision, recall, and F1-score, Stacking demonstrates exceptional accuracy and
reliability in detecting and classifying cyber attack incidents with an accuracy rate of 98.88%. Bagging
is ranked second, with an accuracy rate of 97.83%, while Boosting yielded the lowest accuracy rate
of 88.68%.
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1. Introduction

The Internet of Medical Things (IoMT) is transforming the healthcare industry by
establishing connections between medical devices, applications, and healthcare IT systems.
This interconnected ecosystem enables real-time patient monitoring, personalized treat-
ment plans, and improved healthcare outcomes. Devices such as wearable health monitors,
smart infusion pumps, and connected imaging machines provide continuous data, facilitat-
ing proactive healthcare management. These advancements contribute to more accurate
diagnoses, timely interventions, and tailored care strategies, ultimately enhancing patient
health outcomes and quality of life [1].

Despite these benefits, the integration of IoMT devices into healthcare networks
presents significant cybersecurity challenges. These devices, often designed with limited
computational power and security features, are vulnerable to various cyber threats, in-
cluding unauthorized access, data breaches, and malware infections. The implications of
such vulnerabilities are severe, as they can lead to unauthorized access to sensitive patient
information, manipulation of device functionality, and disruption of healthcare services.
For instance, a compromised insulin pump could administer incorrect dosages, posing
life-threatening risks to patients. These security issues not only jeopardize patient data
privacy but also undermine the safety and reliability of medical services [2–4].

Current security measures, including traditional IDSs, are increasingly inadequate
in addressing the complex and evolving threats targeting IoMT devices. Traditional IDSs,
which rely on predefined signatures and rule-based detection, struggle to recognize new or
sophisticated attack patterns. Furthermore, the vast and dynamic nature of IoMT networks
exacerbates these limitations, as the volume and diversity of connected devices create a
broader attack surface that is challenging to monitor and secure effectively [1,2].
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Given these inadequacies, there is a critical need for advanced security solutions that
can adapt to the evolving threat landscape of IoMT. Machine learning-enhanced IDS offers
a promising approach by continuously analyzing network traffic and device behavior to
detect anomalies and potential threats in real-time. By leveraging machine learning, IDS
can learn from new attack patterns and adapt to emerging threats, providing solid and
dynamic protection for IoMT devices [5].

Machine learning algorithms used in IDS can be trained on large datasets of network
traffic and device behavior to recognize patterns associated with both normal operations
and malicious activities. These algorithms can detect previously unknown threats, mak-
ing IDS more effective than traditional security measures. Moreover, machine learning
enables IDS to adapt to new types of attacks, ensuring ongoing protection as cyber threats
evolve [4,5].

This research focuses on the vulnerability of IoMT devices to unauthorized access
and data breaches, investigating the use of ensemble learning techniques to enhance the
detection and classification of attacks in IoMT networks, thereby protecting patient data
and ensuring the reliability of healthcare services.

The key contributions of this research paper can be outlined as follows:

• We designed a scheme based on machine learning technology to enhance the classifi-
cation of attacks versus normal operations.

• We applied feature selection methods to improve the IDS performance of IoMT net-
work devices.

• We used ensemble learning techniques, including Stacking, Bagging, and Boosting.
• We evaluated the performance of our scheme in terms of accuracy, precision, recall,

and F1-score.
• Our scheme outperformed recent studies utilizing the same dataset, specifically in

Stacking and Bagging.

This paper is organized as follows:
Section 2 outlines the background information regarding IoMT connections and as-

sociated security threats. Section 3 reviews the relevant literature and examines various
machine learning methodologies employed for safeguarding the IoMT. Section 4 elabo-
rates on the study’s methodology, detailing the approaches and techniques implemented.
Section 5 presents the results and discusses the application of ensemble learning techniques.
Finally, Section 6 provides a comprehensive conclusion.

2. Background

This section provides a comprehensive overview of IoMT data flow, challenges, and
security considerations essential for advancing healthcare through connected technologies
and underscores their implications for developing effective IDS solutions using machine
learning algorithms.

2.1. Internet of Medical Things (IoMT) Connection Overview

IoMT involves a network of interconnected medical devices, sensors, and software
applications that communicate and exchange data to improve patient care and streamline
healthcare processes [6]. The following is an overview of how IoMT devices send and
receive information through networks:

2.1.1. Data Collection

IoMT devices, including wearable health monitors, smart implants, and connected
medical equipment, continuously gather data from patients. These data can encompass
vital signs (e.g., heart rate, blood pressure), glucose levels, activity levels, and other health
metrics [2].
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2.1.2. Local Processing

Some IoMT devices have local processing capabilities that allow them to perform a
preliminary analysis of the collected data. For instance, a wearable heart monitor might
detect abnormal heart rhythms and generate alerts without needing to send raw data to a
central server [7].

2.1.3. Data Transmission

IoMT devices employ diverse communication protocols and network technologies for
transmitting data to other devices or central servers [2,8]. The key technologies include:

• Wi-Fi: many IoMT devices utilize local Wi-Fi networks to transmit data to healthcare
providers or cloud servers.

• Bluetooth: wearable IoMT devices commonly utilize Bluetooth to transmit data to
smartphones or gateways, which then forward the data to central systems.

• Cellular Networks: certain IoMT devices, particularly those for remote monitoring,
integrate cellular connectivity to transmit data directly over mobile networks.

• Zigbee/Z-Wave: low-power wireless protocols such as Zigbee and Z-Wave are em-
ployed in some IoMT devices to facilitate short-range communication within health-
care facilities.

2.1.4. Data Aggregation and Storage

The transmitted data are typically aggregated and stored in centralized systems,
such as cloud-based servers or healthcare provider databases. These systems provide
secure storage, ensuring that patient data are protected and compliant with healthcare
regulations [9].

2.1.5. Data Processing and Analysis

Central servers or cloud platforms perform advanced data processing and analysis on
the aggregated data [7,9]. This analysis can include:

• Real-Time Monitoring: continuously monitoring patient data to detect anomalies or
critical events, triggering alerts for healthcare providers.

• Predictive Analytics: leveraging machine learning algorithms to anticipate potential
health problems based on past and current data.

• Data Integration: combining data from multiple IoMT devices and other sources (e.g.,
electronic health records) to provide comprehensive insights into a patient’s health.

2.1.6. Communication and Feedback

The processed data and analysis results are communicated back to healthcare providers,
caregivers, and patients [10]. This feedback loop can involve:

• Alerts and Notifications: sending real-time alerts to healthcare providers when critical
thresholds are crossed (e.g., a significant drop in blood oxygen levels).

• Reports and Dashboards: providing healthcare providers with detailed reports and
dashboards to monitor patient health trends.

• Patient Feedback: sending notifications and recommendations to patients via mobile
apps or other devices, encouraging them to take specific actions (e.g., medication
reminders, and exercise prompts).

2.1.7. Secure Communication

Throughout this entire process, ensuring secure communication is paramount [7,10].
IoMT devices and networks use various security measures, including:

• Encryption: encrypting data during transmission to protect it from interception and
unauthorized access.

• Authentication: verifying the identity of devices and users to prevent unauthorized
access to the network.
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• Access Control: implementing strict access control policies to ensure that only autho-
rized personnel can access sensitive patient data.

• Regular Updates: keeping device firmware and software up-to-date to protect against
known vulnerabilities.

Refer to Figure 1 for the data flow within the IoMT.

Figure 1. This figure shows the data flow of the IoMT.

2.2. Challenges and Security Threats in IoMT

The proliferation of the IoMT presents a transformative opportunity to enhance patient
care through interconnected medical devices, sensors, and software applications. However,
the integration of IoMT into healthcare systems introduces a range of challenges and
security threats that must be meticulously addressed to ensure the safety, privacy, and
reliability of medical data and devices.

2.3. Challenges in IoMT

This section provides a detailed examination of several key challenges and considera-
tions in the IoMT.
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2.3.1. Interoperability

The IoMT comprises devices from various manufacturers, each employing distinct
communication protocols and standards. This diversity necessitates the development of
robust interoperability frameworks to ensure seamless data exchange and integration across
heterogeneous systems. Achieving interoperability is critical for enabling comprehensive
patient monitoring and coordinated healthcare delivery [7,11].

2.3.2. Data Management

IoMT devices generate vast amounts of data continuously. Effective data management
strategies are essential to store, process, and analyze these data efficiently. The challenges
include ensuring data quality, managing storage capacities, and facilitating real-time data
processing to support timely clinical decision-making [7,11].

2.3.3. Regulatory Compliance

Compliance with stringent healthcare regulations, such as the Health Insurance Porta-
bility and Accountability Act (HIPAA), is paramount in IoMT systems. These regulations
mandate the protection of patient data privacy and security [12]. IoMT solutions must be
designed and implemented to meet these regulatory requirements, which involves adopting
rigorous data protection measures and conducting regular compliance audits [7,11].

2.3.4. Scalability

As the adoption of IoMT devices grows, healthcare systems must scale to accommodate
the increasing volume of data and the number of connected devices. Scalability challenges
encompass network infrastructure, data processing capabilities, and system performance.
Scalable IoMT solutions are necessary to maintain reliable and uninterrupted healthcare
services [13].

2.4. Security Threats in IoMT

This section discusses various security threats and vulnerabilities faced by the IoMT
devices and systems:

2.4.1. Data Breaches

IoMT devices collect and transmit sensitive patient information, making them at-
tractive targets for cyberattacks. Unauthorized access to these data can lead to significant
privacy breaches, exposing patients to identity theft and other malicious activities. Ensuring
data confidentiality and integrity is a critical security concern in IoMT environments [14].

2.4.2. Malware and Ransomware

IoMT devices are susceptible to malware and ransomware attacks, which can disrupt
healthcare services and compromise patient safety. Malware infections can alter device
functionality, leading to inaccurate data collection and erroneous clinical decisions. Ran-
somware attacks can lock down critical medical systems, demanding ransom payments to
restore access [7,14,15].

2.4.3. Device Hijacking

Cybercriminals can hijack IoMT devices to exploit their computational resources for
malicious purposes, such as launching distributed denial-of-service (DDoS) attacks. Device
hijacking can also involve tampering with medical treatments, posing direct risks to patient
health and safety [15,16].

2.4.4. Insider Threats

Insider threats, originating from within healthcare organizations, represent a signifi-
cant security risk. These threats can arise from malicious intent or negligence by employees,



Sensors 2024, 24, 5937 6 of 23

contractors, or other trusted individuals. Insider threats can lead to data breaches, unau-
thorized access, and intentional or unintentional damage to IoMT systems [7,14,15].

2.4.5. Physical Attacks

Physical security is a fundamental aspect of protecting IoMT devices. Physical tam-
pering or theft of devices can compromise their functionality and security. Ensuring
physical security measures, such as secure device enclosures and tamper-evident features,
is essential to prevent unauthorized access and manipulation [17].

2.5. The Role of IDS in IoMT Security
2.5.1. Anomaly Detection

Machine learning-enhanced IDSs (ML-IDSs) play a pivotal role in securing IoMT
environments by monitoring network traffic for anomalies that may indicate security
breaches or malicious activities [18]. IDSs leverage advanced algorithms to detect deviations
from typical behavior, facilitating the prompt identification of potential threats [17,19].

2.5.2. Real-Time Alerts

ML-IDSs provide real-time alerts to healthcare providers and IT security teams, facili-
tating prompt responses to detected security incidents. Real-time alerts enable the rapid
mitigation of threats, minimizing potential damage and ensuring the continued safety and
integrity of IoMT systems [20].

2.5.3. Enhanced Visibility

Continuous monitoring of network traffic by IDSs enhances visibility into IoMT
environments. This visibility allows for the identification of vulnerabilities, assessment of
security postures, and implementation of proactive security measures to address emerging
threats [16,20].

3. Related Work

Various studies have been conducted to address the pressing need for robust ML-IDSs
in the IoMT to combat cyber threats and safeguard sensitive healthcare data. Despite
significant advancements, challenges persist in handling high-dimensional data, managing
resource constraints, and ensuring real-time threat detection.

The research by [21] focused on employing an ensemble learning stacking method
to detect cyberattacks and protect the IoMT. Their system, which utilized Random Forest,
Gradient Boosting, and Support Vector Machine (SVM) as base models, achieved a 96.9%
accuracy rate using the WUSTL EHMS 2020 dataset. However, the study did not address the
challenge of high data dimensionality, which can lead to overfitting and decreased accuracy.

The authors in [22] described an ensemble learning framework that enhances IoT
device security through binary classification of normal and abnormal traffic, employing
models like Random Forest and Logistic Regression. While the study achieved a high
accuracy rate of 98.64% using the TON-IoT dataset, it primarily focused on general IoT
devices and did not delve into the specific challenges of medical IoT environments, such as
real-time processing and handling sensitive biometric data.

Reference [23] tackled some of the challenges by proposing a novel feature selection
technique, Logistic Redundancy Coefficient Gradual Upweighting MIFS (LRGU-MIFS),
which improved accuracy in the IoMT by effectively reducing dimensionality. Although
this method demonstrated significant improvements over traditional approaches, there
remains room for optimizing model efficiency and ensuring real-time deployment in
resource-constrained environments.

The development of Intelligent and Explainable IDSs by [24] introduced an innovative
approach combining Particle Swarm Optimization (PSO) for feature engineering with
SHapley Additive exPlanations (SHAP) for model interpretability. This method enhanced
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transparency and accuracy, achieving a 96.56% accuracy rate, but did not explicitly address
the integration of such systems in highly dynamic and heterogeneous IoMT networks.

The model proposed by [25] effectively integrates the Random Forest algorithm with
an advanced feature scaling technique to handle large and complex categorical data, partic-
ularly within the context of IoMT networks. This approach is particularly advantageous
for e-healthcare systems that require efficient processing of extensive datasets. By reducing
feature dimensions and the number of instances, the framework significantly enhances clas-
sification speed while maintaining a high level of accuracy, achieving an average accuracy
of 94.23%.

In [26], the authors proposed a Federated Bayesian Optimization XGBoost model
for detecting cyberattacks in IoMT systems. To enhance the model’s effectiveness, they
employed feature selection by eliminating all irrelevant features from the dataset. However,
in their experiments, the authors utilized raw data without implementing any advanced
techniques for further improving the model’s performance.

Our research proposes a novel hybrid approach that integrates advanced feature
selection techniques with ensemble learning, specifically tailored for IoMT environments.
This approach not only improves detection accuracy by mitigating overfitting and man-
aging high-dimensional data but also enhances real-time processing capabilities through
optimized computational efficiency. This research contributes to the field by providing a
scalable and efficient IDS framework that can be deployed in resource-constrained IoMT
networks using machine learning algorithms, potentially setting new standards for security
in healthcare IoT applications.

As shown in Table 1, our proposed scheme compares favorably with recent studies in
terms of dataset type, attack types, accuracy, and methodology.

Table 1. Comparison of our scheme with recent studies.

Reference Year Dataset Type of Attacks Method Accuracy

[21] 2022 WUSTL EHMS 2020 Spoofing
Data injection

Ensemble Learning,
Stacking 96.9%

[22] 2023 TON-IoT

Backdoor,
DDoS, Injection,
Password,
Ransomware,
Scanning,
XSS

Ensemble Learning,
Stacking
Voting

98.64%
96.63%

[23] 2023 WUSTL EHMS 2020 Spoofing
Data injection

Ensemble Learning,
Stacking 94.50%

[24] 2023 WUSTL EHMS 2020 Spoofing
Data injection Ensemble Learning 96.56%

[25] 2022 WUSTL EHMS 2020 Spoofing
Data injection Ensemble Learning 94.23%

[26] 2024 WUSTL EHMS 2020 Spoofing
Data injection

Federated Bayesian
Optimization
XGBoost

96.00%

Our Research 2024 WUSTL EHMS 2020 Spoofing
Data injection

Ensemble Learning,
Stacking
Bagging
Boosting

98.88%
97.83%
88.68%

4. Methodology

Building an Intrusion Detection System (IDS) using machine learning algorithms
involves several essential phases to ensure robust and accurate detection of network and
device anomalies. The process begins with acquiring a certified dataset that includes both
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network flow metrics and patient biometrics, which are crucial for addressing security chal-
lenges within the Internet of Medical Things (IoMT). This dataset serves as the foundation
for the IDS, providing the necessary information to distinguish between normal operations
and potential attacks.

Next, data preprocessing is imperative to achieve optimal accuracy rates. This step
includes tasks such as feature scaling, normalization, and dimensionality reduction, which
prepare the data for effective model training and evaluation.

The selection of appropriate machine learning algorithms is guided by critical parame-
ters, including data characteristics, types of attacks, scalability, accuracy, and performance
metrics. For the proposed IDS, an ensemble learning technique has been implemented, uti-
lizing Random Forest and Support Vector Machine (SVM) as base models. Random Forest
excels in handling high-dimensional data and mitigating overfitting through its ensemble
structure, while an SVM is adept at handling complex patterns and high-dimensional
spaces with its ability to find optimal decision boundaries.

The performance of this ensemble approach is compared across different method-
ologies—stacking, boosting, and bagging. Stacking combines predictions from multiple
base models using a meta-model to improve accuracy, boosting sequentially trains weak
learners to correct errors made by previous models, and bagging reduces variance by
aggregating predictions from multiple instances of the same base algorithm. By evaluating
these techniques, the IDS aims to identify the most effective strategy for robust and accurate
real-time attack detection.

4.1. Dataset Description

The WUSTL-EHMS-2020 dataset was developed using a real-time Enhanced Health-
care Monitoring System (EHMS) testbed, which integrates network flow metrics and patient
biometrics—a novel offering in current dataset collections [27]. This testbed includes medi-
cal sensors, a gateway, network infrastructure, and visualization controls, enabling data to
flow from patient sensors through the gateway to a server for visualization via switches
and routers. However, this data flow is susceptible to interception by malicious actors,
potentially compromising data integrity [27].

The dataset captures instances of man-in-the-middle attacks, including spoofing and
data injection. Spoofing involves unauthorized packet sniffing, which jeopardizes the
confidentiality of patient data, while data injection refers to on-the-fly modifications of
packets during transit, undermining data integrity [27]. The network flow metrics and
patient biometric data are recorded in CSV format using the Audit Record Generation
and Utilization System (ARGUS) tool. The dataset comprises 44 features: 35 network flow
metrics, 8 biometric features, and 1 label feature, where samples linked to attacker MAC
addresses are marked as 1, and others are marked as 0 [27]. Figure 2 illustrates the dataset’s
statistical attributes.

Figure 2. Summary of the dataset’s statistical attributes.
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To prepare the dataset for analysis, we conducted cleaning, normalization, and balanc-
ing. A widely accepted approach is to allocate 80% of the data for training and validation,
reserving the remaining 20% for testing. This split is recommended in both academic
and practical contexts, ensuring sufficient data for model training while maintaining a
robust assessment of model performance on unseen data. We employed the train–test–split
function from the scikit-learn library to randomly partition the dataset, specifying a random
state to ensure reproducibility. This method maintains a consistent split across different
runs, facilitating reliable comparisons in model performance.

By utilizing this random split technique, we ensured that both training and testing
sets are representative of the overall dataset, which is essential for developing robust
machine learning models. This approach not only aids in effective model evaluation but
also minimizes the risk of overfitting, enhancing the models’ generalization capabilities in
real-world scenarios. Overall, this systematic approach to dataset splitting maximizes the
potential of the WUSTL-EHMS-2020 dataset, ultimately improving intrusion detection and
safeguarding patient data within healthcare systems.

4.2. Data Preprocessing

Effective intrusion detection in the IoMT hinges upon thorough data preparation.
Cleaning processes ensure dataset integrity by eliminating duplicates and managing miss-
ing values. Normalization techniques standardize numerical features, enabling equitable
comparisons and enhancing model performance. Balancing methodologies address class
imbalance, thereby improving IDS sensitivity to both attack and normal instances. These
foundational steps are essential for developing reliable IoMT security solutions, as detailed
in the subsequent subsection.

4.2.1. Data Cleaning

Data cleaning is a crucial step in preparing the dataset for analysis, ensuring data in-
tegrity and reliability. In our study, the dataset underwent meticulous cleaning procedures.
Initially, duplicate records were identified and removed by comparing rows across key
columns to ensure the uniqueness of each data point. This step was essential to prevent
bias that could arise from redundant data entries. Additionally, comprehensive checks
for missing values across all columns were conducted. Where possible, missing values
were handled through imputation using statistical measures such as the mean or median.
This meticulous approach not only enhances the overall quality of the dataset but also
lays a solid foundation for subsequent analysis and modeling tasks, ensuring that insights
derived from the data are accurate [28].

4.2.2. Data Normalization

Normalization is essential to standardize the scale of numerical features within a
dataset, facilitating fair comparisons and improving the performance of machine learning
models. In our study, we employed min–max scaling to normalize the numerical attributes
of the dataset. This process rescales each feature to a range between 0 and 1, preserving
the relative relationships between data points while mitigating the impact of varying
scales [29].

Xnormalized =
X − min(X)

max(X)− min(X)
(1)

In this context, Xnormalized denotes the scaled value, X refers to the original data
point, min(X) indicates the minimum value of the feature within the dataset and max (X)
represents the maximum value of the feature within the dataset [30].

Min–max scaling was preferred over other normalization methods such as Z-score
normalization or robust scaling because it maintains the original distribution of data while
ensuring that all features are within the same range. This is particularly advantageous in
scenarios like using an IDS for IoMT, where maintaining the relative importance of features
is crucial for accurately detecting anomalies.
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By normalizing features such as network flow metrics and biometric data, we ensure
that each attribute contributes equally to model training and evaluation. This standardized
approach not only enhances the model’s convergence during training but also promotes bet-
ter interpretability of results, ultimately supporting more accurate insights into healthcare
data security and anomaly detection within IoMT environments.

4.2.3. Data Balancing

In the domain of machine learning, especially within the context of IDS, addressing
class imbalance is crucial for enhancing model performance and reliability. Class imbalance
occurs when the number of instances of one class significantly outnumbers those of the
other class, leading to a biased model that favors the majority class. This can be particularly
problematic in IDS, where detecting attacks (minority class) is critical.

To address the class imbalance in our dataset, we employed the Random Over-
Sampling technique, a method that involves duplicating samples from the minority class to
equalize the class distribution. The process was initiated by segregating the features (X)
from the target variable (y) [31]. Following this, the RandomOverSampler was applied,
resulting in a resampled dataset where both the attack and normal classes contained an
equal number of instances. This approach ensures that the machine learning model re-
ceives balanced exposure to both classes during training, thus mitigating bias towards the
majority class and enhancing the model’s capability to accurately detect the minority class,
which is crucial for the reliability and effectiveness of the IoMT IDS. Figure 3 shows the
balanced dataset.

Figure 3. Balanced dataset after random over-sampling.

4.3. Data Selection

Mutual Information (MI) and Principal Component Analysis (PCA) have been em-
ployed to select and process features from the dataset for training machine learning al-
gorithms aimed at safeguarding the IoMT using an IDS. MI is a statistical measure that
quantifies the dependency between variables, crucially assessing how much information
about one variable (such as attack labels in the IoMT) can be inferred from another (each
feature in the dataset) [23]. This approach is ideal for IoMT IDSs because it identifies
features most informative for detecting anomalies or attacks in IoMT environments.

The rationale for utilizing MI in this context lies in its ability to capture both linear and
non-linear relationships between features and attack behaviors without assuming a specific
data distribution. Unlike linear methods, which may overlook complex dependencies, MI
ensures that critical patterns indicative of attacks in IoMT systems are effectively identified.
This flexibility is particularly advantageous in IoMT applications where the nature of
attacks can vary widely. The mathematical formulation of Mutual Information (MI) is
as follows:
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I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x)p(y)
p(x, y)

)
(2)

where:

• X and Y are two random variables.
• p(x, y) is the joint probability mass (or density) function of X and Y.
• p(x) and p(y) are the marginal probability mass (or density) functions of X and Y,

respectively.

However, MI is not without its limitations. One significant drawback is its sensitivity
to noise in the data. Since MI quantifies dependencies between variables, noisy or irrelevant
features can distort these dependencies, leading to suboptimal feature selection. To mitigate
this issue, several strategies were employed. First, data preprocessing steps, including
noise filtering and feature engineering, were applied to minimize the impact of irrelevant or
misleading data points. Additionally, careful feature selection was conducted to ensure that
only the most informative features were retained, reducing the likelihood of noise affecting
the final model. Following the feature selection using MI, PCA is applied to the selected
features to further reduce dimensionality while preserving the most significant variance.
PCA transforms the selected features into a set of principal components, which capture the
maximum variance in the data. This combined approach enhances the performance of IDS
models by focusing on the most informative features and then reducing dimensionality for
computational efficiency.

By selecting features based on MI and then applying a PCA, the goal is to improve IDS
model performance through a more manageable feature set that retains critical information
and reduces redundancy. This process not only improves computational efficiency but
also enhances model interpretability by prioritizing features with the highest predictive
power. Therefore, MI-based feature selection combined with PCA aligns with the objective
of optimizing IoMT IDS performance, ensuring robust detection capabilities across diverse
attack scenarios. Figure 4 shows the top 10 features selected based on Mutual Information,
while Table 2 provides a detailed description of these features.

Figure 4. Top 10 features selected by mutual information.
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Table 2. Dataset features description.

Metric Description Type

Trans Aggregated packets count Flow metric
sMinPktSz Source minimum transmitted packet size Flow metric

Rate Number of packets per second Flow metric
SIntPktAct Source active inter packet arrival time Flow metric

SrcLoad Source load (bits per second) Flow metric
Dur Duration Flow metric

DIntPktAct Destination active inter packet arrival time Flow metric
SrcBytes Source bytes in the flow record Flow metric

Temp Temperature Biometric
SIntPkt Source inter packet arrival time Flow metric

4.4. Random Forest

Random Forest, a versatile ensemble learning method in machine learning, has gar-
nered significant attention for its efficacy in IDS. IDS play a crucial role in cybersecurity by
identifying unauthorized access and potential threats to computer networks and systems.
In this context, Random Forests excel due to their ability to handle high-dimensional data,
complex feature interactions, and inherent noise typically present in network traffic data.

One of the key strengths of Random Forests is their ensemble nature, where multiple
decision trees are independently trained on different subsets of the data and then aggre-
gated to make predictions. This ensemble approach not only improves prediction accuracy
but also enhances the model’s robustness against overfitting—a common challenge in IDS
where classifiers must generalize well to new and unseen attack patterns. However, while
Random Forests are designed to mitigate overfitting through their ensemble structure,
it is important to recognize that their generalization effectiveness can vary based on the
diversity and representativeness of the training data. The risk of overfitting to specific
attack patterns or network environments remains a concern, especially when the training
data does not adequately cover the full spectrum of potential threats.

In practice, Random Forests in IDS are trained on labeled datasets containing historical
network traffic data, where each data point is labeled as normal or malicious. During
training, the model learns to distinguish between normal network behavior and various
types of attacks, such as denial-of-service (DoS), intrusion attempts, and malware activities.
This learning process enables the classifier to detect anomalies and suspicious patterns
in real-time network traffic, thereby preemptively alerting administrators to potential
security breaches.

To optimize the model’s performance, careful feature selection and dimensionality
reduction steps are employed, such as using Mutual Information (MI) to select the top
features and applying Principal Component Analysis (PCA) to reduce dimensionality. Ad-
ditionally, the RandomizedSearchCV technique is used for hyperparameter tuning, further
enhancing the model’s ability to generalize by focusing on the most informative features
and reducing the risk of overfitting. Random Forests are adept at capturing nonlinear
relationships and interactions between features, which is essential in IDS, where malicious
activities often manifest in complex and dynamic ways. By combining multiple decision
trees, each trained on a random subset of features and data samples, Random Forests can
effectively model diverse attack scenarios and adapt to evolving threat landscapes [32].

The interpretability of Random Forests enhances their utility in IDS applications. By
analyzing feature importance scores derived from the ensemble of decision trees, security
analysts can gain insights into the most influential network features indicative of malicious
activity. This interpretability not only aids in understanding the underlying factors con-
tributing to detected threats but also facilitates informed decision-making in deploying
appropriate mitigation strategies.
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4.5. Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised machine learning algorithm
that has gained significant popularity in various fields due to its effectiveness in classifica-
tion tasks [29,33]. SVM is particularly well-suited for IDSs in the realm of cybersecurity. An
IDS is a critical component in network security that helps identify and respond to potential
security threats and malicious activities. SVM offers several advantages that make it highly
useful in the context of IDSs.

One of the main advantages of SVM is its ability to handle high-dimensional data
efficiently and effectively. Network traffic data in IDS often consist of numerous features
or attributes that characterize the behavior of network traffic. SVM excels in handling
such high-dimensional data and identifying complex patterns within it, which is crucial
for distinguishing between normal and anomalous network traffic patterns. Additionally,
SVM is known for its ability to find the optimal hyperplane that separates different classes
in the feature space while maximizing the margin between them. This capability enables
robust and accurate classification of network traffic into normal and malicious categories,
thereby facilitating the detection of various cyber threats and attacks.

Furthermore, SVM is inherently strong against overfitting, which is vital in IDS, where
the model needs to generalize well to unseen data and adapt to evolving cyber threats.
By finding the optimal decision boundary with the maximum margin, SVM achieves
good generalization performance, maintaining high accuracy in detecting anomalies in
network traffic. The flexibility of SVM in supporting different kernel functions—such as
linear, polynomial, and radial basis function (RBF) kernels—enables it to handle non-linear
relationships in the data. This adaptability is particularly beneficial in IDS, where the
patterns of malicious activities may not be linearly separable in the feature space.

SVM supports different kernel functions, such as linear, polynomial, and radial basis
function (RBF) kernels, which enables the algorithm to handle non-linear relationships
in the data. This flexibility in modeling complex relationships in the data is particularly
beneficial in IDS where the patterns of malicious activities may not be linearly separable in
the feature space [34].

4.6. Ensemble Learning

Ensemble learning has emerged as a powerful paradigm in machine learning, lever-
aging the synergy of multiple models to enhance predictive performance beyond what
individual models can achieve [22,33]. This approach capitalizes on the diversity and com-
plementary strengths of constituent models, thereby mitigating weaknesses and improving
overall robustness. Three prominent techniques within ensemble learning are stacking,
boosting, and bagging, each contributing uniquely to the ensemble’s effectiveness.

4.6.1. Stacking

Stacking involves a two-level approach where a meta-model, such as Logistic Regres-
sion, is trained on the predictions or probabilities outputted by base models, including
Random Forests and Support Vector Machines (SVMs). This meta-model consolidates the
predictions from various base models to produce a final, more accurate prediction. The the-
oretical advantage of stacking lies in its ability to combine the strengths of diverse models,
addressing their individual weaknesses and leveraging their collective insights to handle
complex data patterns more effectively [22,33]. Stacking was chosen over methods like
simple averaging or voting due to its capability to learn optimal weights for combining base
model predictions, thus offering a more refined and potentially higher-performing result.

4.6.2. Boosting

Boosting sequentially trains a series of weak learners to correct errors made by pre-
ceding models. Each subsequent learner focuses on instances where previous models
struggled, thereby iteratively improving predictive accuracy. Boosting algorithms, such as
AdaBoost and Gradient Boosting, are known for their ability to handle class imbalance and
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emphasize challenging instances, resulting in more refined predictions. Each subsequent
model in the boosting process aims to correct the errors made by the previous models,
improving the overall prediction accuracy [22,33].

4.6.3. Bagging

Bagging, or Bootstrap Aggregating, involves training multiple instances of the same
base algorithm on different subsets of the training data, sampled with a replacement.
By aggregating the predictions through averaging or voting, bagging reduces variance
and increases model stability, which is particularly beneficial for unstable learners like
decision trees. Random Forests are a notable example of bagging, where multiple decision
trees are trained on bootstrapped samples and their collective predictions are averaged to
enhance generalization and robustness [22,33]. The choice of bagging and Random Forests
is justified by their effectiveness in reducing overfitting and improving stability, attributes
that are advantageous compared to models with higher variance or sensitivity to noise.

The selection of Random Forests and SVM as base models in these ensemble methods
is based on their distinct strengths. Random Forests provide robustness through multiple
decision trees and are adept at handling large datasets with high-dimensional features.
SVMs, on the other hand, are known for their effectiveness in high-dimensional spaces and
their ability to find optimal decision boundaries. By incorporating these models into the
ensemble methods, the approach capitalizes on their complementary strengths, thereby
enhancing overall performance and achieving a more accurate and generalized model that
can easily adapt to real-time detection systems.

Figure 5 illustrates the ensemble learning processes of Stacking, Boosting, and Bagging
using Random Forests as base models.

Figure 5. The processes of stacking, boosting, and bagging ensemble learning techniques.



Sensors 2024, 24, 5937 15 of 23

5. Results and Discussion

In the research environment, we employed Python 3.10.11 on a CPU powered by a 12th
Gen Intel Core i7-1260P processor. The study demonstrated that utilizing ensemble learn-
ing algorithms, specifically Random Forests and Support Vector Machines, significantly
enhanced the performance of intrusion detection models in IoMT systems. By leveraging
the strengths of various algorithms through techniques like Stacking and Bagging, the
ensemble model mitigated the limitations of individual models and achieved superior
predictive accuracy.

Hyperparameter tuning and cross-validation were crucial in optimizing the ensemble
model’s performance. Through meticulous adjustment of model parameters and rigorous
validation via cross-validation, the study ensured that the ensemble model was robust and
adept at handling the diverse and challenging datasets characteristic of IoMT environments.
Table 3 provides a brief description of the hyperparameter tuning settings used in the study.

Table 3. Summary of the optimized hyperparameters.

Algorithm Hyperparameter

Stacking param_grid_stacking = { ’rf_dist’: { ’n_estimators’: randint(50,
300), ’max_depth’: [None, 10, 20, 30], ’min_samples_split’:
randint(2, 10), ’min_samples_leaf’: randint(1, 4), ’max_features’:
[’auto’, ’sqrt’, ’log2’] } }

Bagging param_grid_bagging = { ’rf_dist’: { ’n_estimators’: randint(50, 300),
’max_depth’: [None, 10, 20, 30], ’min_samples_split’: randint(2, 10),
’min_samples_leaf’: randint(1, 4), ’max_features’: [’auto’, ’sqrt’,
’log2’] } }

Boosting param_grid_boosting = { ’n_estimators’: randint(50, 300),
’learning_rate’: uniform(0.01, 0.5), ’max_depth’: randint(3, 15),
’min_samples_split’: randint(2, 10), ’min_samples_leaf’: randint(1,
5) }

The evaluation metrics utilized in this study, including accuracy, precision, recall, and
F1-score, offer valuable insights into the performance of the ensemble learning models
applied to classify cyberattacks within IoMT environment. These metrics are pivotal for
understanding how well the models perform in real-world scenarios, particularly in critical
domains like healthcare, where accurate and timely detection of cyber threats is crucial.

5.1. Accuracy

Accuracy is a standard metric for assessing the performance of a classification model.
It is calculated as the ratio of correct predictions to the total number of predictions made.
In essence, accuracy gauges the fraction of instances that are correctly classified out of all
instances [22,35]. The mathematical representation of this equation is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

5.2. Precision

Precision is the proportion of true positive predictions (the number of correctly iden-
tified positive instances) relative to the total number of positive predictions made by a
model [22,35]. It serves to quantify the accuracy of positive predictions and is computed
using the following mathematical concept:

Precision =
TP

TP + FP
(4)

5.3. Recall

Recall refers to the proportion of true positive predictions (correctly predicted positive
instances) out of all actual positive instances in the dataset [22,35]. It serves as a measure of
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the model’s completeness or sensitivity in identifying positive instances and is computed
using the following mathematical concept:

Recall =
TP

TP + FN
(5)

5.4. F1-Score

The F1-score is a harmonic mean of precision and recall, providing a single metric that
balances both measures. It is particularly useful in scenarios where you want to find an
optimal balance between precision and recall [22,35]. The mathematical representation of
the F1-score is as follows:

F1 =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(6)

The Stacking and Bagging models show remarkable accuracy rates of 98.88% and
97.83%, highlighting their strong potential for use in IoMT environments. Given the
sensitivity of medical data and the severe consequences of undetected cyberattacks, these
models can provide reliable detection mechanisms essential for maintaining patient safety
and healthcare service continuity.

Their near-perfect accuracy indicates a high capability for correctly classifying network
traffic, which is crucial in minimizing false negatives. In healthcare, even a single missed
threat can have dire implications, making the robustness of these models vital for navigating
the complex data landscape of IoMT systems.

In addition to accuracy, the models demonstrate impressive precision and recall rates,
ensuring that alerts are likely to be true positives, thereby reducing the risk of unnecessary
disruptions. The high F1-scores reflect an effective balance between precision and recall,
enhancing their reliability in threat detection.

Both models also exhibit scalability and robustness. Bagging’s approach of aggregating
predictions helps manage data variability common in IoMT environments, while Stacking’s
use of multiple classifiers allows for adaptability against diverse attack types. Deploying
these models could significantly bolster the security infrastructure in healthcare, ensuring
the integrity and confidentiality of patient information while maintaining high performance
in dynamic conditions.

The Boosting technique exhibited a lower accuracy rate of 88.68%. Several factors
contribute to the comparatively lower accuracy of Boosting models in relation to other
methods. One primary reason for the challenges faced by Boosting methods, such as
Gradient Boosting or AdaBoost, lies in their sequential approach to error correction from
preceding models. This iterative process can result in a specialized model that may overfit
to the training data, particularly when the dataset contains noise or outliers. The sequential
nature of Boosting, which prioritizes learning from past errors, can also introduce greater
model complexity and longer training durations, potentially reducing robustness to data
variations compared to ensemble methods that aggregate predictions.

Table 4 presents the outcomes of ensemble learning models, including Stacking, Bag-
ging, and Boosting, in terms of accuracy, precision, recall, and F1-Score. Additionally, it
provides a comprehensive overview of the training and prediction times per sample for
each model, offering insights into their performance and efficiency.

Table 4. Evaluation results of the ensemble models.

Algorithm Accuracy Precision Recall F1-Score
Training

Time (per
Sample)

Prediction
Time (per
Sample)

Stacking 98.88% 98.23% 99.58% 98.90% 0.011487 s 0.000010 s
Bagging 97.83% 97.07% 98.69% 97.87% 0.001558 s 0.000161 s
Boosting 88.68% 88.00% 88.80% 88.57% 0.001582 s 0.000310 s
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Table 5 presents a comparative analysis between the proposed scheme and recent
studies that employed the same dataset. Our models demonstrate a promising performance
according to the evaluation metrics. Consequently, the experimental results confirm that
the proposed scheme effectively classifies cyberattacks in the IoMT.

Table 5. Our proposed method was compared to recent studies that utilized the same dataset.

Model Accuracy Precision Recall F1-Score

[21]-Stacking 96.90% 96.50% 96.00% 96.00%
[23]-Stacking 94.50% 94.50% 94.50% 94.50%

Proposed
Method Stacking 98.88% 98.23% 99.58% 98.90%

To assess the statistical significance of the difference in accuracy between our model
and other models, a Z-Test for proportions was utilized.

For Comparison with Study 1 using pooled proportion (96.90%):

ppooled_1 =
(0.9888 × 5709) + (0.9690 × 5709)

5709 + 5709
=

5645.59 + 5527.92
11418

= 0.97885

For Comparison with Study 2 using pooled proportion (94.50%):

ppooled_2 =
(0.9888 × 5709) + (0.9450 × 5709)

5709 + 5709
=

5645.59 + 5399.01
11418

= 0.9663

Then, we computed the standard error for each comparison.
Study 1:

SE1 =

√
0.97885 × (1 − 0.97885)×

(
1

5709
+

1
5709

)
≈ 0.0026

Study 2:

SE2 =

√
0.9663 × (1 − 0.9663)×

(
1

5709
+

1
5709

)
≈ 0.0036

Finally, we calculated the Z-score for each comparison.
Study 1:

Z1 =
0.9888 − 0.9690

0.0026
=

0.0198
0.0026

≈ 7.62

Study 2:

Z2 =
0.9888 − 0.9450

0.0036
=

0.0438
0.0036

≈ 12.17

A Z-score of 7.62 and 12.17 corresponds to p-values that are far less than 0.05, indicating
highly statistically significant differences.

The improvements in accuracy from 96.90% to 98.88% and from 94.50% to 98.88% are
statistically significant. This means the enhancement in performance is not due to random
chance but represents a real and meaningful improvement in the model’s capability. This
conclusion strengthens the validity of the proposed method’s performance compared to
previous studies.

Figures 6–8 present the confusion matrix, providing a clear summary of each model’s
classification performance by displaying the number of correct and incorrect predictions.
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Figure 6. Confusion matrix of stacking.

Figure 7. Confusion matrix of Bagging.

Figure 9 represents the Performance Visualization of ROC curves for the Stacking,
Bagging, and Boosting models. The ROC curve (Receiver Operating Characteristic curve) is
a graphical representation of a classification model’s performance across various threshold
settings. It illustrates the trade-off between sensitivity (true positive rate) and 1-specificity
(false positive rate). The Area Under the Curve (AUC) quantifies the model’s overall ability
to distinguish between positive and negative classes; a higher AUC indicates superior
performance.
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Figure 8. Confusion matrix of Boosting.

Figure 9. ROC curve of Boosting.

For the Stacking model, the AUC is reported as 1.00, which signifies a perfect classi-
fication performance. This means that the Stacking model achieves flawless separation
between positive and negative classes across all threshold levels, classifying all positive
cases correctly and all negative cases correctly. This exceptional performance is reflected in
its accuracy rate of 98.88%, demonstrating its effectiveness in correctly identifying the class
of each sample.
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The Bagging model, with an AUC of 0.99, also performs extremely well, showing
a slight decrease in performance compared to Stacking. An AUC of 0.99 indicates that
the Bagging model nearly achieves perfect separation between classes. This high AUC
corresponds with its accuracy rate of 97.83%, which confirms its high level of classification
accuracy and reliability.

In contrast, the Boosting model exhibits an AUC of 0.89, indicating good but less
optimal performance compared to the other models. While still demonstrating strong
classification ability, the lower AUC reflects a slight reduction in its ability to distinguish
between classes. This performance is consistent with its accuracy rate of 88.68%, which,
while still high, is lower than that of the Stacking and Bagging models.

The “Random Guess” line, depicted as a diagonal from the bottom-left to the top-right
of the ROC plot, represents the performance of a model that makes predictions randomly.
It serves as a baseline; any model with an ROC curve above this line performs better
than randomly guessing, showcasing the model’s ability to discern meaningful patterns in
the data.

While the models exhibit high-performance metrics such as accuracy, precision, recall,
and F1 score, their true applicability to real-world scenarios depends on factors beyond
these measures. For instance, in practical settings, the models’ effectiveness is influenced
by the quality and quantity of data, the balance between different classes, and the presence
of unseen or novel patterns in the data. Additionally, real-world deployment involves
considerations such as computational resources, interpretability of results, and adaptability
to changing conditions. Therefore, despite the strong theoretical performance indicated by
the reported metrics, further investigation is necessary to evaluate how well these models
perform in diverse and dynamic real-world environments.

5.5. Limitation

One significant limitation of employing ensemble learning techniques for intrusion
detection is the propensity for overfitting. The iterative nature of most machine learning
algorithms, where errors from preceding models are sequentially corrected, can inadver-
tently lead to the creation of highly specialized models that excessively tailor themselves
to the specifics of the training data. This overfitting phenomenon becomes particularly
pronounced when the dataset contains noisy or outlier-laden data points, potentially
compromising the model’s ability to generalize well to unseen instances. Furthermore,
the inherent complexity introduced by ensemble learning methods and the associated
longer training durations may present challenges in adapting to diverse data patterns and
variations, ultimately diminishing the overall robustness of the IDS.

Additionally, the availability of comprehensive IoMT datasets poses a limitation. Often,
such datasets are either not publicly accessible or lack the diversity required to train robust
machine learning models. This scarcity of high-quality, representative data can hinder the
development and evaluation of effective IDS solutions as models may not fully capture
the spectrum of potential intrusion scenarios. The limited availability of IoMT datasets
also means that models trained on these datasets might struggle to perform effectively in
real-world environments, where the data characteristics can differ significantly from the
training data. This underscores the need for more extensive and diverse IoMT datasets to
enhance the reliability and generalizability of IDS models.

5.6. Future Work

In charting the trajectory for future research endeavors in intrusion detection through
ensemble learning methodologies, a promising avenue for exploration lies in devising
strategies to counteract the overfitting tendencies of Boosting algorithms. Researchers can
delve into the development and implementation of regularization techniques or ensemble
pruning methods to curb overfitting and enhance the generalization capabilities of Boosting
models. Exploring the nuanced interplay between model complexity and performance in
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Boosting algorithms represents another fertile area for investigation, aiming to strike an
optimal balance that ensures both efficiency and adaptability across varying data scenarios.

Moreover, the exploration of novel ensemble learning paradigms that seamlessly inte-
grate the strengths of Boosting algorithms with sophisticated regularization mechanisms
holds the potential to yield more resilient and precise intrusion detection models tailored
specifically for safeguarding sensitive data within IoMT environments. By advancing the
understanding of how to effectively manage overfitting challenges in Boosting methods,
researchers can pave the way for the development of cutting-edge IDS that excel in accuracy,
reliability, and adaptiveness within the complex landscape of healthcare cybersecurity.

6. Conclusions

This research offers a comprehensive evaluation of the effectiveness of machine learn-
ing models for intrusion detection within the Internet of Medical Things (IoMT), aiming
to fortify cybersecurity measures and protect sensitive healthcare data. The study primar-
ily focused on ensemble learning techniques—Stacking, Bagging, and Boosting—using
Random Forests and Support Vector Machines (SVM) as base models, and evaluated these
approaches on the WUSTL-EHMS-2020 dataset.

The analysis of performance metrics, including accuracy, precision, recall, and F1-score,
highlights that Stacking achieved exceptional accuracy and reliability, with an accuracy
rate of 98.88%. Bagging followed closely with an accuracy rate of 97.83%, while Boosting,
although effective, recorded a lower accuracy rate of 88.68%. These results underscore the
superior performance of Stacking and Bagging in detecting and classifying cyber attack
incidents, showcasing their potential to significantly enhance IoMT security.

Despite these promising results, deploying these models in real-world medical en-
vironments poses several challenges. The computational demands and real-time data
processing requirements are critical for ensuring effective operation in dynamic health-
care settings. Additionally, integrating these models with existing healthcare systems
and addressing compatibility issues are crucial for their successful implementation. The
study’s reliance on a single experimental dataset limits the generalizability of the findings,
suggesting a need for further validation across diverse datasets and real-world scenarios.

Future research should focus on addressing these practical challenges, particularly by
exploring the adaptability of these models to various data variations and evolving threat
landscapes. Investigating the integration of these models into existing healthcare infras-
tructure, improving computational efficiency, and ensuring robust real-time performance
are essential steps towards realizing their full potential.

The insights gained from this study are pivotal for developing robust IoMT security
solutions, ensuring that the numerous benefits of IoMT—such as improved patient out-
comes and personalized care—are safeguarded against cybersecurity threats. By advancing
machine learning techniques within intrusion detection systems, healthcare providers can
enhance their capability to monitor and protect their networks, thus maintaining the confi-
dentiality, integrity, and availability of critical healthcare information. Future work should
continue to address the challenges of real-world deployment and refine these models to
ensure their effectiveness in a wide range of practical applications.
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