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Abstract: Structural damage can affect the long-term operation of equipment. Real-time damage
warning for structures can effectively avoid accidents caused by structural damage. In this paper, a
real-time warning method of structural plastic damage based on the cointegration theory is proposed.
This method calculates the cointegration relationship between the strain signals at different measuring
points, and the stability of the strain signal relationships is also evaluated. The problem of inaccurate
detection caused by the error of strain measurement and environmental influence can be eliminated by
the comprehensive judgment of strain between asymmetrical measuring points. A real-time damage
sensing system is developed in this paper. In order to improve the real-time and practicability of
the system, this paper proposes and determines the residual warning coefficient by analyzing the
proportion of the strain residuals exceeding the residual threshold. The research on this sensing
system has certain value for the engineering application of damage monitoring methods.

Keywords: cointegration theory; real-time warning; sensing system; warning coefficient; damage alarming

1. Introduction

The health of structural parts directly affects the service life of equipment [1–3]. Under
the long-term action of loads, structural parts will suffer a certain degree of damage, which
will affect their service life and even cause engineering accidents. Therefore, the accurate
monitoring and warning of structural damage can provide a timely reference for equipment
maintenance [4,5], which can effectively avoid losses caused by structural damage.

Structural damage monitoring has always been a hot topic in the field of engineering
research [6,7]. Common structural damage mainly includes cracks, holes, plastic deforma-
tion, structural fractures and other forms. Researchers have conducted relevant research
on different types of structural damage using different types of sensors and signal pro-
cessing methods [8]. Detection methods based on eddy current [9], acoustic emission [10],
piezoelectric ultrasonic guided wave [11], electrical impedance [12], visual recognition [13],
fiber bragg grating [14] and other technologies each have their respective advantages in
the field of structural health monitoring. In recent years, ultrasonic detection technol-
ogy and machine learning methods have been widely introduced into structural health
monitoring [15]. Among them, ultrasonic detection is widely used to monitor cracks in
structures [16,17]. Liu et al. studied a wireless sensor based on a nonlinear ultrasonic
modulation method to achieve the real-time online monitoring of fatigue cracks [18]. Kim
et al. proposed a reference-free ultrasonic guided-wave crack detection method using the
polarization characteristics of piezoelectric wafers [19]. With the continuous optimization
and development of machine learning methods, they have been applied to monitor crack
damages in structures [20,21]. Wang et al. predicted the growth law of fatigue cracks based
on the particle filter model [22]. Chen et al. identified cracks in bridge structures based
on a deep learning algorithm and realized the integrated application of the algorithm [23].
Zhou et al. used laser ultrasound and the YOLOv5 framework to monitor and identify

Sensors 2024, 24, 5961. https://doi.org/10.3390/s24185961 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24185961
https://doi.org/10.3390/s24185961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24185961
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24185961?type=check_update&version=2


Sensors 2024, 24, 5961 2 of 15

structural cracks in interference fits [24]. The continuous development of sensor technol-
ogy has also provided new methods for monitoring crack damage. Xu et al. studied a
new layer sensor that monitors the crack extension of steel bridges by different signals at
different fatigue stages [25]. Pang et al. studied a sensor based on microstrip antennas
that can detect cracks under layers [26]. Strain can accurately reflect changes in structural
stress, and the method of identifying damage through strain in a structure has certain
advantages. Yu et al. studied full-optical strain FBG with tunable DFB laser demodulation
for monitoring tensile and fatigue damage [27]. Pauw et al. used embedded optical fiber
sensors to monitor the fatigue damage of structures [28]. Different detection technologies
have their own advantages, and the monitoring of structural damage through the fusion of
multiple sensors is also being studied by scholars [29]. Qi et al. monitored crack growth
during fatigue by integrating strain sensors and piezoelectric guided waves [30]. Wang
et al. used a weighted adaptive Kalman filtering-based method to integrate optical fiber
and guided-wave information to identify structural fatigue cracks [31]. In summary, most
studies on structural damage monitoring focus on monitoring macroscopic damage such as
cracks. In actual engineering applications, the plastic deformation of materials often occurs
before cracks initiate, and even before obvious cracks appear, the structure has already
been destroyed. Therefore, the monitoring and warning of structural damage before crack
initiation are of great significance for early maintenance of structures.

Based on the cointegration theory, an efficient and real-time plastic damage warning
method is proposed in this paper, which can accurately identify the plastic damage of
structures. The method identifies structural plastic damage through the change in the
cointegration residual of the strain series between the measuring points. By analyzing the
proportion of residuals exceeding the residual threshold, this paper proposes a warning
coefficient. And the stability of the real-time alarming of the damage sensing system is
improved by comparing the residual and warning coefficient. This method further realizes
the application of damage monitoring theory in practical engineering.

2. Cointegration Theory

Time series can be divided into two types: unstable and stable time series. Unstable
time series refers to a series in which the mean, variance and other statistical data change
with time, while stable time series refers to a series in which the statistical data do not
change with time. Most of the strain data for structural damage monitoring are unstable
series that change with time, and their linear combination may become a series that does
not change with time.

For an unstable time series yt, after d times of difference, it becomes a stationary time
series, which is integrated of order d, denoted by yt ∼ I(d). For an unstable variable
Y = [y1, y2, . . . , yn]

T, its components are all integrated of order 1. If there is a set of
linear combination coefficients β = [β1, β2, · · · βn], which makes the previous Y become a
stationary series, then y1, y2, . . . , yn satisfies the cointegration relationship, and the equation
is shown below.

βTY = β1y1 + β2y2 + . . . + βnyn ∼ I (1)

where β = [β1, β2, · · · βn], βTY is residual covariance, and it is a Gaussian noise series with
a mean equal to zero.

From the above formula, we can see that the main purpose of cointegration is to seek
a long-term stable equilibrium relationship between two sets of unstable time series. If two
data series become stable after the first-order difference calculation and are also stable after
linear combination, it means that there is a cointegration relationship between them.

An unstable series is more likely to cause pseudo-regression. The significance of
the cointegration test is to determine whether the relationship described by its regression
equation is pseudo-regression. Therefore, before solving the cointegration residual, it is
necessary to test the stationarity of the time series. Commonly used methods include the
ADF (Augmented Dickey–Fuller) test and E-G (Engel–Granger) test.
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2.1. Augmented Dickey–Fuller (ADF) Method

The ADF method is used to test the stability of time series. If there is a time series yt,
its ADF model is as follows:

∆yt = ρyt−1 + a +
p−1

∑
i=1

bi∆yi−1 + εt (2)

where ∆yi−1 is the difference component of yt and p and bi are coefficients. The a represents
the constant term. The ρ is the lag order, and εt is the residual series. The coefficient ρ is
used to determine the stationarity of the time series yt. When each series or its difference
series is integrated of order 1, the requirements of the cointegration equation are met, and
the next step is to continue the E-G test to complete the subsequent solution.

2.2. Engel–Granger (E-G) Method

The theoretical basis of the E-G test is to perform a unit root test on the residuals of
the regression equation. If the dependent variable can be described by various linear com-
binations of the independent variables, it means that there is a relatively stable equilibrium
relationship between the two. The part that cannot be described forms a residual series.
There is no need for serial correlation between the residual series, so the residuals must be
stationary. Therefore, the purpose of the E-G method is to verify whether its residual series
is stable. The steps of this method are as follows.

Assuming that xt and yt are both integrated of order 1, the residual difference between
them is calculated as follows.

εt = yt − βxt − α (3)

After the ADF test, if the residual series εt is stable, it means that there is a cointegration
relationship between the original series xt and yt, where α and β are the corresponding
cointegration coefficients.

The existence of a cointegration relationship means that the two sets of time series have
a stable relationship in the long term, that is, their long-term equilibrium states are interde-
pendent. The cointegration residual is a stable series obtained after eliminating unstable
factors. If the cointegration residual changes suddenly, it means that the cointegration
relationship has changed, which can be used as a key indicator for damage warning.

3. Process of Structural Damage Warning Method

By loading the sample, the strain signals at different measuring points are tested. The
residual threshold of damage warning is calculated by the strain signals of the measuring
points in the undamaged state. The residual threshold is calculated according to the
following method: {

RTU = µ + 3σ
RTL = µ − 3σ

(4)

where the RTU is the upper limit of the residual threshold, the RTL is the lower limit of the
residual threshold, µ is the residual mean and σ is the residual variance. The flowchart of
the damage warning method is shown in Figure 1. First, the stability of the strain data is
tested by the ADF method. If the two sets of test strains are unstable, this method is used
to evaluate the stability of the corresponding difference series. If the first-order difference
of the strain series is stable, the series is integrated of order 1. It meets the requirements of
the cointegration equation, and then the E-G test is performed on it. If the E-G result shows
that the residual is stable, the residual equation can be constructed. After calculating the
residuals of the two series, the ADF stability test is performed on the residual series. If the
residuals are unstable, it means that the stability of the two series is destroyed, which also
means that structural damage has occurred. If the residuals are stable, the strain series will
continue to be calculated to realize the warning of structural damage.
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4. Test System and Experiment Analysis
4.1. Test System and Samples

As shown in Figure 2, the test system consists of a sample, testing machine, load
control terminal, strain collecting instrument and sensing system. The load control ter-
minal controls the testing machine to apply the load to the sample. The strain collecting
instrument transmits the collected strain data to the sensing system. The sensor system
analyzes the residual of the strain series of multiple channels through the co-arrangement
theory and finally realizes the alarm of sample damage.
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Figure 2. Test system diagram.

Figure 3 shows the sample, which is made of Q345D structural steel. Sample 1 is the
stress concentration sample, and sample 2 is the standard sample. Strain gauges are pasted
in the center and on both sides of samples 1 and 2. The detailed dimensions of the structure
and strain gauge pasting are shown in Figure 3a. The thickness of the samples is 5 mm.
The actual pictures of the two samples are shown in Figure 3b.
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4.2. Analysis of Experimental Results

By applying tensile force to the sample, the strain signal of the sample measuring
point is tested. Each strain channel is synchronously sampled with a sampling rate of
200 Hz. The strain test results of different measuring points of the two samples are shown
in Figures 4 and 5, respectively. The signal of the entire test process is divided into three
stages: the no-load stage, the elastic deformation stage and the plastic deformation stage.
As shown in Figure 4a, 0–45 s is the no-load stage, and the strain signal tested at this time
is the noise of the system. Next, 45–82 s is the elastic deformation stage. At 45 s, the test
machine starts to load the sample with a loading rate of 0.5 kN/s. The enlarged curve
of the no-load stage and the elastic deformation stage is shown in Figure 4b. It can be
seen from the figure that the strain signals of each measuring point from 45 to 82 s show a
linear growth trend. It can be judged by Hooke’s law that this stage belongs to the elastic
deformation stage. After 82 s of continuous loading, the sample slowly enters the plastic
deformation stage. It can be seen from Figure 4a that the strain of each measuring point
increases rapidly after entering the plastic zone. The enlarged view of Figure 4b shows that
the strain growth rate of measuring point 2 located at the stress concentration position is
greater than the strain growth rate of the symmetrically arranged measuring points 1 and 3.
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The strain changes of sample 2 during the entire loading process are also analyzed
based on the strain test data in Figure 5, and the loading parameters are consistent with
those of sample 1. In Figure 5a, the test machine starts loading at 27 s, the strain and load of
the sample are linearly related before 60 s and the sample is in the elastic deformation area.
It can be clearly seen from Figure 5a,b that after 60 s, with the continuous loading of the
load, the strains of the three measuring points of sample 2 gradually change and increase.
After 60 s, the sample begins to slowly undergo plastic deformation, and the strain also
increases rapidly until the strain gauge fails and the structure is damaged. Similarly, the
strain growth rate of measuring point 2 at the center position is greater than the strain
growth rate of symmetrical points 1 and 3 when entering the plastic deformation stage.
For engineering structural parts, they can work normally in the elastic deformation stage
and can still return to the initial state after unloading. Once the structure undergoes plastic
deformation, it will cause irreversible damage to the structure and cannot return to the
initial state after unloading. Irreversible structural damage will occur after the structural
part enters the plastic stage, so accurate monitoring of it can provide timely warning of
structural damage.

According to the cointegration theory, the strain series needs to be integrated of order
1 in order to conduct a stability assessment. The strain and force changes of the structural
parts are linear in elastic deformation. Figure 6 is a first-order difference series of the strain
signal at each measuring point. Sample 1 is in the no-load and elastic deformation stages
from 0–82 s, and the first-order difference series of the two stages shows the same law. The
strain first-order difference series of sample 2 also maintains the same law of the first-order
difference in the no-load and elastic deformation stages from 0 to 60 s. After calculating the
difference series, the stability of the difference series needs to be checked.
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The strain signals of the first 25 s of sample 1 and sample 2 are selected as the stability
test data. The ADF test is performed on each strain series and the first-order difference
series of the strain, respectively, and the verification results are shown in Tables 1 and 2.
Among them, y1, y2 and y3 are the strain series corresponding to different measuring points
of the sample, and ∆y1, ∆y2 and ∆y3 are the first-order difference series of the corresponding
strains. By comparing the ADF check value with the ADF critical value at the 1% and 5%
significance levels, if the ADF check value of the series is less than the critical value, it
means that the series is stable. If the ADF check value of the series is greater than the critical
value, the series is unstable. It can be seen from the ADF test results in Tables 1 and 2 that
the ADF test values of series y1, y2 and y3 are all greater than the critical values of 1% and
5%, so the strain series are all unstable. The first-order difference series ∆y1, ∆y2 and ∆y3
are all stable after verification. The strain series of sample 1 and sample 2 are both unstable
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after verification, and their first-order series are stable. Therefore, the strain series of the
two samples are all integrated of order 1, which meets the cointegration requirements.

Table 1. ADF check results of strain series and first-order difference series of sample 1.

Series ADF Test Value 1% Critical Value 5% Critical Value Stability

y1 −1.0398 −2.5690 −1.9416 Unstable
∆y1 −99.1729 −2.5690 −1.9416 Stable
y2 −1.0791 −2.5690 −1.9416 Unstable
∆y2 −101.1411 −2.5690 −1.9416 Stable
y3 0.8419 −2.5690 −1.9416 Unstable
∆y3 −95.9264 −2.5690 −1.9416 Stable

Table 2. ADF check results of strain series and first-order difference series of sample 2.

Series ADF Test Value 1% Critical Value 5% Critical Value Stability

y1 −0.1069 −2.5690 −1.9416 Unstable
∆y1 −121.2684 −2.5690 −1.9416 Stable
y2 −0.2294 −2.5690 −1.9416 Unstable
∆y2 −123.6009 −2.5690 −1.9416 Stable
y3 −1.1644 −2.5690 −1.9416 Unstable
∆y3 −111.5629 −2.5690 −1.9416 Stable

The threshold of the residual is calculated using the selected data. The cointegration
equation of the strain series between different measuring points is constructed by the
E-G method, and then the residual is calculated by the cointegration equation. The param-
eters of the cointegration equation of the strain series of each measuring point are shown
in Tables 3 and 4. Strain series #1–#2 represents the combination of data from measuring
points 1 and 2. The thresholds of the strain residual of sample 1 and sample 2 are calculated
by Formula (4), and its parameters are shown in Tables 5 and 6. In addition, the threshold
mean value calculated by the three groups of data is calculated in the table, and it is used
to judge whether the limit is exceeded.

Table 3. Cointegration equation parameters for different strain series of sample 1.

Strain Series β α

#1–#2 1.0217 1.7590
#1–#3 0.6183 45.1140
#2–#3 0.6055 42.4706

Table 4. Cointegration equation parameters for different strain series of sample 2.

Strain Series β α

#1–#2 1.5264 22.3674
#1–#3 −0.1026 −126.8029
#2–#3 −0.0400 −95.5583

Table 5. Residual mean, variance and upper and lower limits of different strain series of sample 1.

Strain Series µ σ RTU RTL

#1–#2 −1.3747 × 10−4 0.4373 1.3118 −1.3121
#1–#3 −0.0048 0.5002 1.4958 −1.5054
#2–#3 −0.0046 0.4943 1.4785 −1.4876
Mean value N/A N/A 1.4287 −1.4350
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Table 6. Residual mean, variance and upper and lower limits of different strain series of sample 2.

Strain Series µ σ RTU RTL

#1–#2 −7.7404 × 10−4 0.7447 2.2332 −2.2348
#1–#3 5.5210 × 10−4 0.4254 1.2769 −1.2658
#2–#3 6.5017 × 10−4 0.4179 1.2543 −1.2530
Mean value N/A N/A 1.5881 −1.5845

The ADF method is used to test the stability of the first-order different residual series.
From the test results of Tables 7 and 8, by comparing with the 1% and 5% critical values,
the ADF test results of the residuals between each series are all less than the critical value,
satisfying the stable condition. And it can be seen that the cointegration residuals between
different strain series are all stable. Therefore, there is a cointegration relationship between
the strains of the three measurement points of sample 1 and sample 2.

Table 7. ADF test results of strain residual series of sample 1.

Strain Series ADF Test Value 1% Critical Value 5% Critical Value Stability

#1–#2 −71.4768 −2.5821 −1.9416 Stable
#1–#3 −119.5111 −2.5821 −1.9416 Stable
#2–#3 −120.6987 −2.5821 −1.9416 Stable

Table 8. ADF test results of strain residual series of sample 2.

Strain Series ADF Test Value 1% Critical Value 5% Critical Value Stability

#1–#2 −106.9975 −2.5821 −1.9416 Stable
#1–#3 −119.1516 −2.5821 −1.9416 Stable
#2–#3 −116.0702 −2.5821 −1.9416 Stable

The corresponding residual series is calculated for the strains of the three stages. By
comparing the residual calculation results with the residual threshold, the warning of
plastic deformation damage is realized. Figures 7 and 8 are the residual calculation results
of the strain series between the measuring points of sample 1 and sample 2, respectively.
For sample 1, the stage of 0–82 s corresponds to the no-load and elastic deformation
stages, and its curve is enlarged, as shown in Figure 7b. It can be seen from the enlarged
residual diagram that the residual calculation results of the two groups #1–#2 and #2–#3
do not exceed the RTU and RTL before the plastic deformation stage, showing a stable
state. With the continuous loading of force, the structural parts began to slowly enter
the plastic deformation stage after 82 s. At this time, the relationship between strain
and force at each measuring point becomes a nonlinear relationship. Since measuring
points 1 and 3 are arranged on the symmetrical side of the stress concentration part of
sample 1, the cointegration residual of #1–#3 changes little after plastic deformation. The
residual verification results show that the strain cointegration relationship between the
stress concentration measuring point and the symmetrical measuring point is very sensitive
to plastic deformation. After plastic deformation occurs, the residual value will deviate
from the original stable state. As the degree of plastic deformation increases, the residual
value gradually increases. The change in the structural damage state can be clearly seen
through the change in the residual value.

The residual calculation results of sample 2 are analyzed. As shown in Figure 8, before
60 s of loading, the residual results calculated for the sample in the no-load and elastic
deformation stages do not exceed the RTU and RTL. As shown in Figure 8b, after entering
the plastic deformation stage, the residual calculation results increased significantly, and the
residual stability is destroyed at this time. After the material enters the plastic deformation,
the strain relationship changes at the center measuring point and the symmetrical measur-
ing point are very obvious. However, for the symmetrically arranged #1–#3 combination,
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the residual changes are small just after entering the plastic deformation. In the later stage
of plastic deformation, the residual changes significantly. The structural damage warning
through residual values needs to be calculated under the action of dynamic loading. After
160 s and 130 s in Figures 7 and 8, the loading stops, the strains are all stable values of the
mean and the residual cannot be judged at this time.
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Figure 8. Calculation results of residual at the measuring point of sample 2: (a) calculation results of
residual during the whole process; (b) amplified residual during the unloaded stage and the elastic
deformation stage.

Accurate warning of structural damage through the cointegration method requires
calculation and analysis based on the relatively stable relationship between the strains of
the two measuring points. For the measuring points of the structural parts, the strains of
the asymmetric points of the structure should be selected to evaluate the stability of the
cointegration relationship. Within the elastic deformation range of the structure, the strains
of the two points are linearly related, and their residuals show a certain stability. After the
structure enters the plastic deformation, the strains of the asymmetric measuring points
will obviously destroy their original stable relationship, and then the warning of structural
damage is performed by comparison with the residual threshold.
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5. Real-Time Damage Sensing System

In order to ensure the stability of the system alarm, the warning coefficient q is
proposed in this paper. The warning coefficient is obtained by analyzing the data. In
addition, the warning coefficient should be determined according to the sampling data and
sampling frequency. The warning coefficient is the upper warning limit of the proportion of
data exceeding the residual threshold in the sampled data. A too-large warning coefficient
will lead to no warning after damage occurs in the structure. A too-small warning coefficient
may be disturbed by unstable factors such as noise in the actual load, resulting in a false
alarm. In Figures 9 and 10, the regions in which the residuals exceed the residual thresholds
are marked. In 3000 data samples, the proportion of residuals that exceed the threshold is
calculated, as shown in Table 9. According to the data analysis in the table, the smallest
proportion is 0.19. In practical applications, the residual threshold setting of the damage
sensing system needs to be less than 0.19. Since the sampling data of the real-time sensing
system is phased sampling, in order to improve the stability of the system alarm, the
warning coefficient of the two samples is set to 0.05.
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Table 9. The number and proportion of residuals exceeding the threshold in different regions.

Samples Regions #1–#2 Proportion #1–#3 Proportion #2–#3 Proportion

Sample 1

Region 1 570 0.19 0 0 652 0.22
977 0.33 0 0 1141 0.38

Region 2 1086 0.36 0 0 2253 0.75
2172 0.72 0 0 1113 0.37

Sample 2

Region 1 0 0 0 0 814 0.27
709 0.24 0 0 0 0

Region 2 2857 0.95 1304 0.43 3276 1.09
1518 0.51 1649 0.55 2357 0.79

The warning of structural damage is inseparable from the real-time calculation and interactive
display of a sensing system. In this paper, an intelligent damage sensing system is developed
by combining the hybrid programming of LabVIEW 2015 and MATLAB R2023b. The workflow
of the sensing system is shown in Figure 11a. The strain-collecting instrument collects the strain
data of the sample in real time and transmits the data to the sensing system. And the sensing
system packages the strain data of three measuring points into n sampling data and transmits
them to the MATLAB module. According to the analysis conclusion of this paper, the strain series
of measuring points 1 and 2 (#1–#2) and measuring points 2 and 3 (#2–#3) are combined. In order
to improve the stability of the alarming function of the sensing system, the system counts the
number of m1 (#1–#2) and m2 (#2–#3) of the calculated residuals exceeding the threshold in n
sampling data in real time. The accuracy of the residual calculated for small sampling data will
decrease, and too much sampling data will affect the real-time alarming of the sensing system.
Through testing and analysis, the n of the sensing system is 3000. The MATLAB module calculates
the corresponding residuals based on the two sets of data sampled from #1–#2 and #2–#3. Then,
the proportion of the two sets of residuals in n data is counted in LabVIEW. If the proportion of
any set exceeding the threshold is greater than q, the result will be reported to the sensor system
for damage alarming. Through the continuous sampling and analysis of the sensing system, the
warning of structural damage can be achieved in real time. Figure 11b,c are the interface displays
of the system damage warning for sample 1 and sample 2, respectively.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 15 
 

 

 977 0.33  0 0 1141 0.38  
Region 2 1086 0.36  0 0 2253 0.75  
 2172 0.72  0 0 1113 0.37  

Sample 2 

Region 1 0 0 0 0 814 0.27  
 709 0.24  0 0 0 0 

Region 2 2857 0.95  1304 0.43  3276 1.09  
 1518 0.51  1649 0.55  2357 0.79  

The warning of structural damage is inseparable from the real-time calculation and 
interactive display of a sensing system. In this paper, an intelligent damage sensing sys-
tem is developed by combining the hybrid programming of LabVIEW and MATLAB. The 
workflow of the sensing system is shown in Figure 11a. The strain-collecting instrument 
collects the strain data of the sample in real time and transmits the data to the sensing 
system. And the sensing system packages the strain data of three measuring points into n 
sampling data and transmits them to the MATLAB module. According to the analysis 
conclusion of this paper, the strain series of measuring points 1 and 2 (#1–#2) and meas-
uring points 2 and 3 (#2–#3) are combined. In order to improve the stability of the alarming 
function of the sensing system, the system counts the number of m1 (#1–#2) and m2 (#2–#3) 
of the calculated residuals exceeding the threshold in n sampling data in real time. The 
accuracy of the residual calculated for small sampling data will decrease, and too much 
sampling data will affect the real-time alarming of the sensing system. Through testing 
and analysis, the n of the sensing system is 3000. The MATLAB module calculates the 
corresponding residuals based on the two sets of data sampled from #1–#2 and #2–#3. 
Then, the proportion of the two sets of residuals in n data is counted in LabVIEW. If the 
proportion of any set exceeding the threshold is greater than q, the result will be reported 
to the sensor system for damage alarming. Through the continuous sampling and analysis 
of the sensing system, the warning of structural damage can be achieved in real time. Fig-
ure 11b,c are the interface displays of the system damage warning for sample 1 and sample 
2, respectively. 

 

Figure 11. Structural damage sensing system: (a) system workflow diagram; (b) damage warning
result of sample 1; (c) damage warning result of sample 2.



Sensors 2024, 24, 5961 13 of 15

Figure 12 shows the monitoring value of the warning coefficient of the structural dam-
age sensing system. In the no-load and elastic deformation stages, the damage warning
coefficient is 0, and the system does not issue an alarm. In Figure 12, all 3000 data samples
correspond to a sampling stage. From the beginning of the damage to structural destruc-
tion, the damage warning coefficient basically increases gradually. Once the structure is
destroyed, the stress change in the structure is a constant value, and the damage warning
coefficient becomes 0. It is worth noting that in the third warning stage of sample 1, both
damage coefficients become 0, indicating that after the damage occurs in the first stage,
the strain in the structure produces a stable fluctuation, causing the residual to return to a
stable state. After continuous loading, the warning coefficient of the structure is greater
than the warning coefficient of the second stage, and the warning of damage can still be
achieved. It can be seen from the curve of the warning coefficient that under the condition
of a sampling number of 3000, a sampling frequency of 200 Hz and a warning coefficient of
0.05, the damage warning accuracy of sample 1 is 75%, and the damage warning accuracy
of sample 2 is 100%. Therefore, different structural forms will have a certain impact on the
accuracy of the warning system. A comparison of existing damage monitoring studies is
presented in Table 10.
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Table 10. Comparison of studies on damage monitoring.

Studies Sensor Monitoring
Damage Type

Monitoring
System Real Time

Qian et al. [32] Strain sensor Crack No No
Kontsos et al. [33] Piezoelectric sensor Crack initiation No No
Xiang et al. [34] Piezoelectric sensor Fatigue crack No No
Chen et al. [35] Eddy current sensor Fatigue crack No Yes
Yuan et al. [36] Piezoelectric sensor Impact Yes Yes
This paper Strain sensor Early plastic damage Yes Yes

6. Conclusions

Based on the cointegration theory, this paper proposes a structural damage warning
method. This method realizes the warning of structural damage by calculating the cointe-
gration residual between two measuring points in the structure, avoiding the uncertainty
of the warning of the single strain threshold method. The strain cointegration residuals
of stress-concentrated samples and standard samples are analyzed. The residual analysis
results show that the residual of the strain series between two asymmetric measuring
points is more sensitive to the plastic deformation damage of the structure. The calculated
residual is compared with the threshold value in the residual steady state to realize the
identification of structural damage. In order to improve the engineering practicality of the
method, this paper combines LabVIEW and MATLAB to develop a real-time structural
damage sensing system. The system calculates the residual warning coefficients of the two
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groups of strain series #1–#2 and #2–#3 in real time and comprehensively considers the
two prediction results to warn of structural damage. The test results show that under the
conditions of a sampling number of 3000, a sampling frequency of 200 Hz and a warning
coefficient of 0.05, the system alarm accuracy for the stress concentration sample is 75%, and for
the standard sample it is 100%. Due to different structural characteristics, in actual applications,
the system prediction accuracy for different types of structures will vary. The proposed method
further realizes the engineering application of structural damage monitoring.
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