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Abstract: A novel inter-mode crosstalk (IMXT) model of LPmn mode for weakly coupled few-mode
multicore fiber is proposed based on the coupled mode theory (CMT) with bending and twisting
perturbations. A universal expression of the mode coupling coefficient (MCC) between LPmn modes
is derived. By employing this MCC, the universal semi-analytical model (USAM) of inter-core
crosstalk (ICXT) can be applied to calculate the IMXT. Simulation results show that our model is
generally consistent with previous theories when stochastic perturbations are absent. Moreover, our
model can work effectively when stochastic perturbations are present, where former theories are not
able to work properly. It has been theoretically found that the MCC has an intimate relationship with
core pitch. Our model, based on the CMT, can provide physical characteristics in detail, which has
not been reported clearly by former theories. In addition, our model is applicable to phase-matching
and non-phase-matching regions of both real homogeneous and heterogeneous few-mode multicore
fibers (FM-MCFs) with a wider range of applications.

Keywords: inter-mode crosstalk; few-mode multicore fiber; mode coupling coefficient

1. Introduction

Multicore fibers (MCFs) based on spatial division multiplexing (SDM) technology can
greatly alleviate the capacity limitations of single-mode fiber (SMF) [1–4]. Transmission
media for SDM are mostly multicore fiber and few-mode fiber (FMF) [5]. Nowadays,
few-mode multicore fibers (FM-MCFs) [6] significantly enhance transmission capacity as
a hybrid method of MCF and FMF. In past studies, a data rate of 5.1 Tb/s per carrier has
been reached using hole-assisted FM-MCF over a 1 km single fiber with seven few-mode
cores [7,8]. However, inter-core crosstalk (ICXT) is one of the most important influencing
factors in coupled MCF, which significantly degrades transmission performance [9–12].
Therefore, quite a few researchers have focused on analyzing the characteristics of ICXT
evolution caused by variations in fiber structures and external factors [13–15].

In recent years, various theoretical and experimental studies have been reported in
the literature to accurately characterize and model ICXT. In [16], a discrete changes model
(DCM) for the longitudinal evolution of ICXT in homogeneous weakly coupled MCFs
with bending and twisting perturbations was proposed based on the coupled mode theory
(CMT). As a typical model for ICXT estimation, a DCM works well in the phase-matching
region, but it is not applicable to the non-phase-matching region and cannot be used for
heterogeneous MCFs. Although continuously enhanced DCMs have also been reported
subsequently, they still cannot operate in the non-phase-matched region [13–17]. In [18],
the coupling coefficient between cores has been derived analytically to evaluate ICXT with
single mode. Based on the analytical coupling coefficient, a universal semi-analytical model
(USAM) of ICXT for real coupled MCFs has been put forward, which can be utilized both
in phase-matching and phase-mismatching regions [19]. So far, a highly mature theoretical

Sensors 2024, 24, 5969. https://doi.org/10.3390/s24185969 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24185969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24185969
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24185969?type=check_update&version=1


Sensors 2024, 24, 5969 2 of 11

foundation has been developed in the study of ICXT estimation for multicore single-mode
fibers. Typically, the CMT and the coupled power theory (CPT) are widely employed for
investigating the estimation of ICXT [20,21].

Similarly, inter-mode crosstalk (IMXT) plays the same role in FM-MCF [22]. Research
on IMXT for FM-MCF is still in its initial stages. In [23], the effect of inter-core polarization
mode dispersion (PMD) on IMXT was studied, and a closed expression for the correlation
length of the birefringence vector was given. In [24], IMXT was derived from stochastic
differential equations (SDEs) based on the CPT, which considered both deterministic and
stochastic inter-core coupling. That work found that when the deterministic coupling
strength was sufficiently strong, it could suppress the influence of the PMD on IMXT for
LPmn modes. However, the IMXT method in [24] did not consider the impact of bending
and twisting perturbations on crosstalk. In addition, the impact of random perturbations
on crosstalk was not considered in [24], which re-characterizes IMXT in practical FM-MCF
transmission [25,26].

In this paper, we derive a universal expression of the mode coupling coefficient (MCC)
for LPmn modes between cores based on the CMT and Maxwell equations to estimate the
IMXT in FM-MCF. The theoretical derivation of the MCC allowed us to precisely define
the relationship between the deterministic coupling effect and the stochastic coupling
effect mentioned in [24], and to obtain accurate IMXT values, whereas previous models
have used mode coupling coefficient (Kmn) approximation, which leads to large errors.
In addition, we analyzed the optimal line segment length for IMXT estimation in theory.
In the next simulation, we found that the value of IMXT is greatly affected by stochastic
perturbations, which cannot be estimated by previous theories. Therefore, our theory can
provide a quite reliable model for the IMXT simulation of weakly coupled FM-MCF with
random perturbations. Additionally, our model is influenced by physical parameters like
core pitch and optical wavelength, which has not been addressed in previous theories.
Generally, this paper is structured as follows. In Section 2, we discuss the derivation of the
MCC and IMXT in detail. In Section 3, firstly, we present numerical simulations conducted
to verify our theory. Next, we investigate the influence of IMXT on stochastic perturbations
and physical characteristics. In Section 4, we present our conclusion.

2. Analysis and Methods

In this section, firstly, the MCC for the modes is derived from Maxwell equations.
Next, an expression for IMXT estimation is obtained by employing the CMT. In LPmn mode,
m means that the pattern satisfies a Bessel function of order m, and n means that there are n
solutions of that order. Our model can be applied to estimate the IMXT not only for LPo1,
but also for higher order modes.

2.1. Mode Coupling Coefficient of LPmn Mode

The definition of mode coupling coefficient for LPmn modes between cores can be
written as [27]:

kmn =
ωε0

s (
n2

1 − n2
2
)
E∗

m·E∗
ndxdy

s
ez·(E∗

m × Hm) + Em × H∗
m)dxdy

(1)

where ω is the angular frequency, ε0 is the free-space permittivity, and n1 and n2 represent
indexes of core and cladding, respectively. ez represents a unit vector for x-polarization.
Em and Hm are electric and magnetic fields in the core domain, respectively, and En is
the electric field in the cladding domain. The symbol * indicates the conjugate transform.
According to [27], the denominator of (1) is related to the optical power.

x
eZ·(E∗

m × Hm) + Em × H∗
m)dxdy = 4P (2)



Sensors 2024, 24, 5969 3 of 11

2.2. Electric Field of LPmn Mode Based on Maxwell Equations

As the fiber is a cylindrical structure, in column polar coordinates the electric field of
the LP mode can be written as [27]:

E = erEr + eφEφ + ezEz (3)

where Ex denotes the electric field component in the x-direction and ex denotes the unit
vector in the x-direction. The transverse electric field component Er and Eφ is difficult
to obtain, but the longitudinal component can be solved by the chi-squared Helmholtz
equation in [27] as follows:

Ez1 = AJm

(
U
a

r
)

cos(mφ), 0 ≤ r ≤ a (4-1)

EZ2 = A
Jm(U)

Km(W)
Km

(
W
a

r
)

cos(mφ), r ≥ a (4-2)

Er1 = −j
a2

U2

[
βUA

a
J′m

(
U
a

r
)
+

ω0mB
r

Jm

(
U
a

r
)]

cos(mφ), 0 ≤ r ≤ a (5-1)

Er2 = j
a2

W2
Jn(U)

Kn(W)

[
βWA

a
K′

m

(
W
a

r
)
+

ω0mB
r

Km

(
W
a

r
)]

cos(mφ), r ≥ a (5-2)

Eφ1 = −j
a2

U2

[
− βmA

r
Jm

(
U
a

r
)
− ω0UB

a
J′m

(
U
a

r
)]

sin(mφ), 0 ≤ r ≤ a (5-3)

Eφ2 = j
a2

W2
Jm(U)

Km(W)

[
− βmA

r
Km

(
W
a

r
)
− ω0WB

a
K′

m

(
W
a

r
)]

sin(mφ), r ≥ a (5-4)

where Jm(x) means the m order Bessel function of the first kind and Km(x) means the m
order modified Bessel function of the second kind. U and W are the normalized transverse
phase and attenuation parameters, respectively. U = a

√
k2n2

1 − β2 and W = a
√

β2 − k2n2
2 ,

where β is the propagation constant, a is the core radius, and k = 2π/λ is the wave
number, where λ is wavelength. A = jUC/aβ, where C is a system constant mentioned
in [27].B = −jUC/ωu0a, where J′m(x) is the first derivative of Jm(x) and K′

m(x) is the first
derivative of Km(x).

The electric field of LPmn behaves as a superposition of three dimensions:

Im = E∗
z1Ez2 + E∗

r1Er2 + E∗
φ1Eφ2 = Jm(U)

Km(W)
Jm

(
U
a r

)
Km

(
W
a r

)
(

A2cos2(mφ)− m2a4ω2µ2
0B2

U2W2r2 cos2(mφ)− m2a4β2 A2

U2W2r2 sin2(mφ)

)
− Jm(U)

Km(W)
J′m
(

U
a r

)
K′

m

(
W
a r

)(
a2β2 A2

UW cos2(mφ) +
a2ω2µ2

0B2

UW sin2(mφ)

)
− Jm(U)

Km(W)
J′m
(

U
a r

)
Km

(
W
a r

)
a3βAmωµ0B

UW2r

− Jm(U)
Km(W)

Jm

(
U
a r

)
K′

m

(
W
a r

)
a3βAmωµ0B

U2Wr

(6)

Here, we set the value of m to obtain the electric field superposition of the corresponding
LPmn mode. Next, bringing (6) to the numerator of (1), we obtain

Sm =
x

(n 2
1 − n2

0

)
E∗

m·E∗
ndxdy =

x (
n2

1 − n2
0

)
Imrdxdφ (7)
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where (R,θ) is a coordinate system originating at the center of core two, which represents
the domain of r > a, as shown in Figure 1. The core pitch is denoted by D. When D >> r
holds, radius R can be approximated as R =

√
D2 + r2 − 2Drcos(θ) ∼= D − rcos(θ).
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The final expression for the LPmn mode coupling coefficients is obtained by bringing
Sm into (1):

kmn =
ωε0Sm

4P
(8)

2.3. Inter-Mode Crosstalk Based on CMT

Based on the CMT, coupled-mode equations in coupled FM-MCFs can be expressed
as [27]:

dE
dz

= jβE + jkE (9)

where E and β are the electric field matrix and the propagation constant matrix, respectively.
k is a mode coupling coefficient matrix made up with kmn. A universal semi-analytical
model (USM) has been proposed to solve the coupled mode equation in [19]. Therefore, we
can generally evaluate the IMXT as:

IMXT =
N
∑

i=1
IMXTi =

N
∑

i=1

k2
mn,i

g2
mn,i

sin2(gmn,id)

cos2(gmn,id)+
∆β2

mn,i
4g2

mn,i
sin2(gmn,id)

=
N
∑

i=1

[
kmn,i
gmn,i

sin(gmn,id)
]2

(10)

where gmn,i =

√
k2

mn,i +
(

∆βmn,i
2

)
means modified mode coefficient, kmn,i is computed by

(1) and ∆βmn,i means the equivalent phase mismatching, which is defined in [19] as:

∆βmn,i(d) = βm,i(d)− βn,i(d) (11)

where βm,i(d) and βn,i(d) are equivalent propagation constants of core m and n, respectively,
defined as:

βi(d) ≈ βcβp[Rb + rcosθ(d)]/Rb (12)

where βc = (2π/λ)n(int)
e f f is the unperturbed propagation constant of the fiber core, and

n(int)
e f f is the intrinsic effective refractive index of the fundamental mode. βp represents

the longitudinal fluctuations of propagation constants caused by inherent and external
fluctuations. Rb is the bending radius. θ(d) = γd + φ, where γ and φ represent the twist
rate of the core and the offset of the twist, respectively.
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Based on the principle of USM, fully considering the characteristics of the stochastic
perturbation, the fiber length is divided into N segments with each segment length d, as
shown in Figure 2.
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3. Results and Discussion

In this section, the two-core fiber in [24] and four-core fiber are discussed in detail.
Schematic diagrams of two-core fiber and four-core fiber are shown in Figures 1 and 3,
respectively. Firstly, for two-core fiber, numerical simulations were carried out without
stochastic perturbations to determine the optimal segment length and verify the accuracy
of our model by comparison with the Monte Carlo Simulation in [23] and the analytical
expression in [24]. In addition, the impact of physical characteristics, such as core pitch
and optical wavelength, are discussed. Next, IMXT characteristics of the four-core fiber
are studied. In a four-core fiber, it is assumed that one mode exists in each core, the LP01
mode exists in core 1, and LP1n , LP2n, and LP3n modes exist in core 2, core 2, and core 3,
respectively. In this paper, we refer to the evaluation method of [24] and use symmetric
mode–asymmetric mode inter-mode coupling to approximate the inter-mode coupling as a
generic LP mode. The fundamental mode of core 1 is used as the symmetric mode, and
other low-order modes of core 2, core 3, and core 4 are used as asymmetric modes.
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3.1. Fiber Parameter

For a few-mode two-core fiber, the core radius is 2.5 um, the cladding index is 1.45, and
the wavelength is 1550 um, which are the same as those in [24]. For a few-mode four-core
fiber, the IMXT between core 1 and core 2, core 1 and core 3, and core 1 and core 4 are
discussed. To satisfy the normalization requirement, detailed parameters for the four-core
fiber are shown in Table 1.
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Table 1. Parameters of the four-core fiber.

Parameters Symbol Value

Core pitch D 30 µm
Core radius a 8 µm
Core index n1 1.4530

Cladding index n0 1.444
Wavelength λ 1550 nm

Bending radius Rb 400 mm
Twisting rate γ 2π rad/m

3.2. IMXT Analysis of Two-Core Few-Mode Fiber

The two-core fiber was simulated first. The evaluation of IMXT is shown in Figure 4.
Figure 4a shows the simulation results of IMXT as a function of the FM-MCF length
for different segment lengths in the absence of stochastic perturbations. When segment
length d = 0.01 m, the IMXT obtained by our theory matched well with the Monte Carlo
Simulation in [23] and the analytical expression in [24], as shown by the purple dotted line,
orange dotted dashed line, and black crosses in Figure 4a. When segment length d = 0.02 m
and d = 0.05 m, the IMXT obtained from our theory was strikingly different from those
of the former models. It is worth noting that the precision of the IMXT model is strongly
dependent on segment length. It was shown that the segment length d = 0.01 m can be
seen as an optimal segment length. So, the simulation results of our theory presented in the
rest of our work were obtained with segment length d = 0.01 m.
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Figure 4. IMXT as a function of (a) FM−MCF length without stochastic perturbations, (b) bending
radius, and (c) FM−MCF length with bending and twisting perturbation.

Furthermore, when the effects of bending and twisting perturbations in (12) are taken
into account, it shows the IMXT as a function of bending radius for our model compared
with former models when FM-MCF length is set to 1000 m, as shown in Figure 4b. The
IMXT is significantly suppressed by bending perturbation, especially at a small bending
radius. However, the former models cannot work normally with bending perturbation. A
similar conclusion can be obtained with twisting and bending perturbations, as shown in
Figure 4c, where Rb = 0.2 m,γ = 2π rad/m. Moreover, the suppression on IMXT enhances
with an FM-MCF length increase. Results in Figure 4b,c illustrate that both the Monte Carlo
Model [23] and the analytical expression [24] are not sensitive to bending and twisting
perturbations. However, in Figure 4c, we can see that our model reduces the IMXT value by
8 dB at 1000 m MCF length, which is because stochastic perturbations increase the effective
refractive index difference between cores, which makes the IMXT computed by our theories
lower than those of former theories. As the crosstalk increases significantly at the phase-
matching point, some fluctuations in the purple curve estimated by our model can be found
with changes over the distribution of the phase-matching point [17]. Therefore, our model
can well reflect the effects of perturbations on IMXT.
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In addition, former theories have not discussed the relationship between IMXT with
physical characteristics. Figure 5 shows simulation results of IMXT as a function of core
pitches, optical wavelengths, and twisting rates for our IMXT model and the analytical
expression in [24]. Orange pentagrams represent the analytical expression based on CPT
and purple dotted lines represent our IMXT model, which takes into account the impact
of kmn. These results indicate that the fiber parameters of our model have an effect on the
estimation of IMXT under stochastic perturbations, which is similar to that of ICXT at MCF.
However, the fiber parameters in the analytical expression do not have much effect on
IMXT. This is because the analytical expression takes an approximation for kmn, whereas
our model for kmn performs a detailed derivation.
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3.3. IMXT Analysis of Four-Core Few-Mode Fiber

Thereafter, the four-core FMF was simulated. See Appendix A for specific derivation.
We took the LP01 mode as the longitudinal electric field distribution and other modes as
the transverse electric field distribution to evaluate and analyze the crosstalk of the modes.
Simulation results are shown in Figure 6. The dotted and dotted dashed lines in the figure
represent the IMXT between the fundamental and other higher-order modes in our model
and the analytical expression [24], respectively. In Figure 6a, it can be seen that crosstalk
between the different modes obtained by our model and the analytical expression could be
well matched under no stochastic perturbations. However, in the presence of stochastic
perturbation, it can be clearly seen that crosstalk values between different modes obtained
by our model became significantly smaller, whereas crosstalk obtained by the analytical
expression had no obvious effect, as shown in Figure 6b. The trend of this simulation is
consistent with the one obtained above using two-core fiber.

In the above study of the physical parameters of two-core fiber, we know that in the
analytical expression the fiber parameters did not have a great influence on the IMXT. So,
we directly studied our model subject to the core pitch and bending radius on the IMXT as
shown in Figure 7. Figure 7a shows the IMXT as a function of the core pitch for our model,
and it can be seen that IMXT continued to decrease as the inter-core distance increased.
When the distance between the cores increased, MCCs decreased and the coupling effect
between the modes decreased, resulting in a decrease in IMXT. Figure 7b,c show the IMXT
as a function of the bending radius for our model in homogeneous and heterogeneous
FM-MCFs. For values ∆n(int)

e f f ,mn = 0.020% and ∆n(int)
e f f ,mn = 0.042%, the threshold bending

radius RPK1 = 96 mm and RPK2 = 43 mm, respectively. Simulation results of the actual
homogeneous few-mode four-core fiber are shown in Figure 7a. In the phase-matching
region, IMXT is proportional to the bending radius. However, in the non-phase-matching
region, IMXT is inversely proportional to the bending radius. The value of the crosstalk
decreased with the bending radius and tended to a stable value gradually. Next, Figure 7b
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illustrates the heterogeneous few-mode four-core fiber with a larger ∆n(int)
e f f ,mn. These results

show that the variation trend is basically the same as that shown in Figure 7a. The trend of
these results is similar to the theoretical analysis of ICXT in MCF [19,28,29].
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Figure 7. Estimation of crosstalk from LP01 to LP11 (LP21, LP31 ) as a function of (a) core pitch,
(b) bending radius in homogeneous FM−MCF, and (c) bending radius in heterogeneous FM−MCF.

4. Conclusions

In this paper, we study the model of stochastic IMXT for LPmn mode in weakly
coupled FM-MCFs with random perturbations based on the CMT and Maxwell equations.
In the absence of random perturbations, our model can well match the Monte Carlo
Simulation [23] and the analytical expression [24] at optimal segment length d = 0.01 m,
which verifies the accuracy of our model. In addition, our model calculates Kmn accurately,
which can effectively minimize experimental error and make up for the shortcomings of
previous studies that take into account only the approximate value of Kmn. In the presence
of bending perturbations, our model more accurately estimates the effect of bending
radius on the FM-MCF. The IMXT is about 8 dB lower than those of previous models,
which is due to the fact that previous models directly ignored bending perturbations,
which is not realistic. Next, we investigated the effects of physical properties, such as
core pitch and optical wavelength, on IMXT. Results show that the IMXT of the fiber can
be mitigated by rationally configuring the physical structure of the fiber, which has not
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been discussed in previous models. Notably, study of the bending radius revealed that
the model is applicable to both phase-matching and non-phase-matching regions of both
homogeneous and heterogeneous FM-MCFs. Overall, we propose a systematic theory
for IMXT estimation, which is more widely applicable and more accurately calculated in
practical FM-MCF transmission with stochastic perturbations.
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Appendix A

In a four-core FMF, the fundamental mode is used as the longitudinal electric field
distribution such that m = 0 in (4):

Ez1 = AJ0

(
U
a

r
)

, 0 ≤ r ≤ a (A1)

EZ2 = A
J0(U)

K0(W)
K0

(
W
a

r
)

, r ≥ a (A2)

Other modes are used as transverse electric field distributions, which are obtained by
making m = 1 in (5) when calculating the crosstalk between the LP01 and LP11 modes:

Er1 = −j
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(
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The electric field is then superimposed:

Im = E∗
z1Ez2 + E∗
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Substituting Im into (7) to continue the theoretical derivation, we obtain the crosstalk
between the modes of LP01_LP11. Following this derivation, the crosstalk between the
modes of LP01_LP21 and LP01_LP31 can be obtained.
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