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Abstract: Real-time data transmission and reliable operation are essential for a tsunami monitoring
system to provide effective data. In this study, a novel real-time tsunami monitoring system is
designed based on a submersible mooring system. This system is equipped with a data acquisition
and tsunami wave identification algorithm, which can collect the measured data of the pressure sensor
and detect a tsunami wave in real time. It adopts the combination design of underwater inductive
coupling transmission and a redundant BeiDou communication device on the water surface to ensure
the reliability of real-time data transmission. Compared with traditional tsunami monitoring buoys,
it has the advantages of reliable communication, good concealment, high security, and convenient
deployment, recovery, and maintenance. The results of laboratory and sea tests show that the system
has high reliability of data transmission, stable overall operation of the system, and good application
prospects in the field of real-time tsunami monitoring and early warning.

Keywords: tsunami monitoring; submersible mooring system; real-time data transmission;
inductive coupling

1. Introduction

Tsunamis are gravitational water waves in the ocean, mainly caused by subduc-
tion zone thrust earthquakes, submarine landslides, volcanic eruptions, etc., which cause
fractures in the seabed strata and cause fluctuations in the seawater. When a tsunami prop-
agates in open waters, its wavelength is long and its height is small, allowing it to travel
long distances across the ocean without significant energy loss. When a tsunami wave
enters the continental shelf, it causes significant damage to coastal residents and facilities
due to a sharp shallower water depth, shorter wavelength, and a sudden increase in wave
height [1–3]. Since the 20th century, there have been a total of seven major tsunamis world-
wide; among these, the most severe tsunami was caused by the 2004 Sumatra earthquake
in Indonesia, resulting in huge casualties and property damage to coastal countries [4,5].
Countries around the world have also begun to strengthen monitoring and early warning
of tsunamis, improve their early response capabilities, and reduce personnel and property
damage [6].

According to research, establishing an effective tsunami monitoring system to real-
time transmit tsunami wave data can enable timely and accurate predictions of the arrival
time and wave height of tsunamis when they propagate to coastal areas. Its key data
can effectively ensure the accuracy of tsunami warnings and reduce the disasters caused
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by tsunamis. Based on the characteristics of tsunamis, real-time tsunami monitoring sys-
tems typically use buoys or submerged beacon structures. Water level monitoring sensors
are deployed at anchor positions near the seabed to invert real-time tide level changes.
By comparing the difference between actual and predicted tide levels, tsunami waves
are determined, and tsunami data are uploaded to surface communication buoys. Then,
these data are transmitted to ground observation stations through satellites to monitor
real-time changes in sea level elevation related to tsunamis [7]. Sharadha studied the use
of autonomous underwater robots to monitor changes in the underwater environment
and provide warnings for underwater earthquakes and tsunamis, but there is the problem
of real-time and reliable data transmission [8]. Researchers have also constructed earth-
quake monitoring networks, as described in the literature [9]. By deploying multiple tide
gauges in Morocco to form an observation array and transmitting real-time data through
satellites, tsunami observation and warning were achieved [10]. The National Oceanic
and Atmospheric Administration (NOAA) of the United States has deployed multiple
tsunami buoys in the deep ocean, known as DART (Deep Ocean Assessment and Reporting
of Tsunami) systems, which can monitor tsunami waves in real time and transmit the
data back to shore station data centers. Researchers can use tsunami waves to infer their
source, and issue tsunami warning information in a timely manner, which have good
application effects. However, networked array systems face high costs and difficulty in
maintaining underwater equipment [11]. In addition to using tide level observation tech-
nology, researchers have also conducted research on tsunami monitoring systems based on
fiber-optic interference technology. For example, the State Oceanic Administration of China
has deployed a tsunami monitoring system equipped with fiber-optic interference water
level monitoring instruments, with a measurement accuracy of ±1 cm, which has achieved
good applications. However, the detection range of this type of fiber optic is 0–110 m,
which is difficult to adapt to early warning of tsunamis in deep-sea environments [12].

Therefore, although tsunami monitoring systems have achieved good application
results in tsunami warning at present, most of them have high construction and oper-
ation costs, and the reliability of real-time transmission of deep-sea data is difficult to
guarantee [13–18]. Therefore, this study designs a new tsunami monitoring system based
on a submerged beacon platform. The system deploys data acquisition and processing
algorithms in a data acquisition and control system, adopts a highly reliable redundant
communication scheme to achieve reliable transmission of tsunami data, and conducts
sea trials in the South China Sea to verify the effectiveness and feasibility of the system
designed in this study.

2. Overall System Design

The highly reliable tsunami real-time monitoring system adopts a submarine anchor
system structure design. It measures deep-sea seabed pressure data in real time through
an underwater pressure sensor unit. The underwater data collection unit can calculate the
corresponding tidal level value during the corresponding period based on the pressure
data and detect tsunami waves. The overall system design is shown in Figure 1. According
to the research, the anchor system structure of a submersible can improve the safety of the
system, reduce the risk of human damage, and ensure the long-term in-place operation of
the system [19,20].

The highly reliable tsunami real-time monitoring system consists of a data acquisition
and processing subsystem, a mooring and release subsystem, a data transmission subsys-
tem, and a shore station data-receiving subsystem. The following is a detailed introduction
to each subsystem.
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The data acquisition and processing subsystem is the core function of the tsunami real-
time monitoring system, mainly realizing functions such as pressure data acquisition, raw
data processing, tsunami wave determination, data communication control, and feedback.
This subsystem includes hardware modules such as pressure sensors and data collectors.
The pressure sensors collect pressure data in real-time and transmit them to the data
collector through coupling transmission. At the data collector end, tidal level values are
calculated, and tsunami waves are determined. After a tsunami wave propagation event is
identified, a tsunami alarm is triggered, and the original data within the corresponding time
period are packaged and transmitted back to the shore station data-receiving subsystem.

The mooring and release subsystem is the basic platform for ensuring the in situ opera-
tion and real-time data transmission of the tsunami monitoring system. It connects various
hardware modules in the ocean through an anchoring structure and is designed with an
automatic release communication buoy, which can ensure the reliable ejection of the water-
surface-communication buoy. This subsystem mainly includes surface communication
buoys, communication cables, underwater buoys (equipped with surface communication
buoy devices and release devices), data collectors, plastic-coated steel cables (equipped
with coupling transmission devices), underwater units (equipped with pressure sensors
and release devices), and anchoring weights.
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The data transmission subsystem adopts multiple redundant communication methods
to achieve real-time data transmission back to the shore station data-receiving subsystem,
which is essential to achieving real-time tsunami warnings. This subsystem consists of
coupling transmission modules, plastic-coated steel cables, communication buoys, and
satellite transceiver devices. The real-time measurement data of the pressure sensor on the
seabed are transmitted to the data collector through a coupled transmission module. If
the data collector recognizes a tsunami wave, it triggers a tsunami warning. The mooring
and release subsystem will use surface communication buoys to send the data to the shore
station data-receiving subsystem via satellite [21].

The shore station data-receiving subsystem adopts a server/client development mode.
The server side is responsible for buoy configuration management, data communication
reception and storage, and tsunami data status and alarms. The client side realizes multi-
user data inquiry, data analysis, and buoy status and tsunami status display management
operations through network access and data interface query. The system mainly implements
the following functions: (1) communication function: real-time reception of BeiDou satellite
communication data sent by surface communication buoys and verification of the messages;
(2) storage and query functions: these realize the storage of various parameters such as the
status, position, and tsunami monitoring pressure values of the parsed buoys and provide
efficient and convenient database access services; (3) display function: this displays the
status, location, and data information of the tsunami monitoring system, as well as the
status and pressure monitoring values of the tsunami units.

3. Key Technologies

The tsunami monitoring system proposed in this article uses its anchoring system to
deploy pressure sensors near the seabed to record real-time seabed pressure data. When
a tsunami wave passes through the sea surface where the pressure sensor is located, it
will cause a change in wave height, which, in turn, will cause a change in seabed pressure.
According to the recorded historical pressure, the sea surface height can be inferred as the
height of the tsunami wave. When confirming the tsunami wave, the original pressure data
are sent to the remote data center on the ground through satellite communication buoys for
real-time tsunami warning analysis [22].

3.1. Data Collection and Tsunami Wave Identification Methods

The tsunami monitoring system completes pressure data collection, tsunami wave
identification, and communication control through data acquisition units deployed under-
water. After the system is deployed, it can be divided into deployment mode, standard
mode, and tsunami alarm mode according to different data processing methods. The
system is in deployment mode for 3 h after entering the water, at which point the pressure
data have been stably obtained for a certain period of time; the standard mode mainly
realizes the collection of pressure data and the determination of tsunami waves. The main
implementation method is used to identify tsunami waves by inverting tidal level data
based on historical pressure data and measured data and comparing them. The system sta-
tus information is transmitted back every hour. The tsunami alarm mode detects tsunami
waves and sends the original data back to the remote data center. The following is a de-
tailed introduction to the method of determining tsunami waves and the data transmission
scheme:

(1) Use pressure sensors to obtain deep-sea seabed pressure data for a period of time
(reaching data stability within 3 h after deployment), in order to obtain the corresponding
tidal level values for the time period.

(2) Perform real-time quality control processing of raw data on the data collector end.
Firstly, coarse-grained removal of formatting errors and data exceeding the threshold in
the original data is performed, and further detection is carried out using the three-sigma
method within a 1 h data range. Discrete independent data are removed. Use interpolation
polynomials to fit astronomical tidal waveforms, collect data at different times, use time as
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the interpolation point on the x-axis, and predict the tidal level value H’ (t’) for the next
time t’.

H′(t′) =
3

∑
i=0

w(i) · H∗
i (t − p/2 − i∆t)

The tsunami processing algorithm is shown in Figure 2, where t is the current time,
t’ is the predicted time (data 5.25 min after the current time t), p is the duration of the
arithmetic mean method (10 min), and ∆t is the interval time (1 h) between two adjacent
interpolation points. Set the end time of monitoring to the current time t = 0. Average the
pressure data within the first p minutes before the current time t, ∆t, 2∆t, and 3∆t to obtain
four tidal levels: H∗

0 , H∗
1 , H∗

2 , and H∗
3 .
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(3) Measure the deep-sea seabed pressure data at time t’ to obtain the measured tidal
level value at time t’.

(4) Calculate the difference between the measured tidal level value and the predicted
tidal level value. Based on continuous multiple difference data, we determine whether
there is tsunami wave propagation. If tsunami wave transmission is detected, activate the
tsunami warning mode for feedback alarm. The system workflow is shown in Figure 3.
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3.2. High-Reliability Data Transmission Design

The tsunami monitoring system mainly provides real-time data support for tsunami
warning, and reliable data transmission methods are key to ensuring the real-time aspect
and accuracy of tsunami warning. The real-time transmission path of tsunami monitoring
system data is as follows: pressure sensor → underwater data collector → surface satellite
communication equipment → remote data center. This article presents a design which com-
bines underwater induction coupled transmission and a redundant satellite communication
device on the water surface to ensure the reliability of real-time data transmission.

3.2.1. Inductively Coupled Transmission Design

Commonly used underwater data transmission technologies currently include ca-
ble transmission and wireless transmission. Cable transmission often uses multi-core
watertight cables to connect sensors for communication. However, tsunami monitoring
systems are located in deep water areas with long anchoring structures, which have the
disadvantages of signal strength attenuation with distance and cable damage; wireless trans-
mission technology includes laser communication, underwater acoustic communication,
and inductive coupling communication, of which laser communication has strong direc-
tionality [23,24]. Factors such as water quality and plankton often affect communication
effectiveness, limiting its application range [25,26]; underwater acoustic communication
utilizes sound waves for underwater communication. The fluctuation and multipath effects
of the underwater acoustic channel result in a low propagation rate, large delay, high bit
error rate, and high power consumption of transceivers, which is not conducive to the
long-term operation of tsunami monitoring systems. Electromagnetic induction coupling
communication technology relies on small-sized coupling coils to induce magnetic field
components for communication. Its magnetic induction signal propagates at the speed
of light in the transmission medium, which has the advantages of a small transmission
delay, stable channel, and high reliability and has good application prospects [27,28]. This
article uses electromagnetic induction coupling technology for underwater transmission to
achieve real-time transmission of pressure sensor data to the data collector, improving the
reliability of data transmission. A schematic diagram of induction coupling transmission is
shown in Figure 4.
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3.2.2. Redundant Design of Water Surface Communication

The air link for data transmission through satellite communication devices already has
mature communication technologies and applications, such as the Iridium communications
service, maritime satellites, BeiDou short messages, and Tiantong satellites, to complete
data transmission. This article uses the BeiDou satellite for data transmission. In the data
transmission subsystem, the BeiDou communication antenna is installed inside the surface
communication buoy and connected to the underwater unit through communication cables.
The data collector is integrated into the underwater unit and has a certain computing
capability. It can receive real-time data collected by the water level gauge and calculate
pressure data. When a tsunami wave is detected, the device sends the data to the BeiDou
satellite antenna through a communication cable and sends it back to the remote data
center.

To ensure the reliability of tsunami data transmission, the small communication buoy
adopts a redundant design. The underwater unit can carry six small communication buoys
as backups for the BeiDou satellite antenna. The design of the small surface-communication
buoy is shown in Figure 5a, and the underwater unit is shown in Figure 5b,c. After the
system is deployed, the first communication buoy is released onto the sea surface for data
communication. The other five communication buoys are stored inside the underwater unit
and fixed to the installation structure of the buoy through a release device. The installation
structure of the buoy is fixed to the bottom of the underwater unit through bolts. The
release device of the underwater buoy is shown in Figure 5d.
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The release of the communication buoys is controlled by a data collector equipped
with a data acquisition and processing subsystem inside the underwater unit. When the
collector loses contact with the communication buoy, communication testing or the release
of new sea surface buoys will be carried out to ensure the reliable transmission of tsunami
data. The release mechanism process of the small surface-communication buoy is shown in
Figure 6.
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4. Sea Trial Verification and Result Analysis
4.1. Prototype System Construction

To verify the effectiveness and feasibility of the system design in this article, a pro-
totype system was built, and sea trials were conducted. The prototype system adopts
the Paroscientific 8CB7000-I pressure sensor (Washington, UT, USA), the IXSEA-Oceano
5000 acoustic release device (Paris, France), and the Soundnine S9 induction coupling
device (Washington, UT, USA). The satellite communication device integrates twelve 60-
second-frequency BeiDou card (Beijing, China), which can launch data packets of 1 KB
immediately to meet the real-time transmission requirements of tsunami raw data. The
main configuration of the system is shown in Table 1, and the actual system is shown in
Figure 7.
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Table 1. Prototype system hardware configuration.

Number Name Model Main Parameter

1 Pressure sensor Paroscientific 8CB7000-I Working water depth ≤ 7000 m; accuracy: 0.01% FS

2 Acoustic release device IXSEA-Oceano Oceano5000 Working water depth ≤ 6000 m;
Communication distance ≤ 10 km

3 Anchor weight block Customization Anchor block weight: 2000 kg
4 Inductive coupling device Soundnine/S9 Working water depth ≤ 4500 m

5 Underwater unit Customization Diameter of 2 m; height of 1.4 m; reserve buoyancy: 3097 kg; equipped
with 6 release devices

6 Communication device BeiDou Second Generation Integrate twelve 60-ssecond-frequency BeiDou civilian cards with a
communication capacity of 1 KB/min

7 Plastic-coated steel cable Customization Outer diameter 8.4 mm; inner diameter 6.4 mm; tensile strength ≥ 2 kg

8 Data collector Customized development
board

Equipped with 32 GB storage and 8 RS232 interfaces; the operating
power consumption is approximately ≤1 W; and the sleep power

consumption is ≤200 mW
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Packets 

Actual Number of 
Received Data Pack-

ets 

Data Reception Suc-
cess Rate 

Layout mode (lasting for ac-
tual 3 h) 

47 packets 47 packets 100% 

Alarm mode (actual duration 
of 6 h) 53 packets 53 packets 100% 

Standard mode (actual dura-
tion of 9 h) 9 packets 9 packets 100% 

Figure 7. Physical diagrams of the prototype system. (a) Pressure sensor, (b) Acoustic release
device, (c) Inductive coupling device, (d) Small water-surface-communication buoy, (e) Shore station
data-receiving subsystem.
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4.2. Laboratory Copying Situation

A laboratory copying machine is mainly used to verify the working mechanism of the
entire system and the stability and reliability of the system operation. The main verification
content includes the success rate of data transmission and reception, the switching of the
working mode of the tsunami monitoring system, and the release of the small water-surface-
communication buoy device.

The laboratory copying process goes from deployment mode to standard mode, from
standard mode to alarm mode, and from alarm mode to standard mode. The success
rate of data transmission and reception during the mode switching process is 100%, and
several working mode switches are successfully simulated without any abnormalities in
the working mechanism. The data reception is detailed in Table 2, and the pressure data
curve is shown in Figure 8.

Table 2. Prototype system copying and data transmission situation.

Working Mode
Number of

Actually Sent Data
Packets

Actual Number of
Received Data

Packets

Data Reception
Success Rate

Layout mode (lasting for
actual 3 h) 47 packets 47 packets 100%

Alarm mode (actual
duration of 6 h) 53 packets 53 packets 100%

Standard mode (actual
duration of 9 h) 9 packets 9 packets 100%
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(a) Normal pressure curve, (b) Alarm pressure curve.

The release test on the sea surface buoy ejection device was conducted at the dock.
After testing, it was found that the underwater release performance of the small water-
surface-communication buoy release device was good, and the communication cable had
slight positive buoyancy and no entanglement after being ejected. The shore test process of
the release device is shown in Figure 9.
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Figure 9. Release device shore test.

4.3. Sea Trials in the South China Sea

To verify the actual performance and reliability of the tsunami real-time monitoring
system proposed in this article, a complete deployment and testing of the system was
conducted on 25 September 2020 in the 54-meter-deep sea area of the South China Sea to
verify the overall reliability of the tsunami real-time monitoring system function.

The overall deployment sequence of the system is as follows: first, place the underwa-
ter unit in the water, then place the parallel release device in the water, fix its lower-end
under force on the mooring pile, release it with a hook, and slowly place the Kevlar cable
in the water until the weight block is in place. Use an A-frame to lift the weight block into
the water, release the hook, and complete the system deployment.

The sea trial began on the morning of 25 September 2020. At 9:52, the entire system was
powered on, and the data reception was normal. The deployment was completed at 10:30.
At 16:30, the system was released to the water surface through the deck unit and was towed
to the side of the boat by another small boat (Figure 10). It was successfully recovered using
the onboard A-frame. After the system recycling, upon reviewing the original data, it was
found that after the deployment mode ended, it successfully entered the standard mode at
13:30, and the pressure data were collected completely. The system status information was
transmitted back to the shore station data center every hour. After entering standard mode,
the first small water-surface-communication buoy was successfully released, and 10 min
later, the second small buoy was successfully released (the simulation test showed that the
first small buoy was damaged). The redundant design of water-surface-communication
was running well. Table 3 shows the partial data of the sea trial, and the data results
indicate that the system runs stably and the data are good.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 16 
 

 

original data, it was found that after the deployment mode ended, it successfully entered 
the standard mode at 13:30, and the pressure data were collected completely. The system 
status information was transmitted back to the shore station data center every hour. After 
entering standard mode, the first small water-surface-communication buoy was success-
fully released, and 10 min later, the second small buoy was successfully released (the sim-
ulation test showed that the first small buoy was damaged). The redundant design of wa-
ter-surface-communication was running well. Table 3 shows the partial data of the sea 
trial, and the data results indicate that the system runs stably and the data are good. 

 
Figure 10. Small-boat recovery underwater unit. 

Table 3. Partial data from sea trials in South China Sea. 

BuoyID Mode DateTime AlarmDateTime PressMM 
181 2 25 September 2020 15:03 25 September 2020 15:00 112,107 
181 2 25 September 2020 15:03 25 September 2020 15:00 112,106 
181 2 25 September 2020 15:03 25 September 2020 15:00 112,106 
181 2 25 September 2020 15:04 25 September 2020 15:00 112,102 
181 2 25 September 2020 15:04 25 September 2020 15:00 112,098 
181 2 25 September 2020 15:04 25 September 2020 15:00 112,100 
181 2 25 September 2020 15:04 25 September 2020 15:00 112,102 
181 2 25 September 2020 15:05 25 September 2020 15:00 112,098 
181 2 25 September 2020 15:05 25 September 2020 15:00 112,097 
181 2 25 September 2020 15:05 25 September 2020 15:00 112,103 
181 2 25 September 2020 15:05 25 September 2020 15:00 112,098 
181 2 25 September 2020 15:06 25 September 2020 15:00 112,103 
181 2 25 September 2020 15:06 25 September 2020 15:00 112,098 
181 2 25 September 2020 15:06 25 September 2020 15:00 112,097 
181 2 25 September 2020 15:06 25 September 2020 15:00 112,106 
181 2 25 September 2020 15:07 25 September 2020 15:00 112,104 
181 2 25 September 2020 15:07 25 September 2020 15:00 112,106 
181 2 25 September 2020 15:07 25 September 2020 15:00 112,111 
181 2 25 September 2020 15:07 25 September 2020 15:00 112,109 

Figure 10. Small-boat recovery underwater unit.



Sensors 2024, 24, 6048 12 of 14

Table 3. Partial data from sea trials in South China Sea.

BuoyID Mode DateTime AlarmDateTime PressMM

181 2 25 September 2020 15:03 25 September 2020 15:00 112,107
181 2 25 September 2020 15:03 25 September 2020 15:00 112,106
181 2 25 September 2020 15:03 25 September 2020 15:00 112,106
181 2 25 September 2020 15:04 25 September 2020 15:00 112,102
181 2 25 September 2020 15:04 25 September 2020 15:00 112,098
181 2 25 September 2020 15:04 25 September 2020 15:00 112,100
181 2 25 September 2020 15:04 25 September 2020 15:00 112,102
181 2 25 September 2020 15:05 25 September 2020 15:00 112,098
181 2 25 September 2020 15:05 25 September 2020 15:00 112,097
181 2 25 September 2020 15:05 25 September 2020 15:00 112,103
181 2 25 September 2020 15:05 25 September 2020 15:00 112,098
181 2 25 September 2020 15:06 25 September 2020 15:00 112,103
181 2 25 September 2020 15:06 25 September 2020 15:00 112,098
181 2 25 September 2020 15:06 25 September 2020 15:00 112,097
181 2 25 September 2020 15:06 25 September 2020 15:00 112,106
181 2 25 September 2020 15:07 25 September 2020 15:00 112,104
181 2 25 September 2020 15:07 25 September 2020 15:00 112,106
181 2 25 September 2020 15:07 25 September 2020 15:00 112,111
181 2 25 September 2020 15:07 25 September 2020 15:00 112,109
181 2 25 September 2020 15:08 25 September 2020 15:00 112,114
181 2 25 September 2020 15:08 25 September 2020 15:00 112,113
181 2 25 September 2020 15:08 25 September 2020 15:00 112,124
181 2 25 September 2020 15:08 25 September 2020 15:00 112,126
181 2 25 September 2020 15:09 25 September 2020 15:00 112,125
181 2 25 September 2020 15:09 25 September 2020 15:00 112,131
181 2 25 September 2020 15:09 25 September 2020 15:00 112,136
181 2 25 September 2020 15:09 25 September 2020 15:00 112,135
181 2 25 September 2020 15:10 25 September 2020 15:00 112,138
181 2 25 September 2020 15:10 25 September 2020 15:00 112,143
181 2 25 September 2020 15:10 25 September 2020 15:00 112,139
181 2 25 September 2020 15:10 25 September 2020 15:00 112,136
181 2 25 September 2020 15:11 25 September 2020 15:00 112,138

5. Discussion and Conclusions

This article presents a novel system for tsunami monitoring using a submerged moor-
ing system equipped with pressure sensors and real-time data transmission capabilities. The
system collects real-time pressure data from pressure sensors near the seabed for tsunami
wave detection and divides the underwater operation of the system into deployment mode,
standard mode, and tsunami alarm mode according to different data processing methods.
The results of the laboratory and sea tests show that the overall operation of the system
is stable, and the data acquisition and tsunami wave recognition algorithms carried on it
operate stably, with a data acquisition rate of 100%. The combination design of underwater
induction coupling transmission and water surface redundant BeiDou communication
device used in the system performed well. During the testing period, the data reception rate
of the shore station data-receiving subsystem reached 100%, which verifies the feasibility
of the proposed method. The data collection rate and data reception rate both reached
100%, which can ensure timely acquisition of data during the tsunami and release warning
information as soon as possible, ensuring personnel safety and avoiding property damage.

Compared with the novel tsunami monitoring buoys, traditional buoys are seriously
affected by bad sea conditions, ship collision, human damage, and biological attachment
because they float on the sea surface. The submerged buoy-type tsunami monitoring system
designed in this article is submerged underwater and has good concealment and safety. On
the other hand, the communication method of inductive coupling adopted in this study is
more stable and reliable compared to the acoustic communication of traditional buoys. In
addition, submerged beacons are easier to deploy, recover, and operate and maintain than
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buoys. During sea trials, the test data show that the system design is safe and reliable, runs
stably, and has the characteristics of convenient and reliable deployment, recycling, and
operation, enriching the technical means in the field of tsunami monitoring.

In future work, to further validate the stability and reliability of the system, the novel
tsunami monitoring system designed herein will be validated at sea over a long period of
time and compared with traditional tsunami buoy and seismic station measurements. In
addition, sensors such as temperature, salinity, and seismometers can be added to moorings
and submarine installations to obtain more data for ocean research while monitoring
tsunamis.
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