
Citation: Ferreira, D.; Moutinho, F.;

Matos-Carvalho, J.P.; Guedes, M.;

Deusdado, P. Generic FPGA

Pre-Processing Image Library for

Industrial Vision Systems. Sensors

2024, 24, 6101. https://doi.org/

10.3390/s24186101

Academic Editor: Stefania Perri

Received: 28 June 2024

Revised: 6 August 2024

Accepted: 9 August 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Generic FPGA Pre-Processing Image Library for Industrial
Vision Systems
Diogo Ferreira 1,2,*, Filipe Moutinho 2,3 , João P. Matos-Carvalho 3,4 , Magno Guedes 1 and Pedro Deusdado 1

1 INTROSYS SA, 2950-805 Quinta do Anjo, Portugal; magno.guedes@introsys.eu (M.G.);
pedro.deusdado@introsys.eu (P.D.)

2 NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
fcm@fct.unl.pt

3 Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI),
2829-516 Caparica, Portugal; joao.matos.carvalho@ulusofona.pt

4 COPELABS, Centro Universitário de Lisboa, Universidade Lusófona, 1749-024 Lisbon, Portugal
* Correspondence: diogo.ferreira@introsys.eu

Abstract: Currently, there is a demand for an increase in the diversity and quality of new products
reaching the consumer market. This fact imposes new challenges for different industrial sectors,
including processes that integrate machine vision. Hardware acceleration and improvements in
processing efficiency are becoming crucial for vision-based algorithms to follow the complexity
growth of future industrial systems. This article presents a generic library of pre-processing filters for
execution in field-programmable gate arrays (FPGAs) to reduce the overall image processing time in
vision systems. An experimental setup based on the Zybo Z7 Pcam 5C Demo project was developed
and used to validate the filters described in VHDL (VHSIC hardware description language). Finally,
a comparison of the execution times using GPU and CPU platforms was performed as well as an
evaluation of the integration of the current work in an industrial application. The results showed a
decrease in the pre-processing time from milliseconds to nanoseconds when using FPGAs.

Keywords: FPGA; GPU; pre-processing image library; industrial vision systems

1. Introduction

The constant technological evolution of recent decades has resulted in the emergence
of increasingly efficient solutions in diverse areas. The industrial sector was one of the
sectors most positively affected by this evolution. The high level of industrialization
worldwide implies increasing competition between companies to achieve success, where
product quality is currently a decisive factor in consumer satisfaction.

Tasks are performed by specialized personnel, who, despite being experts in the field,
are prone to errors due to fatigue or the complexity of the tasks. To reduce these errors, the
industrial sector has promoted higher product quality by introducing automated systems,
where tasks are now performed repeatedly by machines assisting or replacing humans,
reducing the occurrence of errors and improving safety, such as in ref. [1,2].

Currently, one of the areas where automation is predominant is industrial vision.
Vision systems are characterized by three sequential phases. The process begins with the
acquisition of an image or video; then, it undergoes processing, where the relevant features
are extracted, and finally, the system makes decisions according to the analysis of the results
obtained. These can be applied to object detection and classification as well as to quality
control applications. The main process of this type of system is image processing. This
usually runs on CPU, but the need to obtain better-quality and faster products has resulted
in an increase in the complexity of this type of system, requiring the integration of more
hardware for improvements in speed and efficiency. Graphic processing units (GPUs) and
FPGAs have been proposed for real-time detection [3–6].

Sensors 2024, 24, 6101. https://doi.org/10.3390/s24186101 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24186101
https://doi.org/10.3390/s24186101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0930-7418
https://orcid.org/0000-0001-9409-7736
https://orcid.org/0000-0002-2450-8349
https://doi.org/10.3390/s24186101
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24186101?type=check_update&version=2

Sensors 2024, 24, 6101 2 of 17

An objective of this work is the development of a generic library of pre-processing
image filters in FPGAs to reduce the processing time in vision systems, and consequently,
to reduce their cycle time. Additionally, an experimental setup was developed, which was
used to validate the proposed methods and compare their execution times with two other
platforms (CPU and GPU).

In this article, a state-of-the-art section is first presented (Section 2), in which references
about the three platforms under study (FPGA, CPU, and GPU) are analyzed as well as
existing industrial vision applications. Then, in Section 3, the proposed library is presented.
In Section 4, the experimental setup architecture is presented, where it is possible to have
a perception of all the modules of the project. The experimental results section presents
the results obtained regarding the processing times of the filters on the three platforms as
well as the integration of the project in a real industrial application (Section 5). Finally, the
results are discussed in Section 6, and the conclusions are given in Section 7.

2. Related Work

The need for faster processing requires the use of platforms with hardware acceler-
ation capabilities (FPGA, CPU, and GPU). In ref. [7], a study of the existing CPU, GPU,
and FPGA solutions was performed, where the high level of portability and parallelism,
flexible behavior throughout the implementation, and a potentially higher data processing
speed are given as some of the features of FPGAs that make them useful for applications
with significant data quantity and processing needs. However, their use makes the task
of developing projects more complex. Currently, FPGAs are used in diverse areas and
applications, including noise cancellation [8], embedded intelligence [9], and IoT [10].

In the area of image processing, several studies have been performed on these three
platforms in different use cases, including vision systems [11], the application of the
convolution of two masks and sum of absolute differences algorithm [12], and execution
algorithms using OpenCL [13]. In ref. [14], a comparison was made between FPGA/GPU
platforms, where their features were analyzed, while ref. [15] focused on a similar analysis
applied to FPGA and CPU platforms.

Hardware can be developed using several approaches, including HDL languages [16],
high-level synthesis [17], or OpenCL [18]. Image processing can be performed on this
platform using these three methods. In refs. [19,20], the authors used VHDL to implement
filters. In refs. [21,22], high-level synthesis was used, and in ref. [23], the authors used
OpenCL. Based on these references, it can be stated that the use of hardware descrip-
tion languages favors a faster, more flexible, and more efficient solution. However, the
development time is longer when compared to the other two solutions.

Currently, there are vision systems that use FPGAs in their constitution [24–26]. Object
detection [27,28] and classification [29] are two areas where these platforms contribute to
image pre-processing. These articles demonstrate the important role of this platform in the
vision systems to which it was applied, favoring their performance. Despite the advantages
of the use of FPGAs for image processing when using HDL, they are not widely used due
to the lack of freely available image processing libraries.

3. Proposed Library

This section presents the proposed pre-processing image library, which is composed of
10 widely used filters designed and described in VHDL. The filter’s input is an AXI-Stream
protocol bus [30] with the information of the current pixel value (RGB, gray, or binary),
its position in the frame, and a clock signal for synchronization, whereas the output is an
AXI-Stream protocol bus with the values of the processed pixels.

3.1. RGB/Gray

The RGB/Gray filter was designed to convert three component pixels (RGB) to one
(gray) [31]. To accomplish this, a mean was applied to the three component values; however,

Sensors 2024, 24, 6101 3 of 17

in VHDL, the division operator can only be used if the denominator corresponds to a power
of 2. Therefore, the following rounding equation was used (Equation (1)).

Gray Value = (R + G + B)× 171÷ 512 (1)

3.2. RGB/YCbCr

The YCbCr image format can be useful in some specific situations, such as face recogni-
tion [32,33]. To convert RGB pixels to YCbCr, the following rounding Equation (2) was used.

Y = (4× R + 8× G + 2× B + 256)÷ 16
Cb = (−2× R− 5× G + 7× B + 2048)÷ 16

Cr = (7× R− 6× G− B + 2048)÷ 16
(2)

3.3. Inverse

The inverse filter modifies the RGB value of the current pixel to its complement. If the
original pixel is dark, the processed one will be bright and vice versa. This module was
developed using Equation (3).

Inverse(R, G, B) = 255− Component(R, G, B) (3)

3.4. Brightness

To modify the brightness of RGB pixels, a reference value is added to the original pixel
value. If the reference is positive, the output pixel will be brighter; otherwise, it will be
darker. Equation (4) was used to develop the module with a condition to limit the output
values between 0 and 255.

Bright(R, G, B) = Component(R, G, B) + Re f erence (4)

3.5. Binary

A grayscale-to-binary conversion reduces the image complexity. This module has the
following behavior: if the original pixel value is greater than a predefined threshold, the
output is white (255); otherwise, it is black (zero).

3.6. Convolution Mask

About the filters already presented, the result of their application depends only and
exclusively on the pixel value to be processed. The methods described below are more
complex, since the result of their application depends on the pixel to be processed, its
neighbors, and a convolution mask. The mask chosen to implement this type of filter has a
3 × 3 dimension.

Due to the high resolution of the image captured by the camera (1920 × 1080 pixels),
the region of interest was delimited to simplify the algorithm implementation and increase
its speed.

One of the most important aspects in the development of the convolution mask
algorithm is the knowledge of the position to be processed. Sequential pixel reception, from
left to right and from top to bottom, prevents the filter from being applied immediately
after receiving the central pixel of the mask. This is because this operation depends on
neighbors that have not yet been received. Figure 1 shows a situation where it is not
possible to process the pixel with the value 35 because there are neighbors that have not
yet been received.

The algorithm works as follows: when the current pixel is in the processing region,
the convolution mask moves so that the current position is always in the bottom right
corner, allowing access to the values necessary for applying the method. Under these
conditions, the central pixel is processed and placed in the resulting image with an offset of
one row and one column from its original position. As a result, the resulting image loses its
borders and is displayed with the explained offset. Figure 2 illustrates the application of

Sensors 2024, 24, 6101 4 of 17

this method, showing the original image on the left, where the filter can be applied to the
pixel with a value of 35, and the resulting image on the right side.

Figure 1. First application scenario (the pixels received are represented in brown and those that have
not yet been received are in blue).

Figure 2. Convolution mask algorithm application (the original image is shown on the left, and the
processed image is shown on the right with the gray areas representing the unprocessed borders).

After developing the algorithm for the 3 × 3 convolution mask, modules were
implemented based on the mentioned procedure. For this purpose, registers were used to
control the filter application on each pixel (Table 1).

The “Resolution_x” and “Resolution_y” registers represent the dimensions of each
frame (1920 × 1080 pixels). The registers “Count_x” and “Count_y” indicate the current
position (horizontal and vertical) of the current pixel in the frame, as the exact location of
the pixel to be processed is required. Finally, to access the nine values of the convolution
mask, it was necessary to store the two rows preceding the current one (“Buffer_1” and
“Buffer_2”) as well as the two preceding pixels (“Buffer_3”). Since the last two columns
of each frame are not processed, the first two vectors have a dimension of 1918, while the
third buffer has only two positions.

Figure 3 shows three different situations: the filter applied to the second pixel of the
second row (left image), the third pixel of the second row (middle image), and the second
pixel of the third row (right image). From the analysis of these images, it can be concluded
that the position of the buffers in the frame must be changed as the pixel values are received
to guarantee the correct application of the method.

Figure 3. Representation of the application of the convolution mask in 3 situations (in red is repre-
sented “Buffer_1”, in green “Buffer_2”, in yellow “Buffer_3”, the current pixel in blue and the two
columns that are not processed in gray).

In order to process frames by the mentioned algorithm, it is necessary to make some
checks about the exact position of the pixel. If its location is in the neglected region, the
filter is not applied, and the buffers are updated; otherwise, the filter is applied because
the pixel is located in the region of interest. The sequential procedures for checking the
location of the current pixel in the frame are presented in Algorithm 1.

Sensors 2024, 24, 6101 5 of 17

Algorithm 1 Convolution mask algorithm

1: Resolution_x ← 1920
2: Resolution_y← 1080
3: Count_x ← 0
4: Count_y← 0
5: Bu f f er_1 [Resolution_x− 2]
6: Bu f f er_2 [Resolution_x− 2]
7: Bu f f er_3 [2]
8: if TUSER then
9: Pixel_out← Pixel_in

10: Bu f f er_1 [Count_x]← Pixel_in
11: Count_x ← Count_x + 1
12: else if Count_y = 0 then
13: Pixel_out← Pixel_in
14: BUFFER_DATA(Bu f f er_1, Count_x, Count_y)
15: else if Count_y = 1 then
16: Pixel_out← Pixel_in
17: BUFFER_DATA(Bu f f er_2, Count_x, Count_y)
18: else if Count_x = 0 then
19: Pixel_out← Pixel_in
20: Bu f f er_3 [0]← Pixel_in
21: Count_x ← Count_x + 1
22: else if Count_x = 1 then
23: Pixel_out← Pixel_in
24: Bu f f er_3 [1]← Pixel_in
25: Count_x ← Count_x + 1
26: else if Count_x = Resolution_x− 1 then
27: Pixel_out← Pixel_in
28: Bu f f er_1 [Count_x− 2]← Bu f f er_2 [Count_x− 2]
29: Bu f f er_2 [Count_x− 2]← Bu f f er_3 [0]
30: Bu f f er_3 [0]← Bu f f er_3 [1]
31: Count_x ← Count_x + 1
32: else if TLAST then
33: Pixel_out← Pixel_in
34: Bu f f er_1 [Count_x− 2]← Bu f f er_2 [Count_x− 2]
35: Bu f f er_2 [Count_x− 2]← Bu f f er_3 [0]
36: Count_x ← 0
37: Count_y← Count_y + 1
38: else
39: Pixel_out← Processed_pixel
40: Bu f f er_1 [Count_x− 2]← Bu f f er_2 [Count_x− 2]
41: Bu f f er_2 [Count_x− 2]← Bu f f er_3 [0]
42: Bu f f er_3 [0]← Bu f f er_3 [1]
43: Bu f f er_3 [1]← Pixel_in
44: Count_x ← Count_x + 1
45: end if
46: function BUFFER_DATA (Buffer, Count_x, Count_y)
47: if Count_x ̸= Resolution_x− 1 then
48: if TLAST then
49: Count_x ← 0
50: Count_y← Count_y + 1
51: else
52: Bu f f er [Count_x]← Pixel_in
53: Count_x ← Count_x + 1
54: end if
55: else
56: Count_x ← Count_x + 1
57: end if
58: end function

Sensors 2024, 24, 6101 6 of 17

Table 1. Registers and buffers used in the deve lopment of modules that use the convolution mask.

Register/Buffer Description

Resolution_x Number of pixels in each row of a frame

Resolution_y Number of pixels in each column of a frame

Count_x Horizontal position of the current pixel

Count_y Vertical position of the current pixel

Buffer_1 Contains row y-2 pixel values
(y represents the current row)

Buffer_2 Contains row y-1 pixel values

Buffer_3 Contains the values of the two previous pixels

The following subsections present a set of algorithms based on the described convolu-
tion mask.

3.7. Sobel

Edge detection techniques, such as the Sobel filter, play a crucial role in image pro-
cessing [34,35]. The developed Sobel module implements Equations (5)–(7), which are
supported by a 3 × 3 convolution mask. Note that “a”, “b”, and “c”; “d”, “e”, and “f”; and
“g”, “h”, and “i” are the three rows of the mask.

Sx(R, G, B) = (a + 2× d + g)− (c + 2× f + i) (5)

Sy(R, G, B) = (a + 2× b + c)− (g + 2× h + i) (6)

S(R, G, B) = |Sx|+ |Sy| (7)

3.8. Mean

The mean filter is a noise reduction method designed to process RGB pixels [36].
Its output value is the result of rounding the arithmetic mean including all nine values
contained in the convolution mask (3 × 3). The developed filter implements Equation (8).

Mean(R, G, B) = ∑ M(i, j) ∗ 57
512

(8)

3.9. Gaussian Filter

Another noise reduction filter is the Gaussian filter. The method can be explained in
three steps: first of all, each position of the convolution mask (Figure 4) is multiplied by the
corresponding pixel values in the image; then, all nine results are summed, and finally, the
final value is divided by 16.

Figure 4. Convolution mask used to develop the Gaussian filter module.

3.10. Erosion

The erosion filter aims to reduce noise on binary images. To develop this method,
a convolution mask composed of zeros was compared to the corresponding pixels. The
output is black (zero) if all the pixel values are equal to all mask values; otherwise, the
output pixel is white (255).

Sensors 2024, 24, 6101 7 of 17

3.11. Dilation

The dilation filter is also applied to binary images but with a different goal: instead
of reducing noise, it adds information to the image. Like the erosion filter, a convolution
mask of zeros is compared to the corresponding pixels, but the output is black (zero) if at
least one pixel value is equal to the corresponding mask value; otherwise, the output pixel
is white (255).

4. Experimental Setup

The following experimental setup was used to validate the developed pre-processing
methods and to compare three different approaches: pre-processing the image in FPGAs,
CPUs, or GPUs. In all cases, the image acquisition is performed by the FPGA. The image
processing stage can take place in the three platforms, so the original or processed data
(depending on where the pre-processing filters are applied) is transmitted from the FPGA
to the CPU via User Datagram Protocol (UDP).

A pre-processing image vision system is composed of three sequential stages: image
acquisition, image processing, and data transmission for feature extraction. To develop this
project, a hardware platform with these features was needed, so the Zybo Z7-20 [37] was
chosen because of its connectivity peripherals, video capabilities, and direct integration
with the Zybo Z7 Pcam 5C demo from Digilent (Pullman, WA, USA) [38]. The Zybo Z7-20
has the following specifications: ZYNQ processor (667 MHz dual-core Cortex-A9 processor;
DDR3L memory controller with 8 DMA channels and 4 high-performance AXI3 slave ports;
and high-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, and secure digital input
output), memory (1 GB DDR3L with 32-bit bus @ 533 MHz), Ethernet (Gigabit Ethernet
PHY5), 3200 Look-up Tables, 106400 Flip-Flops, and 630 KB for Block RAM.

4.1. Architecture

Three architectures have been developed, each executing the pre-processing block
on one of the platforms mentioned above. Figure 5 illustrates the placement of each
pre-processing module within the respective architectures. To clarify the execution respon-
sibility of each platform, four distinct line styles are used: solid lines represent blocks
executed by all platforms, dotted lines indicate FPGA modules, short dashed lines denote
GPU blocks, and long dashed lines correspond to CPU blocks.

Figure 5. Pre-processing module location in each architecture.

Considering the case where the pre-processing is completed in the FPGA, the video
captured by the camera is filtered pixel by pixel in real time, and then the processed frame
is sent to the CPU to be stored in memory. In the other two cases (CPU and GPU), the
image captured by the camera is received and stored in the CPU memory without any
type of processing, and then filters are applied to it in the CPU or GPU. In conclusion,
the pre-processing block uses a different approach depending on the platform where it is

Sensors 2024, 24, 6101 8 of 17

executed: in the FPGA, the module receives, processes, and returns a pixel in real time,
which is unlike the other two platforms where the image pixels are read from the memory,
processed, and updated.

4.2. Zybo Z7 Pcam 5C Demo

The Zybo Z7 Pcam 5C design receives real-time data from the camera (Pcam 5C) via
MIPI protocol and streams it out through the HDMI TX port. Zybo Z7-20 includes a UART
module used by the user to configure some image sensor definitions (resolution, image
format, and gamma correction factor value) and hardware IP cores.

The circuit is based on the AXI4-Stream protocol [30] to transmit the received pixel
values to the HDMI TX port. This protocol is characterized by master/slave communication
and is composed of several signals to ensure the correct behavior between modules. The
TDATA signal has 24 bits and represents the RGB pixel value (each component has 8 bits).
The binary signals TVALID and TREADY are responsible for the correct communication
between two modules; the first one indicates if a master has data to transmit, while the
second one indicates if one slave is ready to receive information from the corresponding
master. The TUSER signal indicates if the current pixel is in the first position of the frame
(top left corner), and the TLAST signal indicates if the current pixel is in the last row of
the frame.

The hardware part of the demo can be divided into four sections: image acquisition,
gamma correction, connection to the Zynq processing system, and data streaming via
HDMI. Image acquisition is handled by two modules that convert the received RAW data
to AXI4-Stream buses. The gamma correction stage is characterized by the conversion from
of RAW RGB to RGB pixels with 24 bits each (values ranging from 0 to 255 per component)
as well as the application of a gamma correction factor (1/1.8) that influences the input
data brightness (Figure 6). The connection with the Zynq processing system is made by
a VDMA IP that has two main functions: to store three Full HD frames (1920 × 1080p)
on a DDR memory to be accessed by the Zynq processing system (circular buffer) and to
transmit the AXI4-Stream bus to the HDMI section (Figure 7). The last stage is responsible
for streaming the data out through HDMI; this process is performed by four modules that
generate HDMI control signals, synchronize, and stream the output value (RGB pixel).

To integrate this demo into the current project, some modifications were made. Pre-
processing filters were added between the gamma correction stage and the VDMA module
to process the input video. Additionally, instead of storing three frames in the DDR memory,
ten frames were stored to ensure the correct transmission of frames to the CPU.

Figure 6. Image acquisition and gamma correction modules.

Sensors 2024, 24, 6101 9 of 17

Figure 7. VDMA and Zynq processing modules.

4.3. Frame Transmission

To validate the developed filters on the FPGA, as well as to enable the application
of CPU/GPU pre-processing algorithms, and finally to allow the integration into a real
industrial vision system, a frame transmission/reception process from the FPGA to CPU
based on Ethernet protocol (UDP) was implemented.

The process of transmitting frames to the CPU was implemented in C language using
the Vivado SDK software (version: 2016.4) and then integrated into the demo that served
as the project’s base architecture. Since the VDMA IP core stores frames in DDR memory
(accessed by the Zynq processing system), a pointer variable was used to access all positions
and send its values to the CPU. Given that each frame has a resolution of 1920× 1080 pixels
(2,073,600 bytes considering a grayscale image) and that each row of the frame was divided
into three packets of 640 bytes, a total of 3240 UDP packets were required to transmit a
single frame from the FPGA to the CPU.

The data buffer to be sent is 1440 bytes long. The first two positions contain the packet
number (ranging from 0 to 3239), the next 640 positions contain the pixel values to be
transmitted, and the remaining positions are unused.

With the frame transmission implemented, a C# 4.0 application was developed to
receive the frames on the CPU. The image reception process can be described as follows:
first, an image and the corresponding pointer are created; then, the UDP server is started,
which receives information in real time. As the UDP protocol does not guarantee the
correct ordering of the sent packets, a check is performed to disregard out-of-order packets.
When a packet is correctly received, the pixel values are placed in the image created at the
beginning of the process, and the pointer is incremented until the image is complete. At the
end of the frame, the pointer is reset, and the same process is repeated for the next frame.

5. Experimental Results

After developing and integrating the filters into the Zybo Z7 Pcam 5C demo, an
industrial vision system was created. Processing times were collected and compared to
CPU- and GPU-based implementations.

5.1. Filters Results

This subsection presents some results from the application of the developed filters
(Figures 8–10). The original image was captured by the PCAM 5C camera, processed by
the developed modules implemented on the FPGA, and then transmitted and stored in the
CPU memory.

Sensors 2024, 24, 6101 10 of 17

Figure 8. Application of the RGB/Gray conversion (original image on the left and the processed
image on the right).

Figure 9. Application of the RGB/YCbCr conversion (original image on the left and the processed
image on the right).

Figure 10. Application of the Sobel filter (original image on the left and the processed image on the right).

5.2. Filters Processing Time

The processing time of each filter was measured on three different platforms: FPGA,
GPU, and CPU. For the FPGA, the execution time was measured by the clock signal
frequency and the number of cycles required to apply the filter (Equation (9)). Table 2
shows the measured times for all developed methods.

FPGA Processing Time =
Clock Cycles per Filter

Clock Frequency
(9)

Table 2. Processing times for the methods developed on the FPGA.

Developed
Methods

Time
(ns)

Clock
Cycles

RGB/Gray 10 1

RGB/YCbCr 10 1

Inverse 10 1

Brightness 10 1

Binary 10 1

Sobel 60 6

Mean 40 4

Gaussian 30 3

Erosion 10 1

Dilation 10 1

For CPU and GPU processing, the same 10 filters were implemented through the
equations mentioned in the previous section, which were followed by the measure of the
full application period of the algorithms, i.e., the time per frame. This was used to calculate
the processing time of a pixel (Equation (10)). Note that the CPU implementation was
based on the C# 4.0 language using the EmguCV library, and the GPU implementation
made done using Numba Python GPU (version 0.57.0) in a Ubuntu operating system.

Sensors 2024, 24, 6101 11 of 17

GPU/CPU Processing Time =
Total Time

Frame Resolution
(10)

To obtain more accurate results, 30 samples were measured, and the mean time and
the fastest time were calculated. The results related to GPU processing times are presented
in Table 3, and the results related to CPU processing times are presented in Table 4.

Throughout the FPGA implementation process, detailed resource utilization, includ-
ing Look-Up Tables (LUTs), Flip-Flops (FFs), Look-Up Table Random Access Memory
(LUTRAM), and Block Random Access Memory (BRAM), was carefully examined to mea-
sure the efficiency of the design. The usage of these key resources was closely monitored
to ensure the optimal performance and effective use of the FPGA architecture. Table 5
summarizes the results and provides a quantitative breakdown of resource consumption
where each BRAM unit can store 36 Kb.

Table 3. Processing times for the methods on the GPU.

Time per

Frame (ms)

Time per

Pixel (ns)

Methods Mean Faster Mean Faster

RGB/Gray 0.092 0.066 0.044 0.032

RGB/YCbCr 0.091 0.065 0.044 0.031

Inverse 0.094 0.064 0.046 0.031

Brightness 0.090 0.067 0.044 0.032

Binary 0.092 0.068 0.044 0.033

Sobel 0.088 0.066 0.042 0.032

Mean 0.086 0.064 0.041 0.031

Gaussian 0.090 0.064 0.043 0.031

Erosion 0.087 0.065 0.042 0.031

Dilation 0.085 0.063 0.041 0.030

Table 4. Processing times for the methods on the CPU.

Time per

Frame (ms)

Time per

Pixel (ns)

Methods Mean Faster Mean Faster

RGB/Gray 13.87 10.99 6.69 5.30

RGB/YCbCr 19.70 18.99 9.50 9.16

Inverse 7.46 7.01 3.60 3.38

Brightness 17.23 16.01 8.31 7.72

Binary 5.37 5.00 2.59 2.41

Sobel 101.19 79.00 48.80 38.10

Mean 83.67 80.99 40.35 39.06

Gaussian 54.81 53.00 26.43 25.56

Erosion 11.07 9.99 5.34 4.82

Dilation 18.48 18.00 8.91 8.68

Sensors 2024, 24, 6101 12 of 17

Table 5. FPGA resource usage.

Developed
Methods

LUT
(Units)

LUTRAM
(Units)

FF
(Units)

BRAM
(Units)

RGB/Gray 15 0 4 0

RGB/YCbCr 145 0 28 0

Inverse 26 0 27 0

Brightness 29 0 28 0

Binary 2 0 27 0

Sobel 3052 1920 547 4.5

Mean 4087 2880 336 4.5

Gaussian 4205 2880 367 4.5

Erosion 2951 2160 168 0

Dilation 2972 2160 154 0

5.3. Industrial Application

After developing an image pre-processing system on the FPGA, it was integrated into
an innovation project (CheckMate) for industrial vision-based quality inspection, which
was carried out by Introsys [39]. The project architecture includes a guided platform
with a collaborative robot equipped with a gripper to carry out the quality inspection of
several specific characteristics of the car. One of the use cases is the visual evaluation of
the displacement and rotation of the dashboard buttons after the assembly process. This
task is time-critical for its viability in the final assembly line of car manufacturers, where
reducing the processing time can reduce the number of quality control stations and thus
significantly reduce costs.

To identify the defects, a sequence of filters was developed to highlight and detect
edges. The filters used in sequence were RGB/Gray, Sobel, Binary, and Inverse, as presented
in Figure 11. The first one, which receives data from the AXI gamma correction module,
converts an image with three channels into a single channel. The second filter highlights
the edges in the grayscale images. The following module converts the grayscale image
to black and white (where edges are highlighted in white). Finally, to obtain black edges,
the inverse filter was used. The output of the inverse filter is connected to the AXI VDMA
module. It is important to note that to implement this sequence, it was required to reduce
the clock frequency from 150 to 100 MHz to ensure the required signal propagation delays.

Figure 11. The filters used in the developed industrial application.

To compare the performance of the FPGA, GPU and CPU, the pre-processing was
performed on the FPGA (in VHDL); CPU and GPU (direct implementation in C# of the
algorithms designed in VHDL); CPU (using Halcon 18.11 [40]); and CPU (using OpenCV).
An image resulting from the FPGA implementation is shown in Figure 12, while the
processing times are presented in Table 6. Note that the execution time of the RGB to gray
conversion is not included in Table 6. This is because the RGB to gray conversion was only
implemented in the FPGA to ensure that the same frame was processed in the CPU and
the GPU.

Sensors 2024, 24, 6101 13 of 17

Figure 12. An image resulting from the integration of the present project in a real industrial vision
system (original image on the left and the processed image on the FPGA on the right).

Table 6. Processing times of the filter sequen ce used on different platforms (FPGA, GPU, CPU).

Platform Time per
Pixel (ns)

Time per
Frame (ms)

FPGA 80 -

Equations used
on FPGA (CPU) 55.6109 115.3149

Equations used
on FPGA (GPU) 0.1667 0.3458

Halcon (CPU) 14.5828 30.2389

OpenCV (CPU) 17.9598 37.2415

6. Discussion

This section presents a discussion related to the execution times of each filter on
the three platforms under study as well as their processing times when integrated into a
real application.

6.1. Developed Algorithms

To understand the comparisons between the three platforms, it is necessary to keep
in mind that the application of filters by the FPGA takes place in real time; i.e., as soon
as the pixel values are received, they are immediately processed. On the other hand, in
the CPU/GPU, the processing was completed by applying the filter to an image already
stored in memory. Regarding the GPU, it should be noted that the total processing time
of an image is equal to the sum of the transmitting time of the two images between the
CPU and the GPU (original and processed) in addition to the time required to apply the
filter. Specifically, it takes 3.3 ms to send the original image to the GPU and 5.5 ms to send
the processed image back to the CPU. Thus, 8.8 ms is required just for image transmission
between the two platforms before applying a filter on the GPU.

The computer used for GPU processing has the following specifications: Intel i7-
8750H CPU @ 2.20GHz*12 with 12 cores (Intel, Santa Clara, CA, USA), 16 GB memory
RAM, and NVIDIA GeForce GXT 1060 (NVIDIA, Santa Clara, CA, USA), on the Ubuntu
20.04 operating system.

When comparing the performance of the FPGA and CPU in terms of time per pixel, the
CPU generally gives better results except for the mean processing time of the uniform mean
filter. However, when considering the entire frame and the fact that the FPGA applies filters
in real time, the processing delay for a frame on the FPGA is proportional to the delay for a
single pixel. For example, in the RGB/Gray method, applying the filter delays each pixel by
1 clock cycle (10 ns). As a result, the entire frame is delayed by only 1 clock cycle because
it is processed immediately after the pixel is received. Therefore, when comparing frame
processing times, the FPGA achieves significantly better results with delays on the order
of nanoseconds compared to the milliseconds required by the CPU . This demonstrates
that the FPGA offers superior real-time processing performance due to its shorter delay
period. The computer (LAPTOP-C08RVMIO) used to develop the CPU algorithms has the
following specifications: Windows 10 Home, Intel(R) Core(TM) processor i7-8550U CPU @
1.80 GHz 2.00 GHz (4 cores), 16 GB of RAM, and 256 GB of SSD memory.

When comparing the performance between the FPGA and the GPU for image pre-
processing, the FPGA only delays each frame by a maximum of 6 clock cycles (60 ns)

Sensors 2024, 24, 6101 14 of 17

at a clock frequency of 100 MHz (Sobel filter), while the GPU implementation requires
approximately 8.8 ms to process an image regardless of the filter used. From these results,
it is possible to conclude that in this specific situation, FPGA image pre-processing is more
efficient than GPU image pre-processing .

Considering the results obtained between the CPU and GPU, it is possible to verify
that the GPU filter execution per frame and pixel is much faster than that of the CPU;
however, the sending and receiving time of images between the two platforms must be
considered (8.8 ms). Taking this into account and considering the processing of a full frame,
it is possible to affirm that all methods except binary and inverse are executed faster on
the GPU.

The power consumption of the used platforms (FPGA, CPU, and GPU) is shown
in Table 7. The results clearly show that the FPGA is the most power-efficient option ,
consuming between 1 and 5 watts. In contrast, the GPU power consumption is significantly
higher, ranging from 10 to 125 watts, while CPU power consumption is relatively moderate,
but still higher than FPGA, at approximately 15 watts. In conclusion, this analysis highlights
the superior power efficiency of the FPGA when compared to the other platforms.

Table 7. Power consumption of the three use d platforms (FPGA, CPU, and GPU) in Watts.

Platform Power
Consumption (W)

FPGA 1–5

CPU 15

GPU 10–125

To conclude, in terms of resource usage, and because the language used is VHDL, the
methods developed are adaptable and can be implemented in any FPGA that meets the
required resource specifications. This flexibility ensures compatibility across different FPGA
architectures, allowing versatile and efficient use in different hardware environments.

6.2. CheckMate Integration

Regarding the integration into the Checkmate system, the processing time was also
measured on the three platforms: FPGA, CPU (Halcon), CPU (OpenCV), and through
the equations developed in VHDL (CPU/GPU). In the FPGA, each frame is delayed by
8 clock cycles, i.e., 80 ns. Considering that the CPU processing is not performed in real
time, the time per frame obtained by using the Halcon tool is 30.2389 ms, while that
obtained by using the OpenCV library functions is 37.2415 ms, and that by implementing
the equations implemented in the FPGA is 115.3149 ms. Note that the methods of the
Halcon tool and OpenCV library process the borders, which does not happen in the FPGA
implementation. Regarding the times measured on the GPU and considering the 8.8 ms of
image transmission between the CPU and GPU, it is possible to verify that the execution
time on this platform was approximately 9 ms.

The results show that the CPU and GPU implementations are more efficient when
comparing the processing time per pixel. However, when considering the real-time pro-
cessing per frame, the FPGA achieves better results. In this scenario, each frame is delayed
by only 8 clock cycles (80 ns) for processing, while using the Halcon tool (fastest result
on CPU) requires 30.2389 ms, and the GPU requires 9 ms for sequence application. It can
be concluded that image pre-processing on an FPGA offers clear advantages in terms of
processing time compared to CPU and GPU implementations.

7. Conclusions

In this work, a pre-processing image library of 10 filters has been developed in VHDL
for FPGAs, which despite their known advantages are not widely used in industrial
vision systems. To apply and validate the developed filters, an experimental setup has been

Sensors 2024, 24, 6101 15 of 17

developed based on the Zybo Z7 Pcam 5C demo project, which includes the implementation
of a frame transmission over Ethernet.

A real-time image pre-processing system was successfully developed, allowing filter
validation and integration into industrial vision applications. The results were validated by
comparing images processed on an FPGA, CPU, and GPU. The processing times measured
on three platforms show that FPGA execution is faster than both CPU and GPU. FPGA
processing times are on the order of nanoseconds, while the other platforms have times
in the order of milliseconds. It can also be concluded that the use of the GPU is only
advantageous when the number of sequential filters is high. Under these circumstances,
the FPGA is advantageous.

It is important to note that the equations presented in this paper can be easily specified
in synthesizable HDL (VHDL or Verilog) code and that the developed convolution mask
algorithm is described in detail to support its implementation also in HDL code.

In future work, filters will be optimized to reduce the number of clock cycles and
possibly the circuit area. Frame transmission to the CPU can be more efficient, e.g., image
reception. Finally, the library will be extended by implementing more methods.

Author Contributions: Conceptualization, F.M., M.G. and P.D.; Funding acquisition, M.G. and P.D.;
Investigation, D.F., F.M. and J.P.M.-C.; Methodology, D.F., F.M., J.P.M.-C., M.G. and P.D.; Project
administration, M.G. and P.D.; Resources, F.M., M.G. and P.D.; Software, D.F. and J.P.M.-C.; Supervi-
sion, F.M., M.G. and P.D.; Validation, D.F. and J.P.M.-C.; Writing—original draft, D.F. and J.P.M.-C.;
Writing—review and editing, F.M., M.G. and P.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was financed by the Portuguese Agency FCT (Fundação para a Ciência e Tecnolo-
gia) in the framework of projects UIDB/00066/2020, UIDB/04111/2020 and CEECINST/00147/2018/
CP1498/CT0015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Authors Diogo Ferreira, Magno Guedes and Pedro Deusdado were employed
by the company INTROSYS SA. The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Ebayyeh, A.A.R.M.A.; Mousavi, A. A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in

Electronics Industry. IEEE Access 2020, 8, 183192–183271. [CrossRef]
2. Chisholm, T.; Lins, R.; Givigi, S. FPGA-Based Design for Real-Time Crack Detection Based on Particle Filter. IEEE Trans. Ind.

Inform. 2020, 16, 5703–5711. [CrossRef]
3. Silva, B.A.d.; Lima, A.M.; Arias-Garcia, J.; Huebner, M.; Yudi, J. A Manycore Vision Processor for Real-Time Smart Cameras.

Sensors 2021, 21, 7137. [CrossRef] [PubMed]
4. Soubervielle-Montalvo, C.; Perez-Cham, O.E.; Puente, C.; Gonzalez-Galvan, E.J.; Olague, G.; Aguirre-Salado, C.A.; Cuevas-Tello,

J.C.; Ontanon-Garcia, L.J. Design of a Low-Power Embedded System Based on a SoC-FPGA and the Honeybee Search Algorithm
for Real-Time Video Tracking. Sensors 2022, 22, 1280. [CrossRef] [PubMed]

5. Rodríguez-Araújo, J.; Rodríguez-Andina, J.J.; Fariña, J.; Chow, M.-Y. Field-Programmable System-on-Chip for Localization of
UGVs in an Indoor iSpace. IEEE Trans. Ind. Inform. 2014, 10, 1033–1043. [CrossRef]

6. Čížek, P.; Faigl, J. Real-Time FPGA-Based Detection of Speeded-Up Robust Features Using Separable Convolution. IEEE Trans.
Ind. Inform. 2018, 14, 1155–1163. [CrossRef]

7. Bhowmik, D.; Appiah, K. Embedded vision systems: A review of the literature. In Proceedings of the Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10824 LNCS, Santorini,
Greece, 2–4 May 2018; pp. 204–216._17. [CrossRef]

8. Ezilarasan, M.R.; Britto Pari, J.; Leung, M.F. Reconfigurable Architecture for Noise Cancellation in Acoustic Environment Using
Single Multiply Accumulate Adaline Filter. Electronics 2020, 12, 810. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3029127
http://dx.doi.org/10.1109/TII.2019.2950255
http://dx.doi.org/10.3390/s21217137
http://www.ncbi.nlm.nih.gov/pubmed/34770444
http://dx.doi.org/10.3390/s22031280
http://www.ncbi.nlm.nih.gov/pubmed/35162025
http://dx.doi.org/10.1109/TII.2013.2294112
http://dx.doi.org/10.1109/TII.2017.2764485
http://dx.doi.org/10.1007/978-3-319-78890-6_17
http://dx.doi.org/10.3390/electronics12040810

Sensors 2024, 24, 6101 16 of 17

9. Seng, K.P.; Lee, P.J.; Ang, L.M. Embedded Intelligence on FPGA: Survey, Applications and Challenges. Electronics 2021, 10 , 895.
[CrossRef]

10. Dinh, T.P.; Pham-Quoc, C.; Thinh, T.N.; Do, Nguyen, B.K.; Kha, P.C. A flexible and efficient FPGA-based random forest architecture
for IoT applications. Internet Things 2023, 22, 100813. [CrossRef]

11. Asano, S.; Maruyama, T.; Yamaguchi, Y. Performance comparison of FPGA, GPU and CPU in image processing. In Proceedings of
the FPL 09: 19th International Conference on Field Programmable Logic and Applications (2009), Prague, Czech Republic, 31
August–2 September 2009; pp. 126–131. [CrossRef]

12. Fowers, J.; Brown, G.; Cooke, P.; Stitt, G. A performance and energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, USA, 22–24 February 2012; pp. 47–56

13. Chen, D.; Singh, D. Fractal video compression in OpenCL: An evaluation of CPUs, GPUs, and FPGAs as acceleration platforms.
In Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC (2013), Yokohama, Japan, 22–25 January
2013; pp. 297–304. [CrossRef]

14. HajiRassouliha, A.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M. Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs)
for computer vision and image processing algorithms. Signal Process. Image Commun. 2018, 68, 101–119. [CrossRef]

15. Rakvic, R.N.; Ngo, H.; Broussard, R.P.; Ives, R.W. Comparing an FPGA to a cell for an image processing application. In Eurasip
Journal on Advances in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2010; p. 764838 . [CrossRef]

16. Areibi, S.; Bld, A.T. A First Look at VHDL For Digital Design; Technical Report 2023-01P ; School of Engineering at the University of
Guelph: Guelph, ON, Canada, 2019

17. Coussy, P.; Gajski, D.D.; Meredith, M.; Takach, A. An introduction to high-level synthesis. IEEE Des. Test Comput. 2009, 26, 8–17.
[CrossRef]

18. Zohouri, H.R. High Performance Computing with FPGAs and OpenCL. arXiv 2018, arXiv:1810.09773 .
19. Sghaier, A.; Douik, A.; Machhout, M. FPGA implementation of filtered image using 2D Gaussian filter. Int. J. Adv. Comput. Sci.

Appl. 2016, 7 , 514–520. [CrossRef]
20. Linares-Barranco, A.; Perez-Peña, F.; Moeys, D.P.; Gomez-Rodriguez, F.; Jimenez-Moreno, G.; Liu, S.C.; Delbruck, T. Low Latency

Event-Based Filtering and Feature Extraction for Dynamic Vision Sensors in Real-Time FPGA Applications. IEEE Access 2019, 7,
134926–134942. [CrossRef]

21. O’Loughlin, D.; Coffey, A.; Callaly, F.; Lyons, D.; Morgan, F. Xilinx vivado high level synthesis: Case studies. In Proceedings
of the 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and
Communications Technologies (ISSC 2014/CIICT 2014), Limerick, Ireland, 26–27 June 2014 ; pp. 352–356. [CrossRef]

22. Cortes, A.; Velez, I.; Irizar, A. High level synthesis using Vivado HLS for Zynq SoC: Image processing case studies. In Proceedings
of the 2016 Conference on Design of Circuits and Integrated Systems, DCIS 2016-Proceedings (2017), Granada, Spain, 23–25
November 2016; pp. 183–188. [CrossRef]

23. Hill, K.; Craciun, S.; George, A.; Lam, H. Comparative analysis of OpenCL vs HDL with image-processing kernels on Stratix-V
FPGA. In Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors 2015-Septe
(2015), Toronto, ON, Canada, 27–29 July 2015; pp. 189–193. [CrossRef]

24. Cambuim, L.F.; Oliveira, L.A., Jr.; Barros, E.N.; Ferreira, A.P. An FPGA-based real-time occlusion robust stereo vision system
using semi-global matching. In Journal of Real-Time Image Processing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1447–1468.

25. Suresh, P.; Saravanakumar, U.; Iwendi, C.; Mohan, S.; Srivastava, G. Field-programmable gate arrays in a low power vision
system. Comput. Electr. Eng. 2021, 90, 106996. [CrossRef]

26. Peng, W.; Xie, J.; Gu, Z.; Liao, Q.; Huang, X. A high performance real-time vision system for curved surface inspection. Optik
2021, 232, 166514. [CrossRef]

27. Ashir, A.M.; Ata, A.A.; Salman, M.S. FPGA-based image processing system for Quality Control and Palletization applications. In
Proceedings of the 2014 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2014 (2014),
Espinho, Portugal, 14–15 May 2014; pp. 285–290. [CrossRef]

28. Guo, H.; Xiao, H.; Wang, S.; He, W.; Yuan, K. Real-time detection and classification of machine parts with embedded system for
industrial robot grasping. In Proceedings of the IEEE International Conference on Mechatronics and Automation, ICMA, Beijing,
China, 2–5 August 2015; pp. 1691–1696. [CrossRef]

29. Hocenski, Ž.; Aleksi, I.; Mijaković, R. Ceramic tiles failure detection based on FPGA image processing. In Proceedings of the IEEE
International Symposium on Industrial Electronics—ISlE, Seoul, Republic of Korea, 5–8 July 2009; pp. 2169–2174. [CrossRef]

30. Xilinx. AXI Reference Guide; Xilinx: San Jose, CA, USA, 15 June 2017.
31. Khudhair, Z.N.; Khdiar, A.N.; El Abbadi, N.K.; Mohamed, F.; Saba, T.; Alamri, F.S.; Rehman, A. Color to Grayscale Image

Conversion Based on Singular Value Decomposition. IEEE Access 2023, 11, 54629–54638. [CrossRef]
32. Kim, N.H.; Yu, S.G.; Kim, S.E.; Lee, E.C. Non-Contact Oxygen Saturation Measurement Using YCgCr Color Space with an RGB

Camera. Sensors 2021, 21, 6120. [CrossRef] [PubMed]
33. Baker, E.J.; Majeed, A.A.; Alazawi, S.A.; Kasim, S.; Hassan, R.; Zakaria, N.H.; Sutikno, T. Video steganography using 3D distance

calculator based on YCbCr color components. Indones. J. Electr. Eng. Comput. Sci. 2021, 24, 831. [CrossRef]
34. Zhou, Y.; Fu, X. Research on the combination of improved Sobel operator and ant colony algorithm for defect detection. In

MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 336, p. 10009.

http://dx.doi.org/10.3390/electronics10080895
http://dx.doi.org/10.1016/j.iot.2023.100813
http://dx.doi.org/10.1109/FPL.2009.5272532
http://dx.doi.org/10.1109/ASPDAC.2013.6509612
http://dx.doi.org/10.1016/j.image.2018.07.007
http://dx.doi.org/10.1155/2010/764838
http://dx.doi.org/10.1109/MDT.2009.69
http://dx.doi.org/10.14569/IJACSA.2016.070771
http://dx.doi.org/10.1109/ACCESS.2019.2941282
http://dx.doi.org/10.1049/cp.2014.0713
http://dx.doi.org/10.1109/DCIS.2016.7845376
http://dx.doi.org/10.1109/ASAP.2015.7245733
http://dx.doi.org/10.1016/j.compeleceng.2021.106996
http://dx.doi.org/10.1016/j.ijleo.2021.166514
http://dx.doi.org/10.1109/ICARSC.2014.6849800
http://dx.doi.org/10.1109/ICMA.2015.7237740
http://dx.doi.org/10.1109/ISIE.2009.5219911
http://dx.doi.org/10.1109/ACCESS.2023.3279734
http://dx.doi.org/10.3390/s21186120
http://www.ncbi.nlm.nih.gov/pubmed/34577326
http://dx.doi.org/10.11591/ijeecs.v24.i2.pp831-842

Sensors 2024, 24, 6101 17 of 17

35. Tang, X.; Wang, X.; Hou, J.; Wu, H.; Liu, D. An improved Sobel face gray image edge detection algorithm. In Proceedings of the
2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 6639–6643.

36. Zhi, S.; Cui, Y.; Deng, J.; Du, W. An FPGA-based simple RGB-HSI space conversion algorithm for hardware image processing.
IEEE Access 2020, 8, 173838–173853. [CrossRef]

37. Zybo Z7—Digilent Reference. Available online: https://digilent.com/reference/programmable-logic/zybo-z7/start (accessed
on 30 October 2021).

38. Zybo Z7 Pcam 5C Demo. Available online: https://digilent.com/reference/learn/programmable-logic/tutorials/zybo-z7-pcam-
5c-demo/start (accessed on 30 October 2021).

39. Introsys, S.A. Available online: https://www.introsys.eu (accessed on 11 November 2021).
40. Halcon. Available online: https://www.mvtec.com/products/halcon (accessed on 20 October 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3026189
https://digilent.com/reference/programmable-logic/zybo-z7/start
https: //digilent.com/reference/learn/programmable-logic/tutorials/zybo-z7-pcam-5c-demo/start
https: //digilent.com/reference/learn/programmable-logic/tutorials/zybo-z7-pcam-5c-demo/start
https://www.introsys.eu
https://www.mvtec.com/products/halcon

	Introduction
	Related Work
	Proposed Library
	RGB/Gray
	RGB/YCbCr
	Inverse
	Brightness
	Binary
	Convolution Mask
	Sobel
	Mean
	Gaussian Filter
	Erosion
	Dilation

	Experimental Setup
	Architecture
	Zybo Z7 Pcam 5C Demo
	Frame Transmission

	Experimental Results
	Filters Results
	Filters Processing Time
	Industrial Application

	Discussion
	Developed Algorithms
	CheckMate Integration

	Conclusions
	References

