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Abstract: Accurate crop disease classification is crucial for ensuring food security and enhancing
agricultural productivity. However, the existing crop disease classification algorithms primarily focus
on a single image modality and typically require a large number of samples. Our research counters
these issues by using pre-trained Vision–Language Models (VLMs), which enhance the multimodal
synergy for better crop disease classification than the traditional unimodal approaches. Firstly, we
apply the multimodal model Qwen-VL to generate meticulous textual descriptions for representative
disease images selected through clustering from the training set, which will serve as prompt text
for generating classifier weights. Compared to solely using the language model for prompt text
generation, this approach better captures and conveys fine-grained and image-specific information,
thereby enhancing the prompt quality. Secondly, we integrate cross-attention and SE (Squeeze-and-
Excitation) Attention into the training-free mode VLCD(Vision-Language model for Crop Disease
classification) and the training-required mode VLCD-T (VLCD-Training), respectively, for prompt text
processing, enhancing the classifier weights by emphasizing the key text features. The experimental
outcomes conclusively prove our method’s heightened classification effectiveness in few-shot crop
disease scenarios, tackling the data limitations and intricate disease recognition issues. It offers a
pragmatic tool for agricultural pathology and reinforces the smart farming surveillance infrastructure.

Keywords: few-shot learning; crop disease classification; vision–language models; attention mechanisms

1. Introduction

In the era of rapid advancements in agricultural technology, the capability to swiftly
and accurately classify and identify crop diseases emerges as a cornerstone in safeguarding
food security and propelling productivity enhancements. The traditional manual diag-
nosis methods, being time-consuming and prone to subjective biases, have given way to
computer-assisted automated classification techniques. The early automated classification
methods heavily relied on digital image processing and conventional machine learning
algorithms [1], which are highly dependent on expert knowledge and extensive sample
validation, thereby limiting their efficacy in complex field environments.

The advent of deep learning has prompted researchers to adopt deep neural network
models that directly input images for disease classification [2]. This innovation not only
simplifies background noise handling but also eliminates the need for manual layer-by-
layer design and feature extraction, significantly economizing the resources and enhancing
the accuracy in complex disease recognition scenarios. Deep learning models typically
necessitate large quantities of labeled training data. However, in agriculture, acquiring and
annotating crop disease images is arduous and costly. This scarcity in training samples
hampers the widespread adoption of these methods. Moreover, the prevailing research
predominantly focuses on unimodal image analysis, overlooking the vast potential of
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multimodal information in enhancing model generalizability and accuracy, especially
with limited samples available. This oversight becomes particularly striking in intricate
agricultural disease identification. Given the subtle differences between similar disease
manifestations and the need for robust performance under different real-world conditions,
new analytical strategies are required to solve this issue. Our work aims to bridge this gap
by harnessing the potential of integrating image and text modalities, thus overcoming the
limitations of the current unimodal approaches in accurately identifying complex diseases
with limited data.

Recently, pre-trained VLMs have made significant strides in Computer Vision, offering
a groundbreaking approach to tackle the few-shot classification challenges in this field [3].
By integrating both image and text data, VLMs excel at understanding and representing
complex semantic content by jointly modeling images and their corresponding textual
descriptions, thereby enhancing the generalizability in few-shot learning. Compared to
the conventional unimodal image analysis techniques, VLMs can simultaneously consider
both image and text data, enhancing the semantic correlation between them and thereby
improving the richness and distinctiveness of the features. In natural image domains, espe-
cially in few-shot scenarios, pre-trained VLMs on large-scale datasets have demonstrated
remarkable cross-domain transferability [4]. Nevertheless, their application in specialized
image contexts, like crop disease, remains unknown.

This study is dedicated to innovatively enhancing the few-shot crop disease classi-
fication accuracy by incorporating pre-trained VLMs. Broadly speaking, we establish a
framework named VLCD (Vision–Language model for Crop Disease classification) for
few-shot crop leaf disease classification by introducing Qwen-VL [5] and CLIP (Contrastive
Language–Image Pre-training) [3], combining image information and attention mecha-
nisms. Specifically, considering that different crop leaf diseases have different color texture
visual characteristics, we first select representative samples from each category based on
the image color and texture features. Next, we employ Qwen-VL to generate detailed text
descriptions for these representative images, serving as prompt texts, which will be input
to CLIP’s text encoder to extract the text features. Leveraging image information in prompt
text generation enables the effective capture of subtle disease characteristics and crucial
details. To further optimize the text features, we utilize cross-attention in the training-free
VLCD to integrate multiple prompt text vectors for each category (i.e., intra-class prompt
text vectors) and employ SE Attention in the training-required VLCD-T (VLCD-Training)
to process the prompt text vectors between different categories (i.e., inter-class prompt text
vectors) to highlight the key text features. These text vectors ultimately serve as the final
classifier weights. Additionally, to shorten the training period, we employ the key-value
cache model [6] and the Prior Refinement module [7] to fine-tune CLIP, adapting to the
agricultural domain. The empirical results demonstrate the excellent performance of our
method in few-shot crop leaf disease classification. Our method offers a fresh perspective
to alleviate data scarcity and improve the agricultural disease classification in few-shot sce-
narios. With reference to the ongoing debate regarding model-centric AI and data-centric
AI [8], our work belongs to the category of model-centric AI, highlighting the significance
of further developing model-centric approaches [9].

The main contributions of this study are as follows:

1. Enhancing few-shot crop leaf disease classification accuracy by multimodal integration:
By fine-tuning CLIP, we integrate image and text information, providing a paradigm
for the development of multimodality in the agricultural field. The experimental
results show that our method exhibits excellent classification performance in few-shot
scenarios, effectively solving the challenge of data scarcity.

2. Fine-grained disease feature description driven by VLM: We innovatively leverage
Qwen-VL’s fine-grained recognition to generate detailed textual descriptions of crop
diseases as prompt texts from a set of infected crop leaf images to assist in generating
discriminative classifier weights. This enhances the model’s sensitivity and accuracy
in identifying complex diseases from the images of infected crop leaves.
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3. Enhancing key textual features by cross-attention and SE Attention: In the process
of processing prompt texts, we use cross-attention and SE Attention, respectively,
in the training-free and training-required modes to guide the model’s attention to
important textual features. By dynamically adjusting the weights of crucial prompt
texts’ features, we effectively improve the quality of the model’s classification weights.

2. Related Work
2.1. Development of Crop Disease Image Classification Technology

Since the 1980s, researchers have predominantly employed traditional machine learn-
ing techniques like Support Vector Machines (SVMs) and K-Nearest Neighbor (KNN)
classifiers for crop disease image classification [1]. However, these methods are dependent
on high-quality, large-scale training data and have limitations in feature design. The sig-
nificant enhancement in accuracy achieved by Deep Neural Networks (DNNs) within the
realm of image recognition has prompted agricultural researchers to adopt DNNs for clas-
sification tasks. Illustratively, Irmak and Saygili [10] proposed an automatic classification
method for tomato leaf diseases based on a deep Convolutional Neural Network (CNN),
which combined traditional machine learning and deep learning to significantly improve
the classification accuracy. Ferentinos [11] used a CNN to identify 58 diseases of 25 plant
species with an accuracy of up to 99.53%.

Crop disease classification is a fine-grained problem due to factors like uneven lighting,
occlusions, complex backgrounds, and disease progression. In this regard, Guo et al. [12]
employed a Bayesian algorithm to integrate the texture and color features for the effective
identification of four distinct crop diseases, thereby enhancing the classification accuracy.
Zhang et al. [13] developed an intelligent recognition application for cucumber leaf disease,
employing k-means clustering to classify the disease spots and extract features, achieving
an accuracy rate of 85.7%.

However, due to the broad crop diversity and the large differences between varieties,
it is difficult to collect large-scale standardized samples. To address the data scarcity,
transfer learning has emerged as an effective auxiliary tool for neural network training. By
leveraging pre-learned model parameters, transfer learning accelerates the learning process
of new models without necessitating training from scratch. Kaya et al. [14] investigated
and substantiated the utility of transfer learning models in facilitating crop classification.
Bai et al. [15] introduced a rice disease detection method grounded in multi-source data
and transfer learning, significantly boosting the disease recognition accuracy. Transfer
learning eases the demand for extensive training samples to some extent, yet it does not
resolve the overfitting issue that arises when models are trained with limited data. This
has prompted researchers to explore few-shot learning, aiming for deep networks to learn
effectively from a small number of samples.

In recent years, few-shot learning has found applications in crop disease classification
and recognition. Li et al. [16] proposed a semi-supervised few-shot learning approach to
tackle plant leaf disease identification, demonstrating its superiority through experiments
conducted with limited annotated training data. Nuthalapati and Tunga [17] presented
a method for automatic agricultural pest and disease image classification using few-shot
learning, and also validated the effectiveness across multiple datasets, providing robust sup-
port for augmenting agricultural yields. Despite the demonstrated applicability and some
achievements in crop disease classification, few-shot learning is inherently constrained by
its reliance on limited training data, often struggling to generalize effectively to unseen
data, resulting in unstable and inaccurate predictions on unknown instances.

From traditional machine learning algorithms to deep learning models, most methods
mainly focus on a single image modality for analysis. Different from the previous methods,
we innovatively introduced VLMs to solve the existing problems. VLMs adeptly fuse image
and text information, yielding semantically enriched feature representations, ultimately
enhancing the model learning efficiency and generalization capabilities under few-shot
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scenarios. By introducing pre-trained VLMs, we aim to enhance the accuracy of few-shot
crop leaf disease classification.

2.2. Vision–Language Models and Fine-Tuning

Over the past two years, VLMs have gained prominence, finding widespread applica-
tion in zero-shot and few-shot tasks [18]. Tailored for image–text data, VLMs encompass
both image and text encoders along with fusion mechanisms, fostering associations be-
tween the two modalities through joint learning. Following extensive pre-training, VLMs
can greatly improve various visual tasks. During the development of VLMs, CLIP [3]
represents a significant stride forward in the integration of vision and language. CLIP
employs an image–text contrastive objective, gauging the image–text similarity via dot
products between their respective embeddings. Harnessing contrastive learning, CLIP
achieves the alignment of the image–text features and zero-shot prediction, excelling across
various visual tasks [19,20]. To adapt CLIP to specific tasks and facilitate domain transfer,
researchers have devised numerous fine-tuning strategies. For example, CoOp [21] en-
hances the few-shot classification performance by optimizing continuous prompt contexts.
CoCoOp [22] introduces dynamic conditional prompting to bolster the generalization ca-
pabilities. KgCoOp [23], innovated by Yao et al., aims to minimize the prompt variance
while preserving the textual knowledge to tackle unseen categories. These methods achieve
CLIP fine-tuning through prompt tuning. Additionally, adapter-based tuning has also
been explored [24]. TaskRes [25] introduces a task-independent adapter to decouple the
prior knowledge of pre-trained models from task-specific knowledge. GraphAdapter [26]
leverages a bimodal knowledge graph to enhance the few-shot learning capabilities in
VLMs by considering the category correlations between the visual and textual modalities,
resulting in a more effective classifier.

However, these methods often necessitate additional training, thereby increasing
the time and computational resource demands. In response, Lu et al. [27] explored the
potential of ensemble learning with pre-trained VLMs, proposing customized ensemble
strategies for different scenarios that can improve the model performance without requiring
additional training. Tip-Adapter [6] introduces a key-value cache model that enhances
CLIP’s accuracy in few-shot image classification without requiring any extra training. On
this basis, APE [7] introduces an adaptive feature refinement mechanism, which not only
identifies and strengthens the visual feature channels that are more discriminative for the
task but also promotes a closer alignment between the visual and textual representations,
significantly improving the performance of CLIP on specific tasks. APE stands out for its
precise core feature identification, reduced caching needs, sustained high classification
performance, and boosted adaptability and generalization in few-shot scenarios thanks to
its innovative cross-modal trilateral relationship analysis. Drawing from these successful
experiences, our study aims to boost the few-shot crop leaf disease classification accuracy
by fine-tuning CLIP.

2.3. Automatic Generation of Prompt Text

In downstream classification tasks, the input prompt texts play a pivotal role in the
pre-trained VLM [21]. Lewis et al. [28] utilized the large pre-trained language model
GPT (Generative Pre-trained Transformer) [29] to automatically generate diverse fine-
grained text descriptions for each category by constructing domain-specific prompts. These
automatically generated texts by GPT are then fed as prompts that are input to CLIP, sig-
nificantly enhancing the classification performance. Creating domain-specific prompts
usually demands manual intervention, requiring considerable effort in conceptualizing,
designing, and refining templates. Conversely, the novel VLM, Qwen-VL [5], demonstrates
superior multimodal capabilities, excelling in image captioning, question answering, image
localization, and text reading. It is endowed with powerful visual understanding and fine-
grained recognition capabilities through carefully designed visual receptors, input–output
interfaces, a three-stage training process, and a multilingual multimodal cleaned corpus.
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We only need to input a disease image and a concise question and Qwen-VL’s fine-grained
recognition capabilities can automatically capture the key details in leaf disease images and
generate high-quality prompt texts without elaborate templates. This provides a significant
advantage over those methods relying solely on GPT or other single-language models. Its
unique strengths stem from deep learning on high-resolution images and meticulously
annotated data, allowing Qwen-VL to precisely parse intricate visual features and generate
detailed text descriptions. This not only improves the prompt text quality but also elimi-
nates the laborious task of manual template design, drastically reducing costs. Additionally,
because Qwen-VL is free and open-source, it presents a cost-effective alternative compared
to models like GPT-4 [30], which require significant computational resources and associated
costs. Moreover, Qwen-VL does not require fine-tuning for our specific use case; it can
directly generate detailed text descriptions from images and simple questions using the
pre-trained model, streamlining the process and reducing the need for additional training.
To construct discriminative classifier weights, we harness Qwen-VL’s fine-grained recogni-
tion to generate high-quality prompt texts to support classification decisions. To balance
efficiency and precision, we adopt a clustering strategy, generating descriptions only for
the representative images within each category. This approach ensures comprehensive
information while avoiding resource wastage from irrelevant images, achieving a balanced
mix of efficiency and precision.

2.4. Attention Mechanism

An attention mechanism [31] emulates human attention, enabling models to focus on
crucial information. It has been widely adopted in both Natural Language Processing (NLP) and
Computer Vision (CV). In NLP, starting from machine translation, its applications have expanded
to tasks like text generation, summarization, and question answering [32,33]. In CV, the attention
mechanism facilitates tasks like image segmentation [34], video classification [35], visual question
answering [36], and object tracking [37], directing the model’s focus to salient regions in images
to enhance understanding. With the convergence of vision and language, attention mechanisms
have been integrated into cross-modal models. Molloy et al. [38] employed self-attention to
refine the key information from visual description texts, bolstering the generalization capacity of
CLIP. In our study, we explore how attention mechanisms can be leveraged to accentuate the
critical features within prompt texts. We innovatively combine cross-attention and lightweight SE
(Squeeze-and-Excitation) Attention to optimize the feature weight distribution when the model
processes the prompt text. Cross-attention [31] deals with multi-source or multimodal data,
dynamically attending to and interacting with the relevant portions. In our study, it is applied to
inter-class prompt text vectors, merging their textual features. SE Attention, originating from
SENet [39], “squeezes” the global information of feature channels and generates weight vectors
through "excitation" to adjust the channel weights, emphasizing the key features specific to the
task. The SE Attention module serves as a plug-and-play mechanism that can be seamlessly
integrated into models without significantly increasing their model complexity. Therefore,
we utilize it to process inter-class prompt text vectors during training, highlighting the subtle
discriminative features among the different disease categories. Cross-attention and SE Attention
can be easily integrated into the model without significantly increasing the development costs or
training time. By integrating these two mechanisms, we aim to optimize the allocation of feature
weights when the model processes the prompt texts, thereby adjusting the model’s classification
weights to enhance the accuracy.

3. Method

In this study, we improve the performance of few-shot crop disease classification
by fine-tuning CLIP. The models we designed, VLCD and VLCD-T, are built upon APE
(Adaptive Prior rEfinement) [7] and APE-T (APE-Training), respectively (Figure 1 (1)), incor-
porating two specialized designs tailored to the characteristics of crop disease classification.
First, we devise an image-driven prompt text generation module to obtain detailed prompt
texts on representative images of different categories. Specifically, we cluster images based
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on color and texture features, selecting representative image sets for each category from the
training set. We then leverage Qwen-VL’s fine-grained recognition function to pose queries
about these representative images, generating detailed textual descriptions. Ultimately, we
summarize and organize the text descriptions of all categories, using them as prompt texts
for the subsequent classification tasks (Figure 1 (2)).

Figure 1. Overall flowchart. (1) Shows the baseline framework, where the left side (a) is the training-
free APE and the right side (b) is the training-required APE-T. (2) Shows the image-driven prompt
text generation module. (3) Shows the text feature fusion process in VLCD, where WC corresponds
to W of APE in (1), and W′

C corresponds to W′ of APE and APE-T in (1). (4) Shows the text feature
enhancement process in VLCD-T, where Watt corresponds to W of APE-T in (1).

Second, in the processing of prompt texts’ features, we introduce attention mechanisms
to guide attention to important text feature vectors. Specifically, in the training-free VLCD
mode, we use CLIP’s text encoder to process the prompt texts generated in Figure 1 (2),
obtaining prompt text vectors. These vectors are then subjected to a cross-attention mecha-
nism to derive model classification weights for each category (Figure 1 (3)). Subsequently,
SE Attention is used to process inter-class prompt text vectors in the training-required mode
VLCD-T, emphasizing subtle discriminative features between different disease categories
(Figure 1 (4)). Cross-attention and SE Attention serve to enhance prompt texts’ features in
the training-free and training-required modes, respectively.

To present the proposed method clearly, this section will follow the following sequence:
Section 3.1 provides a detailed overview of the background work on which this study is
based; Section 3.2 introduces the image-driven prompt text generation strategy; Section 3.3
describes the prompt text features based on cross-attention fusion in training-free mode;
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Section 3.4 describes the prompt text features’ enhancement based on SE Attention in
training-required mode.

3.1. Background
3.1.1. Zero-Shot CLIP

In CLIP zero-shot classification, a descriptive language prompt is created for each test
class in a dataset of C categories, formatted as “A photo of a [CLASS]”, where [CLASS] is
the specific class name. This prompt is encoded by CLIP’s text encoder into a prompt vector
W ∈ RC×D, serving as the classifier weight matrix, where D is embedding dimension. The
image encoder then extracts a D-dimensional visual embedding f ∈ RD. Finally, CLIP uses
their similarity to calculate the zero-shot classification logits as follows:

R f W = fW⊺ ∈ R1×C. (1)

Zero-shot classification is achieved by finding the class corresponding to the maximum
value of R f W . However, its accuracy is limited as it does not leverage data from new
tasks. For this reason, works like Tip-Adapter [6] utilize a cache model to improve CLIP
classification accuracy without extra training.

3.1.2. Cache Model

Tip-Adapter [6] enhances CLIP’s few-shot classification by using a key-value cache
model for quick adaptation with small sample sizes. Unlike zero-shot CLIP, it adds logits
based on the similarity between test and training features.

Specifically, for a C-category dataset with K samples per class, the cache model consists
of keys and values. Keys are visual features extracted by CLIP’s image encoder from the
training images, expressed as F ∈ RCK×D. Values are one-shot vectors representing the
category labels of these training images, expressed as L ∈ RCK×C.

For a test image, f ∈ RD, its similarity with the training-set features, F ∈ RCK×D, is
calculated as

R f F = exp(−β(1 − fF⊺)), (2)

where β is a smoothing scalar. R f F is regarded as weights to integrate L, and the query
results are blended with the zero-shot prediction, R f W , to form the final logits:

logits = R f W + αR f FL, (3)

where α is a balancing factor. By using R f F, the cache model can utilize the existing
knowledge in the training data to classify the test images.

Furthermore, Tip-Adapter-F can further improve accuracy by fine-tuning the cache
keys, but this demands extensive cache and numerous learnable parameters. Therefore,
Zhu et al. [7] proposed training-free APE and training-required APE-T, which combine
CLIP’s prior knowledge and introduce lightweight parameters to reduce computational
resource. Our models build on APE and APE-T, and we provide a detailed overview below.

3.1.3. APE

APE introduces a Prior Refinement (PR) module to analyze class differences and refine
core knowledge, performing a feature selection operation in the channel dimension to
identify a subset of features that accurately represent the data. The PR module extracts the
most informative E channels for the three features, denoted as f′ ∈ RE, W′ ∈ RC×E, and
F′ ∈ RCK×E.

APE explores the relationships among test image features, prompt texts, and cache
model features, as shown on the left side (a) of Figure 1 (1):

1. The relationship between f and W, determined using Equation (1), represents the
cosine similarity between the test image and the prompt texts.



Sensors 2024, 24, 6109 8 of 22

2. The relationship between f′ and F′ can be calculated using a similar method as de-
scribed in Equation (2):

R f ′F′ = exp(−β(1 − f′F′⊺)) ∈ R1×CK, (4)

3. The relationship between F′ and W′ involves APE’s zero-shot CLIP prediction on
training data, denoted as F′W′⊺. To evaluate CLIP’s downstream recognition capability,
the KL-divergence, DKL(|), between F′W′⊺ and L ∈ RCK×C is calculated as follows:

RF′W ′ = exp(γDKL(F′W′⊺|L)) ∈ R1×CK, (5)

where γ is a smoothing factor. RF′W ′ represents the score contribution of each training
feature to the final prediction.

Finally, APE integrates all trilateral relations, and the final classification logits are
computed as

logits = R f W + αR f ′F′(diag(RF′W ′)L), (6)

where α is a balance factor and diag( ) denotes diagonalization. The second term improves
the feature channel-based few-shot prediction with the reweighted cache model. Through
the PR module and trilateral relationship analysis, APE effectively boosts CLIP’s few-shot
classification performance.

3.1.4. APE-T

In the training setting, as shown on the right side (b) of Figure 1 (1), APE-T freezes the
cache model and trains only lightweight category residuals, Res ∈ RC×E, along with the
cache scores RF′W ′ . These residuals are C-learnable embeddings, each corresponding to a
category, optimizing the E feature channels during training. To maintain vision–language
correspondence in the embedding space, APE-T applies Res to both textual features W and
training-set features F′. APE-T also explores trilateral relations:

1. For R f W in Equation (1), APE-T first pads the E-channel Res into D-channels as W
by filling the extra channels with zero. The padded Res, denoted as Pad(Res), is
added to W, updating CLIP’s zero-shot prediction by the optimized textual features,
formulated as

R f W = f ∗ (W + Pad(Res))⊺. (7)

2. For R f ′F′ in Equation (4), APE-T first broadcasts the C-embedding Res into CK as F′ by
repeating it for each category. Next, APE-T adds the expanded Res to F′ element-wise,
improving the cache model’s few-shot prediction by optimizing training-set features.
This process is formulated as

R f ′F′ = exp(−β(1 − f′(F′ + Expand(Res))⊺)). (8)

3. For RF′W ′ in Equation (5), APE-T makes it learnable during training, enabling adaptive
learning of optimal cache scores for different training-set features, determining their
contribution to predictions.

Finally, the classification logits are obtained using Equation (6). By training only a
small subset of parameters, APE-T avoids costly fine-tuning of cache model and improves
the model performance by updating refined features for both modalities.

3.2. Image-Driven Prompt Text Generation

To further optimize the prompt text in APE, i.e., the prior text knowledge of the
CLIP, we introduce an image-driven prompt text generation module, as shown in Figure 1
(2). This method’s essence is leveraging Qwen-VL’s fine-grained recognition function to
generate image-based prompt texts, improving classification weights compared to text
generated solely by language models. To reduce the cost of generating prompt texts, we
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employ a clustering strategy to select representative images for each category and generate
descriptions solely for these representatives. The implementation steps are as follows:

1. Representative image selection: For simplicity, we extract traditional image features
for clustering, recognizing the importance of color and texture features in crop disease
recognition. These features are highly stable and intuitive, especially in distinguishing
subtle and complex disease types. To achieve this, we used the K-means clustering
algorithm to select representative images based on both color and texture features.
Specifically, we calculate the average color and GLCM (Gray Level Co-occurrence
Matrix) texture features for each image, then cluster these combined features using
K-means. This approach allows us to cluster each category separately and select M
representative images for each of the C categories to form a collection {Ri}C

i=1, where
Ri denotes the set of representative images belonging to class i.

2. Prompt text generation: We sequentially input the selected representative images from
each category into Qwen-VL, employing the following unified template command
for querying: “Can you help me describe this [CLASS] leaf?”, where [CLASS] is
replaced with the specific disease category. This operation aims at generating detailed
descriptions that are closely aligned with the image content. As shown in Figure 2, we
show three different categories of crop diseases, the prompt text generated by Qwen-
VL with image-driven guidance, and the prompt text generated by the language
model GPT3.5 [40] and Qwen-VL without image-driven guidance. For instance, in
the image-driven prompt text generated for the “grape leaf blight” category, “dark
brown spots” are identified as crucial indicators of the disease, and the generated text
also describes additional information about the blade surface. In contrast, without
image-driven guidance, although the text generated by GPT3.5 and Qwen-VL also
includes relevant disease features, it is not as detailed as the prompt text generated
with image-driven input.

3. Integrate text information: We consolidate and organize the collection of textual
descriptions Ti (i = 1, 2, . . . , C) corresponding to representative images of all cate-
gories. The generated prompt texts will serve as an important basis for subsequent
classification weights.

3.3. Text Feature Fusion in Training-Free (VLCD) Mode

Continuing the training-free strategy of APE, our training-free model VLCD also
introduces the PR module and trilateral relationship exploration. Furthermore, we intro-
duce the cross-attention mechanism to process the prompt texts generated in Section 3.2,
emphasizing salient features among intra-class prompt texts, as shown in Figure 1 (3).
Details are provided as follows:

Suppose there are C categories, with each category having prompt M texts. For the
category i, we encode the text descriptions set Ti of category i obtained in Section 3.2 using
CLIP’s text encoder to obtain the embedding vectors Xi ∈ RM×D, where D is embedding
dimension. Let us denote Si as the attention scores between all prompt texts of category i,
which is obtained by

Si = Xi · XT
i . (9)

Then, we utilize So f tmax() to compute the attention weights A:

A = so f tmax(Si). (10)

Next, for the category i, we compute its weighted text embedding vectors:

AW = A ∗ Xi. (11)
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The weighted text embedding vectors AW of the obtained category i is averaged to
obtain the final text feature vector:

ai = mean(AW) ∈ RD. (12)

By stacking the text feature vectors ai (i = 1, 2, · · · , C) of each category, we obtain
WC = [a1, a2, · · · , aC] ∈ RC×D. Then, we use PR module for significant channel selection
to obtain W′

C ∈ RC×E .
During testing, we adopt a similar strategy to APE, as shown in part (a) of Figure 1(1),

with slight modifications. Specifically, we utilize the WC and W′
C from the above process to

explore the trilateral relation exploration.

Figure 2. Examples of prompt texts generated by different methods. The green font highlights the
class name, and the blue font highlights the distinctive visual feature. The first column includes the
prompt texts generated by Qwen-VL with image-driven guidance, the second column includes the
prompt texts generated by Qwen-VL without image-driven guidance, and the third column includes
the prompt texts generated by GPT3.5 without image-driven guidance.

First, we use CLIP’s image encoder to obtain f ∈ RD, and then we use cosine similarity
representation to represent the relationship between the obtained test image features and
the prompt text, for which we substitute W in Equation (1) with WC:

R f W = fW⊺
C ∈ R1×C. (13)

Next, the PR module is used to obtain f′ ∈ RE. The relationship between the test
image f′ and training images F′ is expressed using Equation (4). In the relationship between
training images and prompt texts, we substitute W′ in Equation (5) with W′

C:

RF′W ′ = exp(γDKL(F′W′
C

T|L)) ∈ R1×CK. (14)

By calculating RF′W ′ to quantify the relative importance of each training image feature
for prediction accuracy, we can update the cached model knowledge. Finally, we use
Equation (6) to obtain the final classification logits.



Sensors 2024, 24, 6109 11 of 22

3.4. Text Feature Enhancement in Training-Required (VLCD-T) Mode

During training, we also follow the strategy of APE-T. To further enhance the key
feature weights of inter-class prompt texts, we additionally introduce SE Attention to
weight WC obtained in Section 3.3 during training to obtain Watt, allowing the model to
focus more on critical inter-class prompt text features, as shown in Figure 1 (4). Similarly,
we freeze the cache model and make RF′W ′ learnable during training. We apply Res to both
textual features Watt and training-set features F′.

Specifically, we process WC using the SE Attention module.
First, for the weight vector WC, we perform a global average pooling (AvgPool) to

obtain a scalar y, representing the average value of all features:

y = AvgPool(WC). (15)

Then, y is transformed and activated to obtain the attention weights λ:

λ = σ(W2 · ReLU(W1 · y)), (16)

where W1 and W2 are two learnable linear transformation matrices, σ and ReLU are
activation functions. The first linear layer W1 reduces the feature dimension from D to D/r,
where r is the reduction ratio. The ratio controls the dimensionality of the intermediate
representation, facilitating efficient dimensionality reduction while preserving essential
information from the original input. The second linear layer W2 restores it to the original
dimension. The activation functions ensure that the output values are confined between 0
and 1, representing attention weights for each channel.

Finally, the original weight vector WC is weighted using the weights λ to obtain Watt:

Watt = λ · WC. (17)

Through the SE Attention processing, we have weighted the original weight vector,
increasing the emphasis on discriminative inter-class prompt text vector features.

During testing, we conducted the same trilateral relationship exploration as APE-T, as
shown in Figure 1 (1) part (b). First, we use CLIP’s image encoder to encode the test image
to obtain f ∈ RD, and then obtain f′ ∈ RE through the PR module. Next, we use Watt as W
in Equation (7). The score between f′ and F′ is computed using Equation (8), and, finally,
the model’s ultimate logits are obtained using Equation (6).

4. Experiment
4.1. Settings
4.1.1. Dataset

The dataset used in our study integrates the Plant Village dataset [41] with self-
expanded data. Plant Village, meticulously constructed by Hughes et al., is a large-scale
image repository widely used in the global plant pathology community, encompassing over
50,000 high-quality images showcasing diverse states of 14 crop species under the influence
of 17 fungal diseases, 4 bacterial diseases, 2 viral diseases, 2 oomycete diseases, and 1 moth
infestation. Plant Village mainly uses pictures collected in a laboratory environment;
in order to increase the richness of the images, we intentionally augment the dataset
by incorporating publicly available images covering 16 novel diseases and additional
categories, sourced from a wide variety of backgrounds, including multiple crop samples
and diverse laboratory and field settings. The resulting consolidated dataset consists of
54 disease classes and comprises a total of 57,495 images, as detailed in Table 1. Figure 3
presents sample data, with the top row displaying representative images from Plant Village
and the second row featuring newly added non-laboratory-environment samples.
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Table 1. Categories and quantity distribution of crop diseases. The non-bolded text indicates existing
categories in the Plant Village, while the bolded font signifies the added categories.

Disease Category Number of Images Disease Category Number of Images

apple black rot 621 strawberry leaf scorch 1109
apple cedar apple rust 275 tomato bacterial spot 2127

apple healthy 1645 tomato early blight 1000
apple scab 630 tomato healthy 1591

blueberry healthy 1502 tomato late blight 1915
cherry healthy 854 tomato leaf mold 952

cherry powdery mildew 1052 tomato mosaic virus 373
corn cercospora leaf spot gray

leaf spot 513 tomato septoria leaf spot 1771

corn common rust 1192 tomato spider mites 1676
corn healthy 1162 tomato target spot 1404

corn northern blight 985 tomato yellow leaf curl virus 3357
grape black rot 1180 coffee healthy 282

grape black measles 1383 coffee red spider mite 136
grape healthy 423 coffee rust 282

grape leaf blight 1076 cotton diseased 288
orange huanglongbing 5507 cotton healthy 427

peach bacterial spot 2297 cucumber diseased 227
peach healthy 360 cucumber healthy 241

pepper bell bacterial spot 997 lemon diseased 67
pepper bell healthy 1491 lemon healthy 149
potato early blight 1000 mango diseased 255

potato healthy 152 mango healthy 159
potato late blight 1000 pomegranate diseased 261
raspberry healthy 371 pomegranate healthy 277
soybean healthy 5090 rice bacterial leaf blight 40

squash powdery mildew 1835 rice brown spot 40
strawberry healthy 456 rice leaf smut 40

Figure 3. Examples of some images in the crop disease dataset.

4.1.2. Implementation Details

To validate the effectiveness of our method on few-shot classification tasks, we conduct
comprehensive experiments. First, to ensure the model’s generalization ability and prevent
overfitting, we randomly divided the images of each category in the collected dataset
into training, validation, and test sets in an 8:1:1 ratio. The training set is used to support
few-shot learning tasks, the validation set is used to search for the optimal parameter
combination, and the test set is used for model performance evaluation. In the few-shot
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classification experiments, we randomly select images from the training set based on the
settings of 1, 2, 4, 8, and 16 images per class for training, and perform parameter search and
model performance evaluation on the full validation and test sets, respectively. In both the
training-free VLCD and training-required VLCD-T setups, we adopt ResNet-50 [42] as the
visual encoder and Bert [43] as the text encoder to build the CLIP backbone. We obtain the
pre-trained weights of both encoders from CLIP [3] and freeze them during training. Data
preprocessing adhered to CLIP standards [3], encompassing random cropping, scaling, and
horizontal flipping. The training-required setting of VLCD-T includes batch size is 256,
learning rate is 0.001, and the optimizer is AdamW [44] with a cosine scheduler. The setting
of the PR module’s parameters followed the optimal setting in APE [7]. Furthermore, the
number of prompt texts per class is set to 10, the training epochs are set to 30, and the
reduction parameter in the SE Attention module is set to 32.

4.2. Performance Analysis

Since most current few-shot crop disease classification methods focus primarily on
single-image modality analysis, we chose to compare the classification accuracy of sev-
eral mainstream fine-tuned CLIP methods on our dataset to facilitate the analysis of our
proposed method’s effectiveness. The experimental results are shown in Table 2.

In the training-free setting, we compare three methods that leverage cache model for
inference without requiring additional training: Tip-Adapter [6], APE [7], and our VLCD.
Tip-Adapter utilizes the standard CLIP prompt “A photo of a [CLASS]”, whereas APE
and VLCD employ multi-text prompt ensembles. APE adopts an average ensemble of
multi-text, whereas VLCD employs a cross-attention mechanism for weighted multi-text
integration. According to the experimental results, VLCD exhibits higher accuracy across
all few-shot settings. For example, VLCD’s classification accuracy is 1.25% higher than that
of APE under 1-shot setting, indicating the effectiveness of the image-driven prompt text
generation module and cross-attention mechanism.

In the training-required setting, we compare VLCD-T with five methods that require
training: CoOp [21], KgCoOp [23], CLIP-Adapter [24], Tip-Adapter-F [6], and APE-T [7].
Our VLCD-T outperforms previous methods in all few-shot settings and achieves the
highest accuracy. Notably, when the few-shot setting is 1 or 2, VLAD-T’s classification accu-
racy improves by 4.73% and 3.89%, respectively, compared to using APE-T. These results
convincingly demonstrate that VLCD-T can more effectively capture critical and discrimi-
native features from inter-class prompt texts, thereby enhancing the overall performance of
the model.

Table 2. Classification accuracy (%) of different fine-tuning strategies on crop disease dataset.

Few-Shot Setup 1 2 4 8 16

Zero-shot CLIP [3]: 13.72

Training-free
Tip-Adapter [6] 25.42 38.31 53.95 67.54 73.46

APE [7] 48.06 61.13 68.34 74.70 77.20
VLCD 49.31 62.55 69.20 75.14 77.44

Training-required
CoOp [21] 43.44 42.01 64.14 70.79 85.59

KgCoOp [23] 25.49 27.52 32.26 25.49 55.24
CLIP-Adapter [24] 19.38 20.76 20.76 33.53 52.86
Tip-Adapter-F [6] 37.89 42.62 56.02 75.14 83.76

APE-T [7] 53.43 62.18 71.38 79.68 85.99
VLCD-T 58.16 66.07 72.32 80.95 87.31

4.3. Ablation Study

In this section, we explore the effectiveness of our method through extensive
ablation experiments.
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4.3.1. Different Prompt Texts

To evaluate the impact of prompt text quality on image classification, we conduct
comparative experiments examining the effects of varying prompt generation strategies and
the quantity of prompt texts on classification performance. We compare the performance
differences between the language model GPT3.5 and the multimodal model Qwen-VL in
answering questions with and without image input. Both GPT3.5 and Qwen-VL without
image inputs are tasked with generating prompts for different categories using a consistent
question format: “Help me generate K sentences describing this [CLASS].” In the image-
driven scenario of Qwen-VL, it is provided with an image along with the question to
identify and generate relevant prompts.

The experimental results are shown in Figure 4. We compare the influence of different
numbers of prompts (2, 4, 6, 8, and 10) under various few-shot settings (0, 1, 2, 4, 8, and 16)
when employing three distinct prompt generation strategies on classification effectiveness.

Figure 4. Performance of different prompt texts in few-shot classification tasks. “w/o I” means
non-image-driven prompts; “w/ I” means image-driven prompts. The first column of the legend
represents the training-free mode, and the second column “-T” represents the training-required mode.
The ordinate represents the classification accuracy (%), and the abscissa represents the number of
prompt texts.

In all few-shot settings, the accuracy of image-driven prompts generated by Qwen-VL
for classification outperforms that of non-image-driven prompts generated by GPT3.5 and
Qwen-VL, regardless of the chosen prompt number, in both training-free and training-
required settings. This outcome underscores the significant positive effect of visual infor-
mation on generating high-quality prompts that enhance model’s classification ability.

Under different few-shot settings, we observe varying impacts of different numbers
of prompt texts on few-shot learning. In lower few-shot settings (e.g., 0, 1, and 2), fewer
prompts (e.g., 2) generated by GPT3.5 and Qwen-VL without image-driven guidance
led to higher classification accuracy compared to when more prompts are used. This
could be because, without images, the limited amount of generated prompts are often
more precise and of higher quality; increasing the number of prompts may introduce
redundant information, potentially diluting the quality of the prompts and negatively
impacting the classification performance. Conversely, when Qwen-VL generates prompts
with image-driven guidance for classification, its accuracy increases as the number of
prompts grows in cases where the few-shot setting is 0, 1, or 2. This is because the input
images provide additional visual information, allowing Qwen-VL to better comprehend
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and generate descriptive sentences related to the categories, thus improving the quality of
the prompts. However, when the few-shot is larger (e.g., 4, 8, or 16), the improvement in
classification accuracy due to increasing the number of prompts became less pronounced
across all methods. This could be because, in these cases, as the number of training shots
increases, the model can capture more visual feature information purely from images,
making additional prompt texts less impactful on boosting classification performance.

4.3.2. Representative Image Selection Strategy

To validate the effectiveness of clustering in selecting representative images, we
conduct few-shot classification experiments using Qwen-VL for prompt texts generation,
with inputs of randomly selected images and images selected based on clustering in both
training-free and training modes. Experimental results are shown in Table 3.

Table 3. Accuracy (%) of prompt texts generated by different representative image selection strategies
when used for few-shot classification.

Few-Shot Setup 0 1 2 4 8 16

Training-free
Random selection 21.62 48.96 61.41 67.98 75.08 77.39
Cluster selection 22.59 49.31 62.55 69.20 75.14 77.44

Training-required
Random selection - 57.83 65.72 72.19 80.65 87.08
Cluster selection - 58.16 66.07 72.32 80.95 87.31

In the training-free setting, we compare the cases with shots of 0, 1, 2, 4, 6, 8, and
16. In the training-required setting, we compare the cases with shots of 1, 2, 4, 6, 8, and
16. The results indicate that, under both the training-free and training-required settings,
the classification accuracy increases with more shots. When the shot number is small,
employing representative images selected via clustering to generate prompt texts exhibits a
more pronounced advantage. For example, in the training-free setting, the classification
accuracy of prompt texts generated by randomly selecting pictures is 21.62% under 0-shot
setting, whereas utilizing cluster-selected images leads to an improved accuracy rate of
22.59%. As the number of shot increases, the difference in accuracy rates between the
use of cluster-selected images for generating prompt texts and randomly chosen images
diminishes; however, the former consistently maintains a marginally higher performance
throughout. This observation substantiates that the methodology of inputting cluster-
selected images into Qwen-VL to generate prompt texts for classification purposes is
indeed more efficacious.

4.3.3. Effectiveness of Attention Mechanisms

To validate the effectiveness of the attention mechanisms in processing prompt texts,
we conduct a series of experiments examining model performance in few-shot classification.
We compare the difference between direct averaging used in APE [7] and our cross-attention
in processing intra-class prompt text vectors, as well as the impact of including or excluding
the SE Attention module on inter-class prompt text vectors. Experimental results and
settings are detailed in Table 4.

In the training-free setting, the cross-attention method significantly outperforms the
averaging method across all few-shot settings, particularly when the number of few-shots
is small, indicating that cross-attention is more effective at extracting key features from
intra-class prompt texts that are crucial for classification decisions.
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Table 4. Classification accuracy (%) of different prompt text processing methods on the crop disease
dataset. “Without SE” represents not using SE Attention, “With SE” represents using SE Attention,
and “✓” represents using this method.

Intra-Class Prompt Text Processing Inter-Class Prompt Text Processing Accuracy in Different Few-Shot Setups

Setup Average Cross-Attention Without SE With SE 0 1 2 4 8 16

Training-free ✓ - - - 20.80 48.06 61.13 68.34 74.70 77.20
- ✓ - - 22.59 49.31 62.55 69.20 75.14 77.44

Training-required

✓ - ✓ - - 53.43 62.18 71.38 79.68 85.96
- ✓ ✓ - - 54.04 62.35 71.47 79.88 86.26
✓ - - ✓ - 56.61 65.14 72.06 79.96 86.71
- ✓ - ✓ - 58.16 66.07 72.32 80.95 87.31

During training, we observed that, regardless of whether SE Attention is used to
process inter-class prompt texts during subsequent training, the method of using cross-
attention to handle intra-class prompt text vectors resulted in improved classification
accuracy compared to using the average method. In addition, we found that, regardless of
whether average or cross-attention is used for processing intra-class prompt text vectors, the
classification performance during training is better when using SE Attention for processing
inter-class prompt text vectors compared to methods without SE Attention. It is worth
noting that, when cross-attention and SE Attention are used simultaneously, the accuracy
increases from 53.43% in the first training setting without any attention mechanism to
58.16% under 1-shot, further confirming the crucial role of cross-attention and SE Attention
in adjusting the model’s classification weights.

Additionally, we also investigate the relevant parameters of the SE Attention module
during training, focusing on the influence of parameter r (reduction) as well as the training
epoch on the crop disease classification accuracy.

Parameter r adjusts the SE Attention activation function, changing the attention weight
distribution and the model’s attention to the prompt texts. Table 5 shows that increasing r is
positively correlated with improved classification accuracy, confirming that adjusting r can
enhance attention to key text features and optimize disease image classification. When r is
set to 32, the model achieves the highest classification accuracy across all few-shot settings.
The SE Attention module with a larger r can more effectively guide the model to focus on
key information, improving classification performance in limited sample scenarios.

Table 5. Classification accuracy (%) on crop disease dataset under different parameters r during training.

Few-Shot Setup 1 2 4 8 16

r = 2 56.36 64.57 70.02 78.58 84.91
r = 4 56.89 65.03 71.08 79.33 85.18
r = 8 58.13 66.04 70.68 78.51 84.98
r = 16 55.56 65.20 69.97 79.90 84.91
r = 32 58.16 66.07 72.32 80.95 87.31

Table 6 shows the classification accuracy with and without SE Attention module under
different training epochs (from 10 to 50). The results show that, regardless of the epoch
setting, the experimental group utilizing SE Attention consistently outperforms the control
group that does not employ the module. Notably, the benefits of using SE Attention are
more pronounced under low epoch values and a small number of shots. For example,
when epoch is 10 and shot number is 1, compared with the 41.44% classification accuracy
achieved by the control group that does not use the SE Attention, the experimental group
that applies this module achieves a classification accuracy of 50.41%, with an accuracy
improvement of 8.97%. These findings robustly demonstrate that our SE Attention module
can significantly enhance the model’s classification efficiency.
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Table 6. Classification accuracy (%) on crop disease dataset at different training epochs under training
settings. Under different epoch settings, “without SE” represents not using SE Attention, “with SE”
represents using SE Attention, and the third row represents the accuracy difference between using
and not using SE Attention.

Few-Shot Setup 1 2 4 8 16

epoch = 10
without SE 41.44 55.40 59.46 70.70 78.30

with SE 50.41 62.37 67.35 76.06 82.75
+8.97 +6.97 +7.89 +5.36 +4.45

epoch = 20
without SE 52.49 60.76 68.73 76.06 82.49

with SE 58.01 66.06 71.87 79.88 86.14
+5.52 +5.30 +3.14 +3.73 +2.68

epoch = 30
without SE 54.04 62.35 71.07 79.68 86.26

with SE 58.16 66.07 72.32 80.95 87.31
+4.12 +3.72 +1.25 +1.27 +1.05

epoch = 40
without SE 54.48 62.35 71.35 80.36 86.76

with SE 58.36 65.62 74.45 82.10 88.00
+3.88 +3.13 +3.10 +1.74 +1.24

epoch = 50
without SE 54.44 63.00 72.39 81.28 87.60

with SE 58.16 65.88 74.89 82.49 88.16
+3.72 +2.88 +2.50 +1.21 +0.56

4.3.4. Different Network Backbones

To comprehensively verify the effectiveness of our method, we compare the perfor-
mance under different network backbones (ResNet-50 [42], ResNet-101 [42], VIT-B /16 [43],
and VIT-B /32 [43]) and performance of various methods in few-shot crop disease clas-
sification. We focus on the performance of our methods (VLCD and VLCD-T) with the
baseline methods (Tip-Adapter [6], Tip-Adapter-F [6], APE [7], and APE-T [7]) under two
settings (training-free and training with 30 epochs) for accuracy changes. The experimental
results are shown in Figure 5, where our method outperforms the other methods under all
four backbones.

Figure 5. Ablation studies with different backbones. Dashed and solid lines indicate training-free
and training-required methods, respectively.

5. Visualization
5.1. Performance Comparison of Different Prompt Text Generation Strategies

We study the impact of three different prompt text generation strategies on specific crop
classification recognition: one is to use the language model GPT3.5 to generate non-image-
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driven prompt texts, another is to generate non-image-driven prompt texts using Qwen-
VL’s text answering, and the last is to utilize Qwen-VL’s image comprehension to generate
image-driven prompt texts. Figure 6 shows the top five classification prediction results of
each strategy on three specific crop test images, including the top five possible categories
predicted along with the probability associated with each prediction. The figure reveals that,
among the three specific categories of test images shown, when using the image-driven
generated prompt text for classification, its top five prediction categories and accuracy are
significantly better than the other two non-image-driven prompts text generation methods.
When all three methods correctly predict the category, such as “coffee rust” in the table,
the predicted probability using the image-driven prompt text for classification is also
higher than the other two methods. This finding underscores that the integration of image
information in prompt text creation leads to improved generalization within model testing,
thereby offering more reliable and precise predictions in practical applications.

Figure 6. Top 5 classification prediction categories and accuracy (%) of different prompt texts on
specific crop test images. “w/o I” means without image-driven guidance; “w/ I” means with
image-driven guidance. The blue bold font represents the predicted correct category and probability.

To gain deeper insights into how the model effectively focuses on the relevant visual
features during the processing of prompt texts, we borrow the Grad-CAM (Gradient-
weighted Class Activation Mapping) [45] visualization technology. Analogous to the work
by Shen et al. [46], we adopt a heat map approach to display the image–text relevance,
visually revealing the attention distribution that the model allocates to the critical feature
areas within the crop disease imagery after receiving the textual prompts. In our experiment,
we examine the effects of three different prompt text generation strategies on the model
performance. For each test image, corresponding to its given prompt text, we employ
Grad-CAM to visualize the attention distribution over the image following the receipt of
these text prompts. The experimental results are shown in Figure 7. We find that, compared
with the other two non-image-driven prompt text generation strategies, the image-driven
prompt text generated by Qwen-VL can more accurately focus on the salient features
pertaining to the provided descriptions.
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Figure 7. Heat map of correlation between different prompt texts and test images. The first column
shows the original image, the second column displays the heat map of the correlation between
the image and the image-driven prompt text generated by Qwen-VL, the third column shows
the correlation heat map between the image and the non-image-driven prompt text generated by
Qwen-VL, and the fourth column shows the correlation heat map between the image and the non-
image-driven prompt text generated by GPT3.5.

5.2. Dynamic Changes in Accuracy under the SE Attention Module

We closely monitor and record the dynamic changes in the accuracy of the training and
test sets over time after the introduction of the SE Attention module in the training process,
as shown in Figure 8. This experiment focuses on the few-shot crop disease classification
where the shot numbers are set to 1, 2, 4, and 8 and the training epoch is set to 30.

Figure 8. Dynamic evolution of the SE Attention mechanism on training and test set accuracy over
training epochs for different few-shot settings. “without SE” represents not using SE Attention; “with
SE” represents using SE Attention. The horizontal coordinate is the training epoch and the vertical
coordinate is the classification accuracy. “train acc” represents the training accuracy and “test acc”
represents the test accuracy.



Sensors 2024, 24, 6109 20 of 22

The observations from Figure 8 indicate that the training accuracy gradually increases
with iterations when not using SE Attention during training, although at a relatively
modest pace. However, when SE Attention is introduced, a significant improvement in
the training accuracy is observed in the early stages of training, followed by a subsequent
slowdown in the rate of increase, yet generally maintaining a level above that observed
without SE Attention. In the testing stage, while the test accuracy steadily improves without
SE Attention, the extent of the improvement is somewhat limited. Conversely, with the
inclusion of SE Attention, the test accuracy exhibits a marked enhancement during the
initial stages of training, indicating that the incorporation of the SE Attention module
promotes efficient learning in the model and boosts its classification efficiency.

6. Summary

In this paper, we propose a few-shot crop disease classification algorithm that in-
tegrates VLMs and attention mechanisms to address the limitations of the traditional
classification methods in agriculture. By incorporating VLMs, prompt text generation, and
attention mechanisms, our method significantly enhances both the precision and efficiency
of disease classification. The experimental results demonstrate outstanding performance
under few-shot tasks, substantiating its practical value in real-world applications.

Nevertheless, our method still has some shortcomings. During the prompt text
generation process, to avoid designing a general domain question template without images,
we only used simple questions. Our future work will focus on increasing the diversity of
the question templates. Currently, we have only used the free and open-source Qwen-VL
and GPT3.5. We plan to try more models in the future, such as GPT4, to further validate
our approach. Additionally, we employed a plug-and-play lightweight SE Attention
mechanism during training, and we will continue to explore more attention mechanisms
in subsequent work. Another limitation is the use of the cache model, which, while
reducing the training time, requires providing all known category images, thus limiting its
generalization to unknown categories.

In conclusion, this study suggests promising potential for the intelligentization of
agricultural production. The algorithm appears to have broad application prospects in
the agricultural field and may offer new avenues for innovation in related multimodal
domains. In the future, it is expected to be extended to fields such as botany, ecology,
and environmental protection, where it can be combined with professional knowledge to
develop diverse applications, making significant contributions to achieving sustainable
agricultural development and environmental protection goals.
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