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Abstract: The Internet of Health Things (IoHT) is a broader version of the Internet of Things. The
main goal is to intervene autonomously from geographically diverse regions and provide low-cost
preventative or active healthcare treatments. Smart wearable IMUs for human motion analysis have
proven to provide valuable insights into a person’s psychological state, activities of daily living,
identification/re-identification through gait signatures, etc. The existing literature, however, focuses
on specificity i.e., problem-specific deep models. This work presents a generic BiGRU-CNN deep
model that can predict the emotional state of a person, classify the activities of daily living, and
re-identify a person in a closed-loop scenario. For training and validation, we have employed publicly
available and closed-access datasets. The data were collected with wearable inertial measurement
units mounted non-invasively on the bodies of the subjects. Our findings demonstrate that the
generic model achieves an impressive accuracy of 96.97% in classifying activities of daily living.
Additionally, it re-identifies individuals in closed-loop scenarios with an accuracy of 93.71% and
estimates emotional states with an accuracy of 78.20%. This study represents a significant effort
towards developing a versatile deep-learning model for human motion analysis using wearable
IMUs, demonstrating promising results across multiple applications.

Keywords: generic deep model; IMU; MEMS; wearable sensors; smart wearable

1. Introduction

The IoHT is a more comprehensive form of the Internet of Things. The IoHT plat-
form’s major purpose is to autonomously intervene from geographically diverse locations
by providing low-cost preventative or active healthcare treatments. IoHT communica-
tion, integration, computation, and interoperability are powered by several low-power
embedded systems with limited computing capabilities. Because it may be utilized in a
wide range of medical professions, the Internet of Health Things (IoHT) technology is
important among physicians and patients in today’s healthcare environment. It consists
of tiny groups of medical equipment sensors and actuators that can gather, analyze, and
exchange data over the internet [1]. The applications of Inertial measurement units have
recently experienced a significant boom due to the growing significance of the Internet of
Things (IoT) [2–4]. The consumer market is currently flooded with a wide range of digital
gadgets equipped with IMUs, including but not limited to smartwatches, smartphones,
smart fitness bands, smart insoles, etc. IMU sensors are low-cost, are easy to wear on
the subject’s body, and can collect low-level kinematics at higher frequencies for a longer
duration in unconstrained environments. The analysis of such low-level gait signatures’
data can provide valuable insights into human motion analysis such as the prediction of
the affected state of a person, the re-identification of a person in a closed-loop scenario, the
estimation of the health and well-being of a person through the prediction of activities of
daily living, etc.
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The remarkable progress in micro-electromechanical systems (MEMSs) has led to
substantial advancements across various scientific disciplines. Inertial sensors, like ac-
celerometers and gyroscopes, are critical MEMS components integral to IMUs. Due to their
favorable attributes, such as affordability, low energy consumption, lightweight design, and
portability, inertial sensors are extensively utilized in numerous industries. Data gathered
from these sensors can be analyzed for sophisticated motion analysis using deep learning
methodologies. In particular, inertial sensors are employed in multiple applications, includ-
ing HAR [5–7], HER [8,9], person identification [10], sports activity recognition [11,12], risk
assessment for musculoskeletal disorders [13], and so on.

Over the years, there has been an increase in the use of IMU-based deep learning
models due to their cost-effectiveness and accurate analysis capabilities. However, many
of the current deep learning approaches are highly specialized, are designed for specific
application areas, and often lack generalizability. Their performance tends to degrade
significantly with even slight changes in low-level kinematics, making them unsuitable for
adaptation to new, similar problems without substantial re-engineering. This work aims to
develop a generalized model capable of performing robust and realistic gait analysis and in-
ference across a broader spectrum of scenarios. In this paper, we offer a generic deep model
called Generisch-Net, which can be trained and validated across three different application
areas: (1) affect state prediction, (2) Re-ID (Re-ID), and (3) HAR. The results demonstrate
that the model tends to achieve acceptably high accuracies for all three application areas.
The key contributions are listed below.

• We introduce Generisch-Net, a novel generic BiGRUs–convolutional neural network
(BiGRU-CNN) designed to analyze human motion using wearable IMUs, such as those
found in smartwatches and smartphones. This model has been trained for human
activity recognition (HAR), human emotion recognition (HER), and Re-ID (Re-ID)
tasks (see Section 4).

• The proposed model has been validated across three datasets, achieving average
accuracies of 96.97% for HAR, 93.71% for Person Re-ID, and 78.20% for HER (see
Section 5).

• A comparative analysis with existing state-of-the-art application-specific methodolo-
gies is provided to justify our approach (see Section 6).

The article is organized as follows: Section 2 offers an in-depth review of recent
relevant literature. Section 3 details the datasets used in the study. The comprehensive
pipeline of the proposed deep model is outlined in Section 4. Section 5 presents the results
and analyses. Lastly, Section 6 provides a conclusive summary of the article.

2. Literature Review

Human gait analysis using wearable IMUs has been used for human mobility analysis
such as the estimation of human emotions [9], human activities [14,15], the detection
of cognitive impairment and falls [16], and even Re-ID. In the context of our work, we
concentrate on research that not only shares the same analytical technique but also uses
the same datasets. We start with the state-of-the-art literature on HAR, followed by the
estimation of emotions and Re-ID.

Zhang et al. [17] created a deep model with an attention mechanism, reporting an
F1-score of 94.5% on the WISDM 2011 dataset. Xia et al. [18] designed a model that
combines LSTM, CNN, and global average pooling, validated on the WISDM 2011, SMART-
PHONE, and OPPORTUNITY datasets, achieving average accuracies of 95.85%, 95.78%,
and 92.63%, respectively. Pang et al. [19] presented a model for which an F1-score of
99.13% was reported on the WISDM 11 dataset, featuring two novel modules: the Pyramid
Multi-Scale Convolutional Network (PMCN) for detailed receptive field and multiscale
representation, and the Cross-Attention Mechanism, which enhances relevant information
and suppresses irrelevant data by establishing interrelationships among sensor, temporal,
and channel dimensions.
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Li et al. [20] proposed a feature-set enhancement mechanism for which input feature
maps Fin are first processed through a convolutional neural network (CNN) and subse-
quently undergo a deconvolution operation. The resultant feature map Fenhanced is then
concatenated with Fin, yielding an augmented training feature map Ftrain = Fin ⊕ Fenhanced.
This methodology achieved a classification accuracy of 99% on the WISDM 2011 dataset.
Nafea et al. [21] introduced a hybrid model combining a CNN and bidirectional long
short-term memory (BiLSTM), reporting an average classification accuracy of 98.53% on
the same dataset. Ihianle et al. [22] developed a CNN+BiLSTM architecture, reporting a
weighted average F1-score of 98% on the WISDM 2019 dataset.

Imran et al. [5] introduced the HARDenseRNN model, combining CNN-BiGRU layers
with a direct link between input signals and the BiGRU component. The model was
evaluated on the WISDM 2011 and WISDM 2019 datasets. For the WISDM 2011 dataset, it
attained an accuracy of 97.29% using 1D input signals derived from the magnitude of 3D

acceleration
√

a2
x + a2

y + a2
z and 98.81% with 3D acceleration components (ax, ay, az). In the

1D context, the precision, recall, and F1-score were all 97%, whereas in the 3D context, these
metrics increased to 99%. For the WISDM 2019 dataset, which includes eighteen activities
recorded via smartwatches, the model achieved accuracies of 97.5% for 3D acceleration
(ax, ay, az) and 98.4% for 6D acceleration and angular velocities (ax, ay, az, ωx, ωy, ωz). In
both scenarios, precision, recall, and F1-score were consistently high at 98%.

Wearable inertial sensor-based intelligent systems for identifying human emotions
offer several advantages over traditional methods such as facial expression analysis or
self-reporting. For instance, wearable sensors’ emotion recognition remains effective even
when facial expressions are hidden or not discernible. Wearable sensors equipped with
IMUs are particularly suitable for emotion estimation, as they can be attached to the human
body non-invasively, can be worn for extended periods, and do not pose any privacy
concerns. Zhang et al. [23] achieved an accuracy of 81.2% using smart wristbands with
accelerometers to assess neutral, angry, and happy emotions. The study, however, was
limited to Chinese respondents and three emotions. Piskioulis et al. [24] used smartphone
accelerometers and gyroscopes to identify pleasure and impatience, with accuracy rates of
87.90% and 89.45%, respectively. Reyana et al. [25] used various body sensors to recognize
four emotions: happiness, sadness, anger, and neutrality. And they reported accuracies
of 80%, 70%, 90%, and 100%, respectively. Quiroz et al. [26], used the data of 50 subjects
captured with smart bands’ inertial sensors to identify two emotions, namely joyfulness
and sadness. An audio-visual paradigm for the arousal of emotions was employed, and
they achieved an accuracy of 75%. Hashmi et al. [27] proposed a set of manually curated
features encompassing components derived from the spatiotemporal and wavelet domains.
They used a closed-access emotions gait dataset collected with body-mounted smartphone
IMUs and recorded six basic emotions, i.e., happiness, sadness, anger, fear, disgust, and
surprise. Their findings highlight the potential of leveraging features from these domains
to effectively train multiple supervised learning models. An overall classification accuracy
of 86.45% was achieved for all six emotions. In another study on the same dataset [9],
a CNN-BiGRU model was proposed, and it was able to estimate six emotions with an
accuracy of 95%.

Zou et al. [28] developed a deep learning framework for identifying and authenticating
individuals in uncontrolled environments using inertial sensor data. They employed
smartphones to track human steps in open spaces. In a similar vein, Qiu et al. [29]
introduced a model that distinguishes between healthy individuals and those with illnesses.
Ahmed et al. [30] utilized visual and inertial sensors to affordably predict human gait.
Gohar et al. [10] proposed a BiGRU-based neural network for re-identifying individuals,
achieving an accuracy of 86.23% on a wearable IMU dataset.

Researchers have explored and fine-tuned various deep learning models, such as
CNNs, LSTMs, and GRUs, for gait analysis and inference in a data and task-specific
manner. However, these models often suffer from significant performance degradation
with even minor changes in low-level kinematics, raising concerns about their stability and
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reliability. For example, a model trained on inertial gait data for human activity recognition
may experience a sharp decline in performance when applied to different tasks, such
as emotion recognition or person re-identification, despite the data type being low-level
kinematics. This lack of generalizability limits the applicability of such models and restricts
their use in real-world scenarios.

To address this challenge, we introduce Generisch-Net, a generic model architecture
designed to operate without domain-specific fine-tuning. Generisch-Net is trained on low-
level kinematics data from three distinct datasets, each representing different application
areas: human activity recognition, emotion recognition, and person re-identification. The
proposed model not only performs well across these tasks but also is lightweight, making it
suitable for deployment in low-power IoT edge devices for near real-time decision-making.
This broad applicability and this efficiency position Generisch-Net as a practical solution
for diverse real-world scenarios.

3. Datasets

The proposed generic deep model was trained for three distinct applications: HER,
HAR, and Re-ID. For HAR, we utilized two open-access datasets from Fordham Univer-
sity’s WISDM lab, WISDM 2011 [31], and WISDM 2019 [32]. We used a Closed-Access
Emotions Dataset [27] for HER. For Re-ID, we used a Closed-Access Re-ID Dataset [10].
All of the datasets are collected with wearable IMUs. In the following sub-sections, brief
descriptions of the datasets are given.

3.1. Datasets for HAR

For HAR, we relied on two well-known and publicly available datasets from the
WISDM lab, namely WISDM 2011 and WISDM 2019. Brief descriptions of both datasets are
given below.

3.1.1. WISDM 2011 Dataset

The dataset was collected in a controlled environment setting, and it is categorized into
six primary classes. The “Walking” class is the most prevalent, containing 424,397 entries
and making up 38.6% of the total data. The “Jogging” class follows with 342,176 entries,
which constitute 31.15% of the dataset. The “Upstairs” class has 122,869 entries (11.18%),
and the “Downstairs” class has 100,427 entries (9.14%). The “Sitting” and “Standing” classes
have 59,939 and 48,395 entries, representing 5.45% and 4.40% of the dataset, respectively.
During data collection, the phone was placed in the participants’ pockets. The dataset is
complete with no missing values, although the class distribution is notably imbalanced,
as shown in Figure 1a. The proposed Generisch-Net demonstrates strong performance
across all activities, as quantified by precision, recall, and F1-score metrics. Notably, the
model achieves these results without employing specific strategies like weighted sam-
pling or adjusting loss functions to address under-represented classes. This suggests that
Generisch-Net has an inherent ability to handle class imbalances, evidenced by a high
weighted average F1-score of 96% for majority classes and acceptable scores for minority
classes. These results highlight the potential of Generisch-Net to manage diverse data dis-
tributions, making it a valuable tool for real-world applications where imbalanced datasets
are common. Further details are discussed in Section 5.1.2.

3.1.2. WISDM 2019 Dataset

There are eighteen everyday activities in this dataset. 51 volunteers (ages 18–25)
provided sensor data from cellphones and smartwatches. For our experiments, we used
data collected with a smartwatch. The class distribution of various ADLs is illustrated in
Figure 1b, and it is observable that it is adequately balanced. The phone was placed in the
pants of the subjects, and the smartwatch was worn on their dominant hands.
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(a) WISDM 2011 dataset. (b) WISDM 2019 dataset. (c) Emotions dataset.

(d) Re-ID dataset.

Figure 1. Distribution of classes for different datasets shown here.

3.2. Closed-Access Emotions Dataset

This dataset was collected in one of our previous studies [27]. The dataset involved
40 healthy individuals, consisting of 26 men and 14 women, with an average age of
25.1 years. To capture the necessary data, we utilized the internal IMU of a smartphone,
which enabled us to calculate 3D accelerations and angular velocities. The smartphones
were attached to the participants’ chests using elastic bands. The data collection primarily
involved individuals who regularly engage in walking activities. The dataset encompasses
six distinct emotions: fear, happiness, anger, sadness, disgust, and surprise. The class
distribution is depicted in Figure 1c where the slight class imbalance is observable.

3.3. Closed-Access Re-ID Dataset

The individual re-identification dataset was gathered from a prior study of ours [10].
It is demographically diverse, containing data from both Asian and European subjects.
A total of 86 volunteer participants (N = 86; 49 men and 37 women; age range: 17–72)
contributed to the data collection sessions. Data were gathered using two distinct types of
sensors: the MPU-6500 IMU embedded in smartphones and the APDM Opal IMU. These
sensors were securely attached to the participants’ chests using elastic belts.

The MPU-6500, commonly found in smartphones, includes three sensors: a three-axis
gyroscope, a three-axis accelerometer, and, in some cases, a three-axis magnetometer. Its
primary function is to measure angular velocity (ω), acceleration (a), and, if applicable, mag-
netic field intensity (B). In contrast, the APDM Opal IMU is renowned for its high precision
and accuracy in human motion analysis. The Opal IMU, which includes accelerometers,
gyroscopes, and magnetometers, is designed specifically for precise tracking of human
movement, and it is commonly used in biomechanical research, clinical evaluations, and
sports performance analysis. The class distribution of the dataset is illustrated in Figure 1d.
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4. Methodology

This section outlines the methodology used in this study, including preprocessing
steps, segmentation processes, and the architecture of the deep learning model. The model
consists of BiGRU and CNN layers combined in a special fashion. BiGRUs are used in
the Generisch-Net model to account for capturing temporal dependencies existing within
sequential data, generated by wearable sensors. Unlike regular recurrent neural networks
(RNNs), gated recurrent units (GRUs) can help mitigate the vanishing gradient problem,
which is a long-term issue in the training of deep sequences. This is done through a gating
mechanism that selectively updates or resets the hidden state, making it easier for the
network to keep track of long-term dependencies. A bidirectional approach is further
motivated due to the model being able to look both forward and backward in time—a
desirable property for interpreting temporal patterns, such as human motion data. Selecting
CNN layers, specifically 1D convolutional layers with various kernel sizes (e.g., 1 × 5 and
1 × 3), helps in enhancing the spatial hierarchies of features learned by models. CNN
performs local dependencies and automatically captures hierarchal patterns in the context
of complex spatial configurations, which is necessary for dealing with complex patterns. It
is an interesting design decision to not concatenate feature maps through different kernel
sizes and instead add them together. This approach reduces the number of parameters
in the model, making it computationally lean and apt for edge devices to perform in real
time. Finally, at the end of the model, global average pooling was incorporated to keep
the overall complexity of the model as low as possible. The complete workflow of our
proposed approach is depicted in Figure 2.

Figure 2. The complete pipeline of the project includes a neural network. IMUs of smartphones and
smartwatches are used for data collection. Through segmentation, the long signals are decomposed and
passed to Generisch-Net. It has bi-directional GRU layers, followed by three inception-like modules.
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4.1. Signal Segmentation

The objective of the study was to come up with a purely deep learning-based solution;
therefore, no noise suppression, feature engineering, or any other type of pre-processing
was carried out on any of the datasets. Since neural networks require fixed-size input,
long-input sequences are segmented into smaller chunks. Here, the segmentation window
and stepping size are the important parameters, and they were empirically selected, as
shown in Table 1. We conducted experiments to select the best-performing values of
segmentation window size and stepping size. Table 1 depicts the comprehensive details of
these experiments for each dataset.

Table 1. Optimal selection of segmentation window size and step size for each dataset.

Window Size (w) Step Size (s) Accuracy (%)

WISDM 11

128 64 93.54
256 64 94.15
256 32 95.08

WISDM 19

128 64 83.76
256 64 87.87
256 32 93.65
256 16 96.58

Closed-access Emotions

128 64 39.63
256 64 38.21
256 32 59.15
256 16 78.63

Closed-access Re-ID

128 64 77.09
256 64 87.22
256 32 93.12

4.2. Generisch-Net

The study introduces the Generisch-Net model, which stands out from traditional
deep learning architectures due to its unique approach of combining feature maps from
different-sized kernels through addition, rather than concatenation. This idea significantly
reduces the number of model parameters, making it highly suitable for real-time and
low-latency applications like Re-ID, HAR, or HER.

To capture both spatial and temporal features effectively, the model incorporates a
Bi-directional GRU layer, followed by convolutional layers that operate on the features
extracted from the Bi-GRU layer. This combination enhances the model’s performance.
Additionally, the model avoids the use of fully connected layers before the softmax layer by
employing global average pooling. This design choice not only reduces model complexity
but also makes it an ideal option for resource-constrained environments.

The Generisch-Net model utilizes 32 units in its bidirectional GRU (Bi-GRU) layers, as
depicted in Figure 2. Following the Bi-GRU layers, there are three convolutional modules
referred to as “Diverse-Kernel Modules” (see Figure 2). Batch normalization is applied
before the output feature map from the Bi-GRU layer is fed into the CNN modules. Each
convolutional module consists of two different-sized convolutional kernels, specifically
1× 5 and 1× 3, with 10 kernels of each size. Prior to these, 64 1× 1 convolutions are applied.
The feature maps generated via these kernels are summed, and then 64 1 × 1 kernels are
applied again. The input feature maps are also processed via 64 1 × 1 kernels, and the
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resulting feature maps are added to those generated via the 64 1 × 1 kernels applied after
the 1 × 5 and 1 × 3 kernels. This setup incorporates residual connections into the module,
enabling it to learn identity mappings. Subsequently, global average pooling is applied,
followed by a softmax layer.

It is worth noting that the same model was trained for HAR, HER, and Person Re-ID
tasks. The tuning focused on parameters such as the segmentation window, step size, epoch,
and batch size, adapting them to the specific requirements of each task. The experimental
results obtained from multiple benchmark datasets demonstrate the improved performance
achieved through this approach.

5. Results

Evaluation criteria that provide a more realistic evaluation of the model’s performance
and behavior include precision, recall, and F1-score—a combination of the two—in addition
to accuracy. This is especially true when working with imbalanced datasets. We used
10 cross-validations for each application and reported the best model. We attained the
highest accuracy of 95.624% for WISDM 2011 and 96.98% for WISDM 2019 in the case of
HAR. On the closed-access emotion dataset, we obtained 78.2% accuracy for HER. Similarly,
using the closed-access Re-ID dataset, an accuracy of 93.71% was obtained. The upcoming
subsections provide the specifics.

5.1. HAR

We made use of smartphones’ inertial sensor data from WISDM 2011 and smart-
watches’ inertial sensor data from the WISDM 19 datasets.

5.1.1. WISDM 2019

We achieved a test accuracy of 96.978%. The weighted average recall (R), F1-score
(F1), and precision (P) were all 97% (Figure 3). From the figure, it can be observed that the
class ‘Eating Sandwich’ had the lowest precision at 91% (P = 0.91), while its recall was
97% (R = 0.97), and its F1-score was 94% (F1 = 0.94). All the other classes had an F1-score
(F1) above 94%. The confusion matrix in Figure 4 indicates that ‘Eating Sandwich’ was
mostly confused with other eating activities, such as ‘Eating Pasta’, ‘Eating Sandwich’, and
‘Eating Chips’, with the highest confusion being 1.1% (1.1%) for ‘Eating Chips’. The highest
F1-score (F1) of 99% (F1 = 0.99) was achieved for the classes ‘Playing Catch w/Tennis Ball’,
‘Jogging’, ‘Sitting’, and ‘Clapping’ (see Figure 3). The parameters used were as follows:
epochs = 70, segmentation size = 256, and step size = 16.

5.1.2. WISDM 2011

We achieved a test accuracy of 95.624% and a weighted average F1-score (F1) of 96%.
The recall (R), precision (P), and F1-score (F1) for each class are shown in Figure 5. It
can be observed that the minimum F1-score (F1 = 0.79) is for the class ‘Sitting’, which
also has the minimum recall (R = 0.72). The highest F1-score (F1 = 0.99) was achieved
for the classes ‘Walking’ and ‘Jogging’. From the confusion matrix in Figure 6, it can be
observed that the ‘Sitting’ class was most confused with ‘Standing’, with a total confusion
accuracy of 6.8% (6.8%). Both activities are non-locomotive and involve very little inertial
movement, making differentiation challenging. The following tuning parameters were
chosen: epochs = 70, segmentation size = 256, and step size = 32.
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Figure 3. Precision (P), recall (R) and F1-score (F1) for the WISDM 2019 HAR dataset.

Figure 4. Confusion matrix for WISDM19 for best case of Generisch-Net.
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Figure 5. Precision (P), recall (R) and F1-score (F1) for the WISDM 2011 HAR dataset.

Figure 6. Confusion matrix for WISDM11 for best case of Generisch-Net.
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5.2. Re-ID

The model achieved a test accuracy of 93.713% on the Re-ID dataset, with an aver-
age weighted F1-score (F1), recall (R), and precision (P) of 94%. Figure 7 presents the
performance report for each individual. Notably, the model outperformed the previous
study by Gohar et al. [10]. The minimum F1-score (F1), observed for subject ID 31, was
76% (F1 = 0.76), while the highest F1-score (F1) of 100% (F1 = 1.00) was achieved for
several subjects, including IDs 76, 77, and 82. The confusion matrix in Figure 8 further illus-
trates the model’s robust performance. The following tuning parameters were employed:
epochs = 70, segmentation size = 256, and step size = 32.

5.3. HER

Emotion recognition is a relatively challenging problem compared to HAR. We found
that the model performed better using only 3D acceleration data, achieving a test accuracy
of 78.198% and an average F1-score (F1), recall (R), and precision (P) of 78%. Figure 9 shows
the performance report for individual classes. It can be observed that the lowest F1-score
(F1) was for the ‘anger’ class at 75% (F1 = 0.75), while the highest F1-score (F1) was for
the ‘sad’ class at 81% (F1 = 0.81). The confusion matrix is shown in Figure 10, indicating
that the ‘fear’ class was mostly confused with the ‘happy’ class. The following tuning
parameters were chosen: epochs = 70, segmentation size = 256, and step size = 16.

Figure 7. Precision (P), recall (R) and F1-score (F1) for the Re-ID dataset for the best case of Generisch-Net.
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Figure 8. Confusion matrices: the first row shows the confusion matrix for the closed-access Re-ID
dataset for the best case of Generisch-Net, and the second row shows zoomed into it for Class 22–29 (a)
and Class 32–38 (b).

Figure 9. Precision (P), recall (R) and F1-score (F1 for the Closed-Access Emotions Dataset in the best
case of Generisch-Net.
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Figure 10. Confusion matrix for closed-access emotions dataset for the best case of Generisch-Net.

5.4. Computational Efficiency

The proposed Generisch-Net is very suitable for deployment in IoT edge devices
because of its having low computational and memory overheads, which are critical for
efficient real-time IoT edge devices and applications. For the WISDM 2011 dataset, the
model comprised 28,616 trainable parameters, occupying only 111.78 KB of memory. Simi-
larly, for the WISDM 2019 dataset, the parameter count slightly increased to 30,272, with a
memory size of 118.25 KB. The models for the emotions and Re-ID datasets were identical
in size, each containing 29,192 trainable parameters and requiring 114.03 KB of memory.
These modest parameter counts and memory footprints enabled Generisch-Net to operate
effectively on low-power, low-cost IoT devices, supporting near-instantaneous health moni-
toring and decision-making. This optimized resource utilization underscores the suitability
of Generisch-Net for practical deployment in various Internet of Health Things (IoHT)
scenarios, where high performance and efficiency are crucial.

6. Conclusions

The aim of the study was to attempt to develop a generic deep neural network for
human motion analysis using wearable IMUs. The proposed model is generic, as it was
trained and validated on three different applications, i.e., HAR, HER, and Re-ID. The
generic model performed fairly well compared to previous studies, as shown in Table 2.
For the WISDM 2011 dataset, our presented model achieved an accuracy of 95.624%,
outperforming [33]. However, our model was slightly surpassed by the LSTM-CNN
model [18], which achieved an accuracy of 95.85%, and the CNN-BiGRU model [9], which
achieved 98.81%. Overall, our presented model performed well and showcased competitive
accuracy on this dataset.
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Table 2. Performance comparison with the existing application-specific deep models.

Type & Reference Accuracy (%)

WISDM 2011 dataset

[18] LSTM-CNN 95.85
[33] CNN 93.32

[17] CNN with an attention mechanism 96.4
[5] CNN-BiGRU with Direct-link 98.81

Presented model 95.624

WISDM 2019 dataset

[34] MCBLSTM 96.6 ± 1.47
[32] KNN, DT, RF 94.4

[5] CNN-BiGRU with Direct-link 98.4
Presented Model 96.978

Closed-Access Emotions Dataset

[27] Traditional ML 86.45
[9] CNN-BiGRU with Raw-link 95

Presented model 78.198

Closed-Access Re-identification Dataset

[10] BiGRU 86.23
Presented model 93.713

For the WISDM 2019 dataset, our presented model achieved an accuracy of 96.978%.
It outperformed the [32], which achieved an accuracy of 94.4%. The presented model
showcased a higher accuracy, indicating superior performance on this dataset. The CNN-
BiGRU model presented in [9] outperformed slightly with an accuracy of 98.4%. For Re-ID,
our presented model achieved an accuracy of 93.713% and outperformed the [10] BiGRU
model, which achieved an accuracy of 86.23%. For the Closed-Access Re-Identification
Dataset, our presented model achieved an accuracy of 93.713% and outperformed the [10]
BiGRU model, which achieved an accuracy of 86.23%. For the HER, our presented model
achieved an accuracy of 78.198%, which was much lower than the CNN-BiGRU model [9]
(at 95%). However, a comparison of the results with existing methodologies was not the
objective of this study. The development of a generic deep model was our main idea, and
our findings show that the proposed model can work on three different application domains;
i.e., it is generic. It is important to note that the proposed methodology was validated
using 10-fold cross-validation, rather than subject-wise cross-validation. Given the large,
diverse, and heterogeneous nature of the dataset in this study, our model demonstrated
consistent performance across all folds, indicating its robustness and suggesting that
it learned generalized features, rather than overfitting to specific subjects or sessions.
We chose 10-fold cross-validation for its balance between computational efficiency and
thorough evaluation. Subject-wise cross-validation is computationally expensive, and it
can be beneficial in scenarios with limited data or significant variability between subjects.

Generisch-Net’s strong performance stems from key design and architectural choices
rooted in deep learning principles and tailored for the precise analysis of wearable sensor
data. The model employs a hybrid architecture, combining bidirectional GRUs (BiGRUs)
with convolutional neural networks (CNNs) to effectively capture both temporal and spatial
information. BiGRU layers excel at learning sequential patterns by capturing temporal
dependencies in sensor data, which are crucial for understanding activities, emotions, and
identity through low-level kinematics data. The bidirectional nature of GRUs enhances
this capability by considering context from both past and future directions, resulting in a
more accurate representation of complex movements. Meanwhile, CNN layers specialize
in extracting spatial features, with varied kernel sizes enabling the detection of multi-scale
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features essential for activity and subtle motion recognition. By merging feature maps from
different kernels, rather than concatenating them, Generisch-Net maintains a low parameter
count, boosting computational efficiency without compromising accuracy—critical for
deployment in low-power, memory-constrained devices like wearable sensors and IoT
edge devices. Additionally, the use of global average pooling before the final classification
layer enhances generalization and reduces the risk of overfitting compared to traditional
fully connected layers. This combination of design choices ensures that Generisch-Net not
only achieves high accuracy but also operates efficiently on resource-limited edge devices,
making it well suited for real-world applications.
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