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Abstract: Recently, deep unfolding network methods have significantly progressed in hyperspectral
snapshot compressive imaging. Many approaches directly employ Transformer models to boost the
feature representation capabilities of algorithms. However, they often fall short of leveraging the full
potential of self-attention mechanisms. Additionally, current methods lack adequate consideration
of both intra-stage and inter-stage feature fusion, which hampers their overall performance. To
tackle these challenges, we introduce a novel approach that hybridizes the sparse Transformer and
wavelet fusion-based deep unfolding network for hyperspectral image (HSI) reconstruction. Our
method includes the development of a spatial sparse Transformer and a spectral sparse Transformer,
designed to capture spatial and spectral attention of HSI data, respectively, thus enhancing the
Transformer’s feature representation capabilities. Furthermore, we incorporate wavelet-based meth-
ods for both intra-stage and inter-stage feature fusion, which significantly boosts the algorithm’s
reconstruction performance. Extensive experiments across various datasets confirm the superiority
of our proposed approach.

Keywords: compressive sensing; hyperspectral image reconstruction; snapshot compressive imaging;
deep unfolding network

1. Introduction

The continuous demand for capturing high-dimensional data has driven the develop-
ment of imaging devices and processing algorithms. Compared to imaging systems that
acquire RGB images, hyperspectral imaging (HSI) systems can capture a wider range of
wavelength information from scenes. As a result, they have rapidly developed and been ap-
plied to various downstream visual tasks [1–6]. Traditional HSI systems primarily acquire
scene information through one-dimensional or two-dimensional scanning mechanisms [7].
However, these systems have slow imaging speeds due to the need for multiple exposures,
making them unsuitable for dynamic scenes. In recent years, many snapshot compressive
imaging (SCI) systems [8–10] have emerged with the advancement of compressive sensing
theory [11]. These systems can obtain three-dimensional HSI data from two-dimensional
observations with a single exposure. Among SCI systems, coded aperture snapshot spectral
imaging (CASSI) systems [9] have gained widespread use due to their advantages of low
cost, low power consumption, and high sampling rates. Specifically, CASSI systems consist
of two main components: a hardware encoder and a software decoder. The hardware en-
coder uses optical devices like coded apertures and prisms to modulate three-dimensional
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HSI scenes into two-dimensional compressed measurements. The primary task of the soft-
ware decoder is to reconstruct the original three-dimensional HSI scenes from the acquired
two-dimensional measurements. The quality of data reconstruction entirely depends on
the effectiveness of the algorithm used. Therefore, the core challenge of this research is to
reconstruct higher-quality original HSI data.

Current reconstruction algorithms can be broadly categorized into two types: tra-
ditional model-based optimization methods and learning-based deep neural network
methods. Model-based methods typically use various handcrafted priors to solve tradi-
tional ill-posed optimization inverse problems [12–20]. While these methods benefit from
mathematical derivations, enhancing their theoretical interpretability, they face limitations
in prior design and often exhibit slow reconstruction speeds. On the other hand, deep
learning techniques, with their powerful feature modeling capabilities, have shown out-
standing performance in many tasks. Consequently, many learning-based algorithms have
been applied to HSI reconstruction to overcome the limitations of model-based methods.
Learning-based methods can be further divided into three strategies: end-to-end (E2E)
methods, plug-and-play (PnP) methods, and deep unfolding network (DUN) methods.
E2E methods [21–28]. use deep networks to directly establish a mapping between three-
dimensional HSI data and two-dimensional compressed measurements. Although E2E
methods have achieved some impressive reconstruction results, they still suffer from a lack
of interpretability due to the black-box nature of the networks. PnP methods [29–33] inte-
grate deep network modules into model-based methods, replacing traditional handcrafted
priors with deep network modules. While PnP methods more effectively address the prior
subproblem in optimization models, they still follow the traditional optimization process
and do not fundamentally overcome the limitations of model-based methods. DUN meth-
ods [34–50] construct multi-stage unfolding networks to implement the iterative solving
process of model-based methods in an end-to-end manner. DUN methods alleviate the
interpretability challenges and provide encouraging experimental results. As a result, DUN
methods are rapidly evolving and showing great potential.

Despite the promising reconstruction results, existing DUN methods still face several
challenges in HSI reconstruction. On the one hand, many existing DUN methods utilize the
non-local information modeling capabilities of Transformer [51] modules to significantly
enhance the final reconstruction performance. Existing Transformers typically model the
correlations among all tokens in the query–key pairs. However, in practice, if some tokens in
the query do not correlate with tokens in the key, the estimated self-attention values for these
tokens are still used for feature aggregation, thereby limiting the final feature representation
capability. Additionally, sparse self-attention mechanisms have demonstrated outstanding
performance in numerous RGB image processing tasks [52,53]. On the other hand, DUN
methods experience feature information loss within each network stage due to cross-
scale transformations, as well as across different stages due to frequent signal-to-feature
conversions. In existing methods, Herosnet [42] mitigates cross-stage information loss by
concatenating features from earlier stages and passing them into the next stage. PADUT [45]
achieves cross-stage information fusion by applying Fourier transform operations to the
features from a frequency-domain perspective. RDLUF [46] reduces intra-stage multi-scale
information loss through the convolutional fusion of features at different scales, while
also minimizing cross-stage information loss by generating modulation parameters from
previous stage features to guide information capture in the next stage. SUCTNet [54]
introduces a dual transformer-based module to simultaneously utilize HSI interactions
and details at both global and local scales. EDUNet! [49] enhances cross-stage feature
transfer efficiency by constructing a cross-stage spectral self-attention network module
that leverages HSI characteristics. M2U-Net [55] achieves feature fusion for the HSI super-
resolution task through a cross-attention guided module. uHNTC [56] designs a multi-level
cross-feature attention mechanism to achieve hierarchical spatial–spectral feature fusion
for the hyperspectral and multispectral image fusion task. Recently, wavelet-based feature
fusion methods have been applied to many low-level vision tasks [57,58] and have achieved
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impressive results. This prompts us to explore how to leverage the properties of the wavelet
transform [59] to construct a feature fusion module for HSI data, aimed at addressing the
issue of intra-stage and cross-stage feature information loss.

To address these challenges, we propose a novel method that hybridizes the sparse
Transformer and wavelet fusion-based deep unfolding network for hyperspectral snapshot
compressive imaging. Specifically, we introduce a sparse spatial Transformer and a sparse
spectral Transformer to model the self-attention in the spatial and spectral dimensions,
respectively. By extracting the most relevant regions through sparse operations to compute
similarity for feature aggregation, we enhance the feature representation capability of the
Transformer. Additionally, we utilize the cross-scale properties of the wavelet transform to
construct a wavelet-based intra-stage feature fusion module, addressing the intra-stage fea-
ture information loss in DUN methods. Finally, we further leverage the wavelet transform
to build an inter-stage feature fusion module, enabling cross-stage feature transmission in
the wavelet domain and avoiding the information loss caused by frequent signal-to-feature
conversions. The main contributions of this study can be summarized as follows:

• We propose a novel method that hybridizes the sparse Transformer and wavelet fusion-
based deep unfolding network for hyperspectral snapshot compressive imaging.

• To enhance the expressive capability of existing Transformer methods, we propose a
sparse spatial–spectral Transformer. This approach uses sparse operations to avoid
calculating correlations for irrelevant tokens during feature aggregation.

• To address the issue of information loss within and across stages of the DUN method,
we design the wavelet-based intra-stage fusion module and wavelet-based inter-stage
fusion module, respectively. These fusion modules utilize the characteristics of the
wavelet transform to enhance HSI reconstruction.

2. Related Works
2.1. Model-Based Traditional Optimization Methods

For reconstruction methods in the hyperspectral image snapshot compressive imaging
task, traditional model-based optimization approaches incorporate various hand-crafted
prior knowledge as regularization terms and solve the ill-posed inverse problem through
iterative optimization. For instance, GAP-TV [12] incorporates the total variation (TV) prior
term and utilizes the generalized alternating projection (GAP) [60] algorithm to address
the optimization problem for HSI reconstruction. To exploit the sparse constraint of HSI
for reconstruction, Lin et al. [13] suggests learning an overcomplete dictionary that rep-
resents HSI more sparsely than previous methods. The paper [14] leverages the spatial
and spectral sparsity properties of HSI data to develop a dictionary learning approach
based on sparse priors for HSI scene reconstruction. The paper [15] compares the impact
of various estimation algorithms on the effectiveness of HSI reconstruction. CT3D [16]
introduces a method for reconstructing HSI using coupled tensor decomposition and the
alternating direction method of multipliers (ADMM) [61] iteration. MMLE-GMM [17]
extends a maximum marginal likelihood estimator to a Gaussian mixture model with a
primarily low-rank covariance matrix, achieving accelerated optimization for reconstruc-
tion. DeSCI [18] creates a joint model that integrates non-local self-similarity and rank
minimization methods with the SCI sensing process, resulting in excellent reconstruction
outcomes. NGmeet [20] proposes an algorithm that combines the global spectral low-rank
property and spatial non-local self-similarity prior for hyperspectral image reconstruction.
Traditional model-based iterative optimization methods, relying on limited prior designs
and requiring multiple iterations for optimization, lead to slow reconstruction speeds and
suboptimal outcomes.

2.2. Learning-Based Neural Network Methods

Due to the powerful non-linear feature modeling capabilities of deep neural networks,
many learning-based methods are being employed to address the reconstruction of HSI
data. These learning-based methods can be categorized into three strategies: (1) end-to-



Sensors 2024, 24, 6184 4 of 21

end (E2E) methods; (2) plug-and-play (PnP) methods; and (3) deep unfolding network
(DUN) methods.

(1) The E2E methods directly model the mapping relationship between 2D compressed
measurements and 3D HSI data through end-to-end learning using deep networks. For
instance, λ-net [23] sets up a two-stage network, where the initial reconstruction stage
utilizes self-attention for reconstruction, followed by a refinement stage to further im-
prove the results. TSA-Net [24] tackles different dimensions separately through the use
of spatial–spectral self-attention mechanisms. MST [25] introduces an innovative Mask-
guided Spectral-wise Transformer designed for reconstructing HSI. HDNet [26] integrates
dual-domain constraints in frequency and spatial–spectral domains within its objective
function to improve the quality of reconstruction outcomes. CST [27] introduces a novel
coarse-to-fine sparse Transformer approach that incorporates the sparsity of hyperspec-
tral imaging into deep learning for reconstruction purposes. BIRNAT [28] integrates the
expressive capabilities of an end-to-end convolutional framework with bidirectional re-
current neural networks (RNNs) to effectively capture sequence correlations in snapshot
compressive imaging. However, the end-to-end (E2E) methods encounter challenges in
interpretability because of the opaque nature of convolutional networks.

(2) The PnP methods often use the outcomes from pre-trained denoising networks to
replace solving the prior subproblem in traditional model-based approaches. PnP-HSI [29]
employs a deep learning denoising network as a regularization prior and addresses the
reconstruction optimization problem using the ADMM algorithm. PnP-DIP-HSI [30]
integrates a deep image prior (DIP) network as a prior within the iterative optimization
algorithm, establishing a self-supervised framework for reconstructing HSI. Qiu et al. [31]
extends the PnP algorithm by incorporating deep image denoising and total variation
priors into the conventional optimization objective. LR2DP [32] and LRSDN [33] leverage
the robust spectral correlation and complex spatial structures inherent in HSI for SCI
reconstruction, integrating model-driven low-rank priors with data-driven deep priors.
The PnP methods provide a partial solution to the interpretability limitations of E2E
methods, yet they continue to grapple with the inherent challenge of slow reconstruction
speeds characteristic of traditional model-based approaches.

(3) The DUN methods usually utilize multi-stage networks instead of the iterative
optimization processes seen in model-based methods. Each stage employs deep neural
network models to address both the data and prior subproblems iteratively. For instance,
GAP-Net [34] transforms the generalized alternating projection optimization algorithm
into a multi-stage network tailored for HSI reconstruction. ADMM-Net [35] unfolds the
standard tensor alternating direction method of multipliers optimization algorithm into
a multi-layer network structure. DSSP [36] enhances the spatial–spectral fidelity of HSI
data by leveraging the local coherence and dynamic features of HSI to construct prior
learning. DNU [37] creates a regularization term by exploring both local and non-local
correlations of HSI as data-driven priors. Zhang et al. [38] proposes developing a deep
Canonical Polyadic decomposition model in the unfolded network to learn a low-rank prior
for HSI data. DGSMP [39] combines a learnable Gaussian Scale Mixture prior with the Max-
imum A Posteriori estimation algorithm to achieve HSI reconstruction. DGSM-Swin [40],
a variant of DGSM [39], is constructed by leveraging the Swin Transformer [62], further
enhancing the reconstruction performance of HSI. GAP-CCot [41] combines the expressive
capabilities of convolution and the content Transformer, creating a hybrid network module
that is integrated into the GAP algorithm for SCI reconstruction. HerosNet [42] unfolds
the Iterative Shrinkage-Thresholding Algorithm (ISTA) [63] into a multi-stage network,
inserting learnable flexible sensing matrices and constructing adaptive dynamic gradient
descent at each stage. Ying et al. [43] employ a dual-domain feature learning approach
to comprehensively acquire complementary information in the feature space, enhancing
the overall algorithm’s feature modeling capability. DAUHST [44] introduces an unfolding
network framework that is aware of degradation, where parameters estimated during the
degradation process govern different iterative stages. PADUT [45] designs a framework in-
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corporating pixel-adaptive steps and a non-local spectral Transformer to enhance expressive
capability at each stage. RDLUF [46] introduces a strategy for residual degradation learn-
ing that links the sensing matrix with the degradation process. This integration enhances
spectral–spatial representation capabilities by incorporating both spectral and spatial priors.
D2PL-Net [47] endeavors to dynamically learn the actual degradation matrix throughout
the deep unfolding network process to enhance HSI reconstruction, thereby narrowing
the disparity between ideal and real-world degradations. DADF-Net [48] integrates the
underlying connection between the network input and the true HSI, introducing a dynamic
Fourier network to achieve high-quality HSI reconstruction. EDUNet [49] innovatively
introduces a memory-assisted descent method based on momentum acceleration and a
cross-stage spectral self-attention network to model the gradient-driven update module
and the proximal mapping module, respectively. DPU [50] implements an HSI reconstruc-
tion model based on dual prior unfolding, which improves iteration efficiency by jointly
utilizing multiple deep priors while strategically incorporating focused attention into the
framework to enhance reconstruction quality. The DUN methods combine interpretability
with high-quality reconstruction. Nonetheless, the current methods can still be enhanced by
improving feature expression and addressing the challenge of cross-stage information loss.

3. Method
3.1. Preliminary

The complete physical imaging process for the Single-Disperser Coded Aperture Snap-
shot Spectral Imaging (SD-CASSI) system for hyperspectral image (HSI) data is shown
in Figure 1. The SD-CASSI system is composed of a set of physical optical devices with
different functions, designed to compress 3D HSI data into 2D compressed measurements.
In detail, as the objective lens acquires 3D hyperspectral data, each spectral band undergoes
modulation along the spatial dimension by the coded aperture. The modulated data subse-
quently pass through an optical dispersion element to shift each spectral band. Ultimately,
all the spectral bands after dispersion are superimposed along the spectral direction to
obtain the processed 2D compression measurement data. The 3D HSI data are denoted as
X ∈ RH×W×Nλ , where H, W and Nλ represent the height, width and spectral bands of 3D
HSI data, respectively. The matrix M ∈ RH×W stands for the coded aperture. Hence, the
physical imaging process of the 3D HSI can be described as follows:

X ′
(:, :, nλ) = X (:, :, nλ)⊙ M (1)

where X ′ ∈ RH×W×Nλ denotes the modulated cube, nλ ∈ [1, . . . , Nλ] indexes the spectral
bands, and ⊙ denotes the element-wise product. The modulated HSI data, after being spa-
tially shifted and summed element-wise across different spectral bands, can be represented
as follows:

Y(m, n) =
Nλ

∑
nλ=1

X ′
(m, n + dλ, nλ) + N (2)

where Y ∈ RH×(W+Nλ−1) represents the 2D compressive measurement; m and n represent
the spatial coordinates; and dλ represents the shifting distance. N ∈ RH×(W+Nλ−1) repre-
sents the noise. In summary, the vectorized representation of the SD-CASSI system for 3D
HSI data is described as follows:

y = Φx + n (3)

where x ∈ RHWNλ , y ∈ RH(W+Nλ−1), n ∈ RH(W+Nλ−1) denote the vectorized form of X , Y,
and N, respectively. Φ ∈ RH(W+Nλ−1)×HWNλ denotes the sensing matrix. After modeling
the system’s imaging model, the primary challenge of the HSI snapshot compressive
imaging task is to reconstruct the original 3D HSI scene x given y and Φ. In the following
sections, we will separately introduce the overall framework of the algorithm, the sparse
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spatial–spectral Transformer module, the wavelet-based intra-stage fusion module, and the
wavelet-based inter-stage fusion module.

Modulation

Coded aperture Disperser

Dispersion

Measurement

Integration

x

y



Figure 1. The physical imaging process of the SD-CASSI system for HSI data.

3.2. Overall Algorithm Framework

The overall imaging and reconstruction process is shown in Figure 2a. For the given
raw HSI datum x, the observed datum y is obtained after passing through the CASSI
imaging system. Subsequently, the overall reconstruction process can be modeled as the
following optimization problem:

x = arg min
x

1
2
∥y − Φx∥2

2 + λψ(x) (4)

where 1
2∥y − Φx∥2

2 represents the data fidelity term in the optimization problem, ψ(x)
represents the prior term, and λ represents the weighting parameter. Subsequently, the
proximal gradient descent algorithm is employed to solve this ill-posed optimization inverse
problem. Specifically, the overall optimization problem is transformed into a gradient
descent operation and a proximal mapping operation. The solution process is as follows:

r(k) = x(k−1) − ρΦ⊤(Φx(k−1) − y) (5)

x(k) = proxλ,ψ(r
(k)) (6)

where Equation (5) represents the gradient descent operation, and Equation (6) represents
the proximal mapping operation. Here, x(k−1) and x(k) denote the reconstruction results
at iteration k − 1 and k, respectively. The variable ρ represents the step size, and r(k)

represents the intermediate variable.
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Figure 2. Overall algorithm framework. (a) The complete imaging and reconstruction process of the
system. (b) The network structure of the gradient descent module. (c) The network structure of the
proximal mapping module.
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Through the iterative optimization process of x(k) and r(k), the final x can be recon-
structed. Subsequently, we unfold the different iterative processes into different stages of
deep unfolding network architecture, introducing gradient descent modules and proximal
mapping modules to replace traditional operations. As shown in Figure 2a, each stage
of the unfolded network contains a gradient descent module and a proximal mapping
module. The structure of the gradient descent module is shown in Figure 2b. To enhance the
representative capacity of the overall network framework, we construct Φθ(·) and Φ⊤

θ (·) by
adding residual networks after the operations of matrices Φ and Φ⊤. The structure of the
proximal mapping module is shown in Figure 2c. We adopt a conventional U-Net structure,
constructing a sparse spatial–spectral Transformer (SAET) module in the encoder–decoder
parts of each layer to enhance the feature representation capabilities. Additionally, we
introduce the Wavelet-based Intra-stage Fusion Module (WIntraFM) and Wavelet-based
Inter-stage Fusion Module (WInterFM) to reduce feature loss within and across stages. The
detailed structures of the different modules are described in the following sections.

3.3. The Sparse Spatial–Spectral Transformer (SAET) Module

The overview of the sparse spatial–spectral Transformer module is shown in Figure 3a.
LN represents the Layer Normalization layer, SAMSA and SEMSA represent Sparse Spatial
Multi-Head Self-Attention and Sparse Spectral Multi-Head Self-Attention, respectively, and
GDFN represents the Gated-Dconv Feed-forward Network. We compose the final SAET
module by serially connecting different network parts and utilizing skip connections.

(a) Sparse spAtial-spEctral Transformer 
(SAET)  Module  

LN

LN

LN

SAMSA

SEMSA

GDFN

0 … 0
………
0 … 0

Conv
DConv

Conv Conv

DConv DConv

Reshape Reshape Reshape

Mask

Top-K

softmax

scatter

Conv

(b) Sparse spAtial/spEctral Multi-head 
Self-Attention (SA/EMSA)    

Conv Conv
DConv DConv
GELU

Conv

(d)  Gated-Dconv Feed-forward Network (GDFN)   

(c)  Example: Top-K—softmax—scatter  

0.9 0.09 0.8 0.08 0.7 0.07

0.9 0.8 0.7

0.375 0.333 0.292

0.375 0 0.333 0 0.292 0

Top-1/2

softmax

scatter

Figure 3. (a) The structure of the sparse spatial–spectral Transformer module. (b) The structure of
the sparse spatial/spectral multi-head self-attention. (c) A specific example of a correlation map
sparsification. (d) The detailed structure of the gated-dconv feed-forward network.

The structures of SAMSA and SEMSA are shown in Figure 3b. Both SAMSA and
SEMSA use the same method to transform the input features into queries, keys, and values.
The difference lies in the way they compute the self-attention maps. Specifically, for a given
input feature Xin ∈ RH×W×C, SA/EMSA employs a convolution layer Conv with 1 × 1
kernels and a depth-wise convolution layer DConv with 3 × 3 kernels to embed Xin and
generate Q ∈ RH×W×C, K ∈ RH×W×C, and V ∈ RH×W×C. The formulas are expressed
as follows:

Q = WQ
d WQ

p Xin, K = WK
d WK

p Xin, V = WV
d WV

p Xin (7)

where W(·)
p and W(·)

q represent the weight parameters of the Conv layer and the DConv
layer, respectively.

For SAMSA, the input features are split along the spatial dimension into non-overlapping
windows of size M × M. Each pixel within a window is treated as a token, and self-
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attention maps are computed within each window. Therefore, the query Q, key K, and

value V features can be reshaped into QA, KA, VA ∈ R
HW
M2 ×M2×C. Subsequently, the QA,

KA, and VA features are split along the last dimension into h heads and represented as:
QA = [Q1

A, · · · , Qh
A], KA = [K1

A, · · · , Kh
A], VA = [V1

A, · · · , Vh
A]. The dimension of each

head is d h
A = C

h . The query Qi
A and key Ki

A are dot-multiplied to obtain a self-attention
map Mask of size HW

M2 × M2 × M2, representing the correlation of all pixels within each
window. However, in practice, not all pixels are correlated. By applying sparsification to
extract only the relevant pixels for correlation computation, the expressiveness of the self-
attention mechanism can be further enhanced. Specifically, for the original self-attention
map Mask, we use a ‘Top-k’ operation to select the top-k pixels with the highest correlation.
Then, we apply ‘Softmax’ normalization to compute correlation coefficients for the selected
pixels. Finally, we use a ‘scatter’ operation to return the correlation coefficients to the
corresponding positions in the original self-attention map Mask, replacing positions where
no correlation coefficient exists with zeros. SAMSA can be formally expressed as follows:

Mask = Qi
A(K

i
A)

⊤ (8)

headi = SparseAtten(Qi
A, Ki

A, Vi
A) (9)

= scatter(Softmax(
Top-k(Mask)√

dh
A

))Vi
A (10)

Xout = WpConcat(head1, · · · , headn) + Xin (11)

where ‘SparseAtten’ represents the sparse self-attention operation, ‘Concat’ represents
the feature concatenation operation, Wp represents the convolutional layer operation, and
Xout ∈ RH×W×C represents the feature output. To better understand the sparsification
operation, we present an example of the ‘Top-k’ to ‘Softmax’ to ‘scatter’ operations as
shown in Figure 3c.

For SEMSA, the spatial dimensions of the input features are transformed into column
vectors of size HW. Each feature channel is treated as a token, and the self-attention map is
obtained by calculating the correlations among all channels. Therefore, the query Q, key
K, and value V features can be reshaped into QE, KE, VE ∈ RHW×C. Subsequently, we split
QE, KE and VE features along the spectral channel dimension into h heads, represented
as QE = [Q1

E, · · · , Qh
E], KE = [K1

E, · · · , Kh
E], VE = [V1

E , · · · , Vh
E ]. The dimension of each

head is d h
E = C

h . Next, the self-attention map Mask of size C
h × C

h for each head can be
obtained by the dot product of Qi

E and Ki
E, representing the correlations among all channels

in the spectral dimension. After obtaining the self-attention map Mask, we apply the same
sparsification operation as in SAMSA to extract the correlated channels and compute the
correlation coefficients. Finally, the formal expression of the SEMSA block is as follows:

Mask = (Ki
E)

⊤Qi
E (12)

headi = SparseAtten(Qi
E, Ki

E, Vi
E) (13)

= scatter(Softmax(
Top-k(Mask)√

dh
E

))Vi
E (14)

Xout = WpConcat(head1, · · · , headn) + Xin (15)

3.4. The Wavelet-Based Intra-Stage Fusion Module (WIntraFM)

Since the proximal mapping network adopts a U-Net structure, there are up-sampling
and down-sampling operations in different encoder–decoder features, leading to feature
information loss. Discrete wavelet transform inherently possesses scale down-sampling
characteristics, so we construct a wavelet-based intra-stage feature fusion module. The
specific structure is shown in Figure 4.
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The Wavelet-based Intra-stage Fusion Module (WIntraFM)  
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Figure 4. The wavelet-based intra-stage fusion module.

For two encoder output features f (k)enc1 and f (k)enc2 at different spatial scales, we apply the

wavelet transform operation only to the large-scale feature f (k)enc1 to leverage the multi-scale
characteristics of the wavelet transform. The expression is as follows:

FLL
enc1, FLH

enc1, FHL
enc1, FHH

enc1,= DWT(f(k)enc1) (16)

where ‘DWT’ represents the discrete wavelet transform. In this paper, we specifically use
the Haar wavelet transform. FLL

enc1 denotes the low-frequency component of the feature

f (k)enc1, while [FLH
enc1, FHL

enc1, FHH
enc1] represents the high-frequency components of the feature f (k)enc1.

Due to the reduced scale of the features after the wavelet transform, the spatial resolution
of the feature f (k)enc2 matches that of the features [FLL

enc1, FLH
enc1, FHL

enc1, FHH
enc1]. Subsequently, we

perform feature fusion on features of the same size to reduce information loss.
To obtain the high-resolution encoder feature after fusion, we concatenate the low-

frequency component FLL
enc1 with feature f (k)enc2 and perform a low-frequency enhancement

operation to obtain the fused low-frequency information. Additionally, we enhance the
high-frequency components [FLH

enc1, FHL
enc1, FHH

enc1] separately to obtain the fused high-frequency
information. Finally, we perform an inverse wavelet transform on the fused low-frequency
and high-frequency features to obtain the final fused feature. The formal expression is
as follows:

F̂L = Conv3×3(LRelu(Conv1×1(Concat(f(k)
enc2, FLL

enc1)))) (17)

F̂H = [FLH
enc1, FHL

enc1, FHH
enc1]+Conv1×1(LRelu(Conv1×1([FLH

enc1, FHL
enc1, FHH

enc1]))) (18)

f̂ (k)enc1 = IDWT(F̂L, F̂H) (19)

where ‘Conv1×1’ and ‘Conv3×3’ represent convolutional layers with kernel sizes of 1 × 1
and 3 × 3, respectively. ‘Concat’ represents the feature concatenation operation, ‘LRelu’
represents the activation function, and ‘IDWT’ represents the inverse discrete wavelet
transform. The variables F̂L and F̂H represent the fused low-frequency and high-frequency
features, respectively, and f̂ (k)enc1 represents the output high-resolution fused feature.

To obtain the low-resolution encoder feature after fusion, we first enhance the high-
frequency components [FLH

enc1, FHL
enc1, FHH

enc1] separately to get the fused high-frequency compo-
nent F̂

′
H . Next, we concatenate the fused F̂

′
H with the low-frequency component FLL

enc1 and

feature f (k)enc2, and further enhance these features to obtain the final low-resolution fused

feature f̂ (k)enc2. The formal expression is as follows:

F̂
′
H =[FLH

enc1, FHL
enc1, FHH

enc1] + Conv1×1(LRelu(Conv1×1([FLH
enc1, FHL

enc1, FHH
enc1]))) (20)

f̂ (k)enc2 = Conv3×3(LRelu(Conv1×1(Concat(F̂
′

H, FLL
enc1, f(k)enc2)))) (21)
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3.5. The Wavelet-Based Inter-Stage Fusion Module (WInterFM)

In the deep unfolding network, the continuous transformation of signals to features
across different stages leads to feature information loss. Wavelet transform can effectively
learn and emphasize high-frequency details in features. Therefore, we design a wavelet-
based inter-stage feature fusion module to mitigate the information loss across stages. The
specific structure is shown in Figure 5.

The Wavelet-based Inter-stage Fusion Module (WInterFM)  
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Figure 5. The wavelet-based inter-stage fusion module.

Specifically, taking the inter-stage fusion operation of the high-resolution encoder
feature F(k)

enc1 at the k stage as an example, we first add the encoder feature f (k−1)
enc1 and

decoder feature f (k−1)
dec1 from the k−1 stage to obtain feature F(k−1). Then, we perform a

discrete wavelet transform on feature F(k−1) to obtain the high-frequency components
[F(k−1)

LH , F(k−1)
HL , F(k−1)

HH ] and low-frequency component F(k−1)
LL . Additionally, we perform

a wavelet transform on the feature F(k)
enc1 from the k stage to obtain the high-frequency

components [F(k)
LH , F(k)

HL, F(k)
HH ] and low-frequency component F(k)

LL . Next, we concatenate the

low-frequency components F(k)
LL and F(k−1)

LL , followed by a low-frequency enhancement

to obtain the low-frequency component f (k)LL of the inter-stage fusion feature. To reduce
noise impact, we only perform high-frequency feature enhancement on the high-frequency
components [F(k)

LH , F(k)
HL, F(k)

HH ] from stage k to obtain the fused high-frequency components

[ f (k)LH , f (k)HL, f (k)HH ]. Finally, we perform an inverse wavelet transform on the high-frequency

components [ f (k)LH , f (k)HL, f (k)HH ] and low-frequency component f (k)LL to obtain the final inter-

stage fusion feature f (k)enc1. The formal expressions are as follows:

F(k−1) = Conv3×3(f
(k−1)
enc1 ) + Conv3×3(f

(k−1)
dec1 ) (22)

F(k−1)
LL , F(k−1)

LH , F(k−1)
HL , F(k−1)

HH = DWT(F(k−1)) (23)

F(k)
LL , F(k)

LH , F(k)
HL, F(k)

HH = DWT(F(k)
enc1) (24)

f (k)LL = Conv3×3(LRelu(Conv1×1(Concat(F(k)
LL , F(k−1)

LL )))) (25)

[ f (k)LH , f (k)HL, f (k)HH ] = Conv1×1(LRelu(Conv1×1([F
(k)
LH , F(k)

HL, F(k)
HH ]))) + [F(k)

LH , F(k)
HL, F(k)

HH ] (26)

f (k)enc1 = IDWT( f (k)LL , [ f (k)LH , f (k)HL, f (k)HH ]) (27)

where ‘Conv1×1’ and ‘Conv3×3’ represent convolutional layers with kernel sizes of 1 × 1
and 3 × 3, respectively. ‘Concat’ represents the feature concatenation operation, ‘LRelu’
represents the activation function, and ‘DWT’ and ‘IDWT’ represent the discrete wavelet
transform and inverse transform.
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4. Experimental Results

In this section, we conduct experiments on various datasets to validate the supe-
riority of our method compared to other state-of-the-art methods. The specific content
includes experimental setup, simulation results, real data results, and ablation study, among
other subsections.

4.1. Experiment Setup

Simulated experiments on CAVE and KAIST datasets: The CAVE dataset [64] contains
32 HSI samples, each with spatial dimensions of 512 × 512. The KAIST dataset [65] consists
of 30 HSI samples, each with spatial dimensions of 2704 × 3376. Both datasets feature
31 spectral bands, spanning wavelengths from 400 nm to 700 nm with 10 nm intervals.
To ensure consistency with the experimental setups of other state-of-the-art methods, we
also employ spectral interpolation to adjust each HSI sample to 28 spectral bands within
the wavelength range of 450 nm to 650 nm. In the actual training and testing process,
we maintain the same experimental settings as other state-of-the-art methods. The CAVE
dataset is randomly cropped into HSI patches consistent with the size of the coded aperture
to construct the training set. The coded aperture size is 256 × 256, and all training HSI
patches are of size 256 × 256 × 28. Meanwhile, we select HSI patches of size 256 × 256 × 28
from 10 scenes in the KAIST dataset as the test set. At this point, the spatial receptive field
of our proposed network is 256 × 256.

Simulated experiments on ARAD_1K dataset: The ARAD_1K dataset [66] provides a
large-scale natural hyperspectral image dataset. Each HSI sample in the ARAD_1K dataset
consists of 31 spectral bands, with a spatial resolution of 482 × 512, and covers a wavelength
range of 400–700 nm. It contains 1000 hyperspectral images, of which 900 are used as the
training set and 50 as the test set. The size of the coded aperture is set to 256 × 256, and each
HSI block in the ARAD_1K training set is cropped to a size of 256 × 256 × 31. Similar to
the KAIST dataset, our ARAD_1K test dataset is also constructed by cropping HSI patches
of size 256 × 256 × 31 from 10 scenes.

Real-world scene dataset: For the real-world dataset, we use the 2D measurements
from five real-scene samples provided by TSA-Net [24] to assess the effectiveness of our
proposed method. Each 2D measurement has dimensions of 660 × 714, and the coded
aperture is sized at 660 × 660. To build the training dataset, we randomly crop the CAVE
and KAIST datasets into data blocks of size 660 × 660 × 28.

Experimental settings: We use Root Mean Square Error (RMSE) as the loss function for
the algorithm. Additionally, all related experiments are constructed based on the PyTorch
deep learning framework and conducted on an NVIDIA RTX 3090 GPU. The algorithm is
trained using the Adam optimizer with an initial learning rate set to 0.0001 and a maximum
of 200 training epochs. The spectral shift step for all HSI data is configured to 2. We also
use the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) Index [67] as
metrics to evaluate the reconstruction performance of different algorithms. PSNR and
SSIM serve as two standards for spatial quality assessment, measuring visual quality
and structural similarity, respectively. Higher values for both PSNR and SSIM indicate
improved spatial reconstruction.

4.2. Simulation Results on CAVE and KAIST

The objective results comparison for the KAIST dataset test scenes is shown in Table 1.
We select nine state-of-the-art methods as comparison methods, including four E2E methods
(TSA-Net [24], HDNet [26], MST [25], and CST [27]) and five DUN methods (DGSMP [39],
HerosNet [42], DAUHST [44], PADUT [45], and RDLUF [46]). We present the PSNR and
SSIM results for all comparison methods, with the best and second-best reconstruction
results for all test scenes highlighted in red and blue, respectively. In addition, we calculate
the number of parameters (Params) and floating-point operations (FLOPs) to evaluate the
model complexity of all comparison methods. As seen in Table 1, our method achieves the
best average reconstruction results across all test scenes and delivers the best reconstruction
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results in most of the individual test scenes. Meanwhile, our method also shows a certain
advantage in complexity compared to other methods. Our method achieves a PSNR
of 39.76 dB and an SSIM of 0.979. Specifically, compared to the current leading E2E
method, CST [27], our results demonstrate an improvement of 3.91 dB in PSNR and 0.0025
in SSIM. Furthermore, compared to the top DUN method, RDLUF [46], our approach
improves PSNR by 0.31 dB and SSIM by 0.002. Therefore, these objective results validate
the effectiveness of our method on the KAIST test dataset.

Table 1. Comparison of results using the KAIST test scenes, with the PSNR metric (in dB) presented
as the upper entry and the SSIM metric as the lower entry in each cell. The best results are highlighted
in red, and the second-best results are highlighted in blue.

Algorithms Params FLOPs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average

TSA-Net [24] 44.25 M 110.06 G 32.03 31.00 32.25 39.19 29.39 31.44 30.32 29.35 30.01 29.59 31.46
0.892 0.858 0.915 0.953 0.884 0.908 0.878 0.888 0.890 0.874 0.894

HDNet [26] 2.37 M 154.76 G 35.14 35.67 36.03 42.30 32.69 34.46 33.67 32.48 34.89 32.38 34.97
0.935 0.940 0.943 0.969 0.946 0.952 0.926 0.941 0.942 0.937 0.943

MST-L [25] 2.03 M 28.15 G 35.40 35.87 36.51 42.27 32.77 34.80 33.66 32.67 35.39 32.50 35.18
0.941 0.944 0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.948

CST-L [27] 3.00 M 27.81 G 35.82 36.54 37.39 42.28 33.40 35.52 34.44 33.83 35.92 33.36 35.85
0.947 0.952 0.959 0.972 0.953 0.962 0.937 0.959 0.951 0.948 0.954

DGSMP [39] 3.76 M 646.65 G 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63
0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917

HerosNet [42] 11.75 M 446.29 G 35.75 35.40 34.07 38.59 33.31 35.58 33.27 33.75 34.04 33.18 34.69
0.972 0.968 0.966 0.987 0.969 0.977 0.963 0.971 0.967 0.968 0.971

DAUHST [44] 6.15 M 79.50 G 37.25 39.02 41.05 46.15 35.80 37.08 37.57 35.10 40.02 34.59 38.36
0.958 0.967 0.971 0.983 0.969 0.970 0.963 0.966 0.970 0.956 0.967

PADUT [45] 5.38 M 90.46 G 37.36 40.43 42.38 46.62 36.26 37.27 37.83 35.33 40.86 34.55 38.89
0.962 0.978 0.979 0.990 0.974 0.974 0.966 0.974 0.978 0.963 0.974

RDLUF [46] 1.89 M 231.09 G 37.74 40.76 43.05 47.59 36.93 37.54 38.34 35.57 42.18 34.77 39.45
0.967 0.979 0.981 0.992 0.978 0.978 0.971 0.974 0.982 0.964 0.977

Ours 2.25 M 121.43 G 37.85 40.80 43.10 48.12 37.48 37.52 38.63 36.41 42.04 35.62 39.76
0.970 0.980 0.982 0.993 0.980 0.979 0.971 0.979 0.982 0.970 0.979

To illustrate the qualitative results on the KAIST test dataset, we present a subjective
comparison of the reconstruction outcomes for the test scenes using different methods.
To better illustrate the comparison between the training and test datasets, we present the
RGB images of 10 test scenes from the KAIST dataset and 10 training scenes from the
CAVE dataset, shown in Figure 6 and Figure 7, respectively. The subjective comparison
of the reconstruction results for scene S10 in the KAIST dataset is shown in Figure 8. We
select data from four different spectral bands for the reconstruction results and compare
the subjective effects of all methods. We crop and enlarge the yellow box areas in each
spectral band image to facilitate a clearer comparison of the reconstruction differences.
From Figure 8, it is evident that our proposed method exhibits clearer texture details across
different spectral bands compared to other methods. This further validates the effectiveness
of our approach on the KAIST test dataset.
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Figure 6. RGB images of ten test scenes from the KAIST dataset.

       S6                         S7                         S8                          S9                        S10

     S1                         S2                          S3                         S4                         S5

Figure 7. RGB images of 10 training scenes from the CAVE dataset.

648.0 nm

604.0 nm

        TSA-Net    DGSMP             HDNet     HerosNet      MST-L Ours GT     CST-L     DAUHST     PADUT 

567.5 nm

   RDLUF 

544.0 nm

Figure 8. Comparison of the reconstruction results for scene S10 in the KAIST test dataset using
different methods. The enlarged regions help to compare the reconstruction results better.

Additionally, to further compare the spectral consistency of reconstruction results
from different methods, we select a small region from test scene S10 for evaluation as
shown in Figure 9a. We present the spectral density curves of different reconstruction
results and calculate the correlation coefficients between the reconstructed results and the
ground truth data. Our method’s reconstruction results are the closest to the ground truth
spectral density curve and achieve the highest correlation coefficient, further validating the
accuracy of our reconstruction.
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RGB Image
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(a) (b)
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Figure 9. Spectral density curves of reconstruction results for KAIST test scene S10 and ARAD_1K
test scene S5 using different methods. (a,b) The spectral density curves and correlation coefficients,
respectively, for the selected regions.

4.3. Simulation Results on ARAD_1K

The objective results comparison for the ARAD_1K dataset test scenes is shown in
Table 2. We select nine state-of-the-art methods as comparison methods, including four
E2E methods (TSA-Net [24], HDNet [26], MST [25], CST [27]) and five DUN methods
(DGSMP [39], HerosNet [42], DAUHST [44], PADUT [45], RDLUF [46]). We present the
PSNR and SSIM results for all comparison methods, with the best and second-best recon-
struction results for all test scenes highlighted in red and blue, respectively. In addition,
we calculate the number of parameters (Params) and floating-point operations (FLOPs)
to evaluate the model complexity of all comparison methods. As seen in Table 2, our
method achieves the best average test results and optimal performance across all scenarios.
Specifically, our method reached PSNR and SSIM metrics of 42.98 dB and 0.985, respec-
tively. Compared to the next best method, our approach shows an average improvement of
0.2dB in PSNR and 0.001 in SSIM. These objective results validate the effectiveness of the
proposed method on the ARAD_1K dataset.

To illustrate the qualitative results on the ARAD_1K test dataset, we present a subjec-
tive comparison of the reconstruction outcomes for the test scenes using different methods.
The RGB images of all test scenes from the ARAD_1K dataset are shown in Figure 10. The
subjective comparison of the reconstruction results for scene S5 is shown in Figure 11. We
select reconstruction results from four different spectral bands to compare the subjective
performance of all methods. To facilitate the comparison of differences in reconstruction
results, we crop and enlarge the yellow box areas in each spectral band image. As shown
in Figure 11, our method produces reconstruction results with fewer artifacts and clearer
structural textures compared to other methods. This further validates the effectiveness of
our approach on the ARAD_1K test dataset.

Additionally, to further compare the spectral consistency of reconstruction results
from different methods, we also select a small region from test scene S5 for evaluation,
as shown in Figure 9b. We present the spectral density curves of different reconstruction
results and calculate the correlation coefficients between the reconstructed results and the
ground truth data. Our method’s reconstruction results are the closest to the ground truth
spectral density curve and achieve the highest correlation coefficient, further validating the
accuracy of our reconstruction.
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Table 2. Comparison of results using the ARAD_1K test scenes, with the PSNR metric (in dB)
presented as the upper entry and the SSIM metric as the lower entry in each cell. The best results are
highlighted in red, and the second-best results are highlighted in blue.

Algorithms Params FLOPs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average

TSA-Net [24] 44.25 M 110.06 G 33.79 28.38 27.11 33.36 25.85 25.09 29.49 20.88 21.34 31.88 27.72
0.950 0.877 0.886 0.924 0.831 0.671 0.888 0.687 0.782 0.875 0.837

HDNet [26] 2.37 M 154.76 G 35.18 28.96 28.54 35.54 26.58 31.40 30.22 29.99 29.77 32.93 30.91
0.935 0.862 0.875 0.918 0.816 0.823 0.874 0.793 0.884 0.885 0.866

MST-L [25] 2.03 M 28.15 G 37.89 31.44 31.06 36.81 29.79 35.05 32.83 32.62 34.09 34.99 33.66
0.962 0.903 0.917 0.935 0.897 0.906 0.921 0.858 0.941 0.923 0.916

CST-L [27] 3.00 M 27.81 G 41.06 34.09 33.40 39.25 32.18 38.78 35.16 34.62 37.06 36.72 36.23
0.978 0.938 0.948 0.957 0.935 0.955 0.953 0.901 0.972 0.947 0.948

DGSMP [39] 3.76M 646.65G 37.10 29.97 29.44 36.30 28.20 34.80 31.18 31.51 32.05 33.92 32.45
0.959 0.886 0.908 0.935 0.875 0.901 0.908 0.840 0.928 0.912 0.905

HerosNet [42] 11.75 M 446.29 G 38.17 33.27 32.11 39.31 29.44 33.90 32.72 32.22 33.18 33.96 33.83
0.981 0.958 0.955 0.982 0.929 0.951 0.948 0.926 0.977 0.947 0.955

DAUHST [44] 6.15 M 79.50 G 45.94 40.53 39.26 46.85 38.26 43.67 40.44 38.94 44.41 40.62 41.89
0.991 0.978 0.978 0.990 0.979 0.988 0.980 0.959 0.990 0.974 0.980

PADUT [45] 5.38 M 90.46 G 46.65 41.20 39.85 47.79 38.93 44.38 41.07 39.53 45.45 41.05 42.59
0.992 0.981 0.981 0.992 0.981 0.990 0.982 0.963 0.993 0.977 0.983

RDLUF [46] 1.89 M 231.09 G 46.50 41.15 40.35 48.16 38.77 44.61 41.09 40.21 45.98 41.01 42.78
0.992 0.980 0.982 0.993 0.981 0.991 0.982 0.970 0.993 0.976 0.984

Ours 2.25 M 121.43 G 46.72 41.47 40.41 48.18 39.12 44.73 41.16 40.53 46.29 41.17 42.98
0.993 0.982 0.982 0.993 0.983 0.992 0.983 0.970 0.995 0.977 0.985

       S6                          S7                         S8                         S9                        S10

      S1                         S2                         S3                         S4                         S5

Figure 10. RGB images of ten test scenes from the ARAD_1K dataset.

         TSA-Net    DGSMP           HDNet      HerosNet      MST-L Ours GT    CST-L    DAUHST     PADUT     RDLUF  

670 nm

490 nm

550 nm

580 nm

Figure 11. Comparison of the reconstruction results for scene S5 in the ARAD_1K test dataset using
different methods. The enlarged regions help to compare the reconstruction results better.
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4.4. Real Data Results

To validate the effectiveness of our method in real-world scenarios, we conduct tests on
a real-world scene dataset. We compare our method with five advanced methods, including
two E2E methods (TSA-Net [24], HDNet [26]) and three DUN methods (DGSMP [39],
DAUHST [44], RDLUF [46]). Due to the large size of the test scenes, our method and other
DUN methods are all compared using the same three-stage network. The RGB images
of the five test scenes from the real-world scene dataset are shown in Figure 12. Since
the dataset lacks ground truth data, we compare the reconstruction results of different
methods by referencing the RGB images. We select scene S3 to present the subjective
reconstruction results. As shown in Figure 13, our method produces smoother and clearer
appearances in three different spectral bands. Notably, for the yellow-marked facial area,
our reconstruction results retain structural content with fewer reconstruction artifacts. This
demonstrates the effectiveness of our proposed method for real-world test data.

          S1                           S2                          S3                            S4                           S5
Figure 12. RGB images of five real-world test scenes.

    TSA-Net

648.0 nm

522.5 nm

    DGSMP   HDNet     DAUHST-3stg

584.5 nm

    RDLUF-3stg Ours-3stg

Figure 13. Subjective comparison of reconstruction results for three different spectral bands in real
scene S3 using different methods. Enlarged areas are used to compare the differences in reconstruction
results more clearly.

4.5. Ablation Study

To validate the impact of the number of stages on the overall performance of our
algorithm, we conduct ablation experiments with different stage counts. As shown in
Table 3, we evaluate the model complexity and average reconstruction performance of our
algorithm with varying stage numbers on the CAVE and KAIST simulation datasets. Since
our algorithm maintains parameter sharing within the network structure of each stage,
the number of model parameters does not change with the number of stages. However,
the number of floating-point operations (FLOPs) increases with the number of stages. The
results indicate that the performance of our method improves with the increase in the
number of stages. To balance model effectiveness and complexity, we ultimately adopt
nine stages for the overall model configuration.
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Table 3. The computational complexity and average reconstruction performance across various
numbers of network stages on the KAIST test scenes.

Stage Number Params (M) FLOPs (G) PSNR (dB) SSIM

1 2.25 26.10 37.05 0.964
3 2.25 39.72 38.11 0.971
5 2.25 66.96 38.74 0.974
7 2.25 94.20 39.48 0.977
9 2.25 121.43 39.76 0.979

To verify the effectiveness of different modules in our method, we conduct ablation
experiments with models composed of different structures. All experiments utilize models
with nine stages and are tested on the CAVE and KAIST simulation datasets. Table 4
shows the average test reconstruction results and model complexity for different model
configurations. We use the basic spatial–spectral Transformer structure as a baseline for
comparison, as shown in row (a) of Table 4. To evaluate the effectiveness of different
modules in enhancing reconstruction, we conduct four experiments: using only the SAET
module, combining the SAET and WIntraF modules, combining the SAET and WInterF
modules, and combining all modules. The results of these experiments are presented in
rows (b) to (e) of Table 4, respectively. Specifically, from the results of row (b) in Table 4,
it is evident that compared to the baseline model, the SAET model significantly enhances
reconstruction performance, with improvements of 0.25 dB in PSNR and 0.001 dB in SSIM.
This demonstrates the improvement in the overall model’s expressive capability brought
by our proposed sparse spatial–spectral Transformer network structure. Additionally,
comparing rows (c) and (d) with row (b) in Table 4 shows that the model combining SAET
and WIntraF achieves a 0.11 dB improvement in PSNR over the SAET-only model, while
the model combining SAET and WInterF achieves a 0.14 dB improvement in PSNR over the
SAET-only model. These results clearly validate the effectiveness of the wavelet-based intra-
stage and inter-stage fusion modules. Finally, the reconstruction results of the complete
model in row (e) verify the performance enhancement of the proposed model across various
component structures.

Table 4. The effectiveness of different components.

Setting SAET WIntraF WInterF Params (M) FLOPs (G) PSNR (dB) SSIM

(a) (Base) 1.85 109.51 39.33 0.977
(b)

√
1.85 109.51 39.58 0.978

(c)
√ √

1.90 112.34 39.69 0.978
(d)

√ √
2.21 118.60 39.72 0.978

(e) (Ours)
√ √ √

2.25 121.43 39.76 0.979

To validate the impact of different sparsity coefficients in the sparse spatial–spectral
Transformer structure, we conduct ablation experiments with various sparsity coefficients.
As shown in Table 5, the spatial Top-k and spectral Top-k rows represent the spatial
and spectral sparsity coefficients, respectively. Different sparsity coefficients indicate the
proportion of sparse elements in the correlation matrix relative to the total elements. When
the spatial and spectral sparsity coefficients are both set to 1, all elements are selected
as sparse elements, making the model structure identical to the original spatial–spectral
Transformer structure. According to Table 5, the optimal reconstruction performance is
achieved when the spatial sparsity coefficient is 1/3 and the spectral sparsity coefficient is
4/5, resulting in a 0.25 dB improvement in PSNR compared to the original spatial–spectral
Transformer structure. Therefore, in the overall algorithm, we select 1/2 and 4/5 as the
sparsity coefficients for the spatial and spectral dimensions, respectively.
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Table 5. The impact of spatial and spectral sparsity coefficients in the SAET module, where Top-k
represents the proportion of selected elements to all elements.

Spatial Top-k 1 1/2 1/2 1/2 1/3 1/4 2/3
Spectral Top-k 1 1 4/5 3/4 4/5 4/5 4/5

PSNR (dB) 39.33 39.53 39.52 39.45 39.58 39.32 39.45
SSIM 0.977 0.975 0.978 0.977 0.978 0.976 0.977

5. Conclusions

In this study, we propose a deep unfolding network that hybridizes sparse Transformer
and wavelet fusion for the snapshot compressive imaging of hyperspectral images (HSIs).
Firstly, since not all elements in hyperspectral images are correlated in the spatial and
spectral dimensions, we introduce a spatial–spectral sparse Transformer technique to
enhance the feature representation capability of the algorithm. Then, to address the issue of
feature information loss due to scale transformation within stages, we propose a wavelet-
based intra-stage feature fusion method. Finally, we introduce a wavelet-based inter-
stage feature fusion method to tackle feature information loss caused by signal-to-feature
conversions between stages. Experiments on various simulated and real datasets further
validate that the proposed algorithm achieves superior hyperspectral image reconstruction
results. However, the current method’s utilization of wavelet transforms is still preliminary.
In future work, we will explore how to learn the sparsity coefficients to better accommodate
different model structures. Additionally, we will continue to explore how to utilize wavelet
transform features better to design network structures, thereby further improving the
algorithm’s performance.
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