Agreement and Sensitivity of the Acceleration–Velocity Profile Derived via Local Positioning System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
3.1. Data Collected
3.2. Descriptive
3.3. Agreement and Sensitivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, A.; Burgess, K.; Hall, A.J.; Aspe, R.R.; Swinton, P.A. The effects of strength and conditioning interventions on sprinting performance in team sport athletes: A systematic review and meta-analysis. J. Strength Cond. Res. 2023, 37, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Cabarkapa, D.; Andersson, H.; Nagy, D.; Trunic, N.; Bankovic, V.; Zivkovic, A.; Repasi, R.; Safar, S.; Ratgeber, L. Effects of the Flying Start on Estimated Short Sprint Profiles Using Timing Gates. Sensors 2024, 24, 2894. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, K.; Hill, A.V.; Parkinson, J.L. The Dynamics of “Sprint” Running. Proc. R. Soc. Lond. B 1927, 102, 29–42. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P.; Murata, M.; Cross, M.R.; Nagahara, R. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. J. Biomech. 2019, 94, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.-B. A Simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running: Simple method to compute sprint mechanics. Scand. J. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sports Phys. Perf. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Ogris, G.; Leser, R.; Horsak, B.; Kornfeind, P.; Heller, M.; Baca, A. Accuracy of the LPM tracking system considering dynamic position changes. J. Sports Sci. 2012, 30, 1503–1511. [Google Scholar] [CrossRef]
- Link, D.; Weber, M.; Linke, D.; Lames, M. Can positioning systems replace timing gates for measuring sprint time in ice hockey? Front. Physiol. 2019, 9, 1882. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef]
- Blauberger, P.; Marzilger, R.; Lames, M. Validation of player and ball tracking with a local positioning system. Sensors 2021, 21, 1465. [Google Scholar] [CrossRef]
- Miguens, N.; Brocherie, F.; Moulié, L.; Milhet, P.; Bon, M.; Lassus, P.; Toussaint, J.-F.; Sedeaud, A. Individual in-situ GPS-derived acceleration-speed profiling: Toward automatization and refinement in male professional rugby union players. Sports Med. 2024, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Clavel, P.; Leduc, C.; Morin, J.-B.; Buchheit, M.; Lacome, M. Reliability of individual acceleration-speed profile in-situ in elite youth soccer players. J. Biomech. 2023, 153, 111602. [Google Scholar] [CrossRef]
- Cardoso, P.; Tavares, F.; Loureiro, N.; Ferreira, R.; Araújo, J.P.; Reis, J.; Vaz, J.R. In-situ acceleration-speed profile of an elite soccer academy: A cross-sectional study. J. Sports Sci. 2023, 41, 1868–1874. [Google Scholar] [CrossRef]
- Fernández-Galván, L.M.; Boullosa, D.; Jiménez-Reyes, P.; Cuadrado-Peñafiel, V.; Casado, A. Examination of the Sprinting and Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages. Int. J. Environ. Res. Public Health 2021, 18, 4646. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.W.; Willaert, E.M.; Rudningen, K.E.; Noonan, B.C. Reliability of three timing systems used to time short on ice-skating sprints in ice hockey players. J. Strength Cond. Res. 2017, 31, 3279–3286. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Le Mat, Y.; Osgnach, C.; Barnabò, A.; Pilati, A.; Samozino, P.; di Prampero, P.E. Individual acceleration-speed profile in-situ: A proof of concept in professional football players. J. Biomech. 2021, 123, 110524. [Google Scholar] [CrossRef]
- Gamble, A.S.D.; Bigg, J.L.; Pignanelli, C.; Nyman, D.L.E.; Burr, J.F.; Spriet, L.L. Reliability and validity of an indoor local positioning system for measuring external load in ice hockey players. Eur. J. Sports Sci. 2022, 23, 311–318. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 23 June 2022).
- Jovanović, M. {shorts}: Short Sprints. R Package, Version 3.2.0. 2024. Available online: https://CRAN.R-project.org/package=shorts (accessed on 22 May 2024).
- Jovanović, M.; Vescovi, J. {shorts}: An R package for modeling short sprints. Int. J. Strength Cond. 2022, 2. [Google Scholar] [CrossRef]
- Jovanović, M. Bmbstats: Bootstrap Magnitude-Based Statistics for Sports Scientists; Self-Published by Mladen Jovanović: Belgrade, Serbia, 2020; pp. 161–166. ISBN 978-8690080359. [Google Scholar]
- Furlan, L.; Sterr, A. The applicability of standard error of measurement and minimal detectable change to motor learning research—A behavioral study. Front. Hum. Neurosci. 2018, 12, 95. [Google Scholar] [CrossRef]
- Efron, B.; Hastie, T. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, 1st ed.; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Canty, A.; Ripley, B.D. Boot: Bootstrap Functions. R Package 2017. Version 1.3-28. Available online: https://CRAN.R-project.org/package=boot (accessed on 21 January 2024).
- Jovanović, M. {bmbstats}: Bootstrap Magnitude-Based Statistics for Sports Scientists. R Package 2020. Version 0.0.0.90001. Available online: https://mladenjovanovic.github.io/bmbstats/ (accessed on 3 August 2020).
- Cumming, G. Inference by eye: Reading the overlap of independent confidence intervals. Stat. Med. 2008, 28, 205–220. [Google Scholar] [CrossRef]
- Cumming, G.; Finch, S. Inference by Eye: Confidence intervals and how to read pictures of data. Am. Psychol. 2005, 60, 170–180. [Google Scholar] [CrossRef]
- Cumming, G. The New Statistics. Psychol. Sci. 2013, 25, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Calin-Jageman, R.J.; Cumming, G. The new statistics for better science: Ask how much, how uncertain, and what else is known. Am. Stat. 2019, 73, 271–280. [Google Scholar] [CrossRef]
- Calin-Jageman, R.; Cumming, G. From significance testing to estimation and open science: How esci can help. Int. J. Psychol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sports Phys. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Cumming, G.; Calin-Jageman, R. Introduction to the New Statistics: Estimation, Open Science, and Beyond, 2nd ed.; Routledge, Taylor & Francis Group: New York, NY, USA, 2024. [Google Scholar]
- Alonso-Callejo, A.; García-Unanue, J.; Guitart-Trench, M.; Majano, C.; Gallardo, L.; Felipe, J.L. Validity and reliability of the acceleration-speed profile for assessing running kinematics’ variables derived from the force-velocity profile in professional soccer players. J. Strength Cond. Res. 2023, 38, 563–570. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, M.; Arguedas-Soley, A.; Cabarkapa, D.; Andersson, H.; Nagy, D.; Trunić, N.; Banković, V.; Richárd, R.; Safar, S.; Ratgeber, L. Agreement and Sensitivity of the Acceleration–Velocity Profile Derived via Local Positioning System. Sensors 2024, 24, 6192. https://doi.org/10.3390/s24196192
Jovanović M, Arguedas-Soley A, Cabarkapa D, Andersson H, Nagy D, Trunić N, Banković V, Richárd R, Safar S, Ratgeber L. Agreement and Sensitivity of the Acceleration–Velocity Profile Derived via Local Positioning System. Sensors. 2024; 24(19):6192. https://doi.org/10.3390/s24196192
Chicago/Turabian StyleJovanović, Mladen, Adriano Arguedas-Soley, Dimitrije Cabarkapa, Håkan Andersson, Dóra Nagy, Nenad Trunić, Vladimir Banković, Répási Richárd, Sandor Safar, and Laszlo Ratgeber. 2024. "Agreement and Sensitivity of the Acceleration–Velocity Profile Derived via Local Positioning System" Sensors 24, no. 19: 6192. https://doi.org/10.3390/s24196192
APA StyleJovanović, M., Arguedas-Soley, A., Cabarkapa, D., Andersson, H., Nagy, D., Trunić, N., Banković, V., Richárd, R., Safar, S., & Ratgeber, L. (2024). Agreement and Sensitivity of the Acceleration–Velocity Profile Derived via Local Positioning System. Sensors, 24(19), 6192. https://doi.org/10.3390/s24196192