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Abstract: Sprint performance is commonly assessed via discrete sprint tests and analyzed through
kinematic estimates modeled using a mono-exponential equation, including estimated maximal
sprinting speed (MSS), relative acceleration (TAU), maximum acceleration (MAC), and relative
propulsive maximal power (PMAX). The acceleration–velocity profile (AVP) provides a simple
summary of short sprint performance using two parameters: MSS and MAC, which are useful for
simplifying descriptions of sprint performance, comparison between athletes and groups of athletes,
and estimating changes in performance over time or due to training intervention. However, discrete
testing poses logistical challenges and defines an athlete’s AVP exclusively from the performance
achieved in an isolated testing environment. Recently, an in situ AVP (velocity–acceleration method)
was proposed to estimate kinematic parameters from velocity and acceleration data obtained via
global or local positioning systems (GPS/LPS) over multiple training sessions, plausibly improving
the time efficiency of sprint monitoring and increasing the sample size that defines the athlete’s AVP.
However, the validity and sensitivity of estimates derived from the velocity–acceleration method
in relation to changes in criterion scores remain elusive. To assess the concurrent validity and
sensitivity of kinematic measures from the velocity–acceleration method, 31 elite youth basketball
athletes (23 males and 8 females) completed two maximal effort 30 m sprint trials. Performance was
simultaneously measured by a laser gun and an LPS (Kinexon), with kinematic parameters estimated
using the time–velocity and velocity–acceleration methods. Agreement (%Bias) between laser gun
and LPS-derived estimates was within the practically significant magnitude (±5%), while confidence
intervals for the percentage mean absolute difference (%MAD) overlapped practical significance for
TAU, MAC, and PMAX using the velocity–acceleration method. Only the MSS parameter showed
a sensitivity (%MDC95) within practical significance (<5%), with all other parameters showing
unsatisfactory sensitivity (>10%) for both the time–velocity and velocity–acceleration methods. Thus,
sports practitioners may be confident in the concurrent validity and sensitivity of MSS estimates
derived in situ using the velocity–acceleration method, while caution should be applied when using
this method to infer an athlete’s maximal acceleration capabilities.
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1. Introduction

The ability to produce and sustain high speed and acceleration represents a key
physical performance determinant in team sports such as football, rugby, and basketball.
Maximum velocity and acceleration are routinely assessed via short sprints in many team
sport settings to inform athlete preparation, monitoring, and rehabilitation strategies [1,2].
Assessing sprint performance characteristics using laser gun devices, which record instan-
taneous velocity–time traces, is common practice in sports settings. The velocity–time
relationship can then be modeled using a mono-exponential equation [3] to describe an
athlete’s acceleration–velocity profile (AVP), yielding estimations of sprint mechanical char-
acteristics such as maximal sprinting speed (MSS), relative acceleration (TAU), maximal
acceleration (MAC), slope of the acceleration speed (ASslope), and maximum net relative
propulsive power (Pmax) [2,4,5]. Accordingly, it has been proposed that by quantifying
individual differences and training-induced changes in sprint mechanical characteristics,
practitioners can better understand the factors limiting an athlete’s sprint performance [6].

The development of global positioning systems (GPS), local positioning systems (LPS),
and video-tracking systems (VID) in team sports has enabled the estimation of velocity
and acceleration outputs within the training and competition environment [7]. These
systems provide an attractive, time-efficient alternative to applied practitioners, which
could allow for monitoring of sprint performance without having to schedule discrete
testing of full squads or expose athletes to additional maximal sprint efforts. Indeed,
sprint time data derived from LPS have demonstrated high test-to-test reliability (intra-
class correlation coefficient (ICC): 0.99–1.00) and concurrent validity (mean absolute error
(MAE): 0.01–0.02) with single-beam timing gate data in ice-hockey athletes [8]. However,
LPS use has also been reported to incur greater measurement error (4%) for velocity
measures during sport-specific tasks (e.g., small-sided games in football) compared to GPS
(2.2%) and VID (2.7%) technology [9], with error magnitudes for all three systems increasing
at higher velocities. Nonetheless, it was recently reported in football and handball athletes
performing small-sided games that errors for instantaneous peak velocity derived from
LPS (percentage deviation: 0.7–1.7%) were smaller than or consistent with documented
errors for comparable systems [10], suggesting that LPS technology provides an adequate
means of monitoring positional and velocity-related outputs of team sport athletes.

Monitoring the AVP of an athlete is of particular interest to performance practitioners,
as it represents a simple model to estimate the kinematics of an athlete’s short sprint per-
formance. Recently, an embedded (i.e., in situ) AVP has been proposed using GPS or LPS
data collected over multiple training sessions [8,10–12], possibly enabling the assessment
of individual sprint-acceleration abilities within the athlete’s sport-specific environment
and eliminating the need for discrete sprint testing. Moreover, outcome measures from
individual in situ AVPs have been used to differentiate sprint mechanical properties be-
tween youth footballers of differing maturity status [13] and have demonstrated stable
measurement properties in elite football athletes (standard error of measurement (SEM):
MSS: 0.41, MAC: 0.36, ASslope: 0.07) [12]. Certainly, quantification of an athlete’s AVP dur-
ing sport-specific activities, namely their acceleration capacity at different velocities, could
provide valuable information for sport performance practitioners to individualize training
prescriptions, monitor fitness–fatigue states, or profile talented youth athletes [6,13,14].
However, ensuring the appropriate validity and sensitivity of existing technologies is
essential in athlete monitoring, particularly for quantifying parameters from short-duration
sprints [15] derived from GPS or LPS systems, which inherently sample at lower frequen-
cies (10–100 Hz) than criterion velocity measurements (e.g., laser guns, 2.56 KHz). To date,
the measurement properties of LPS-derived AVP in team sports remain unexplored.

Therefore, this study aimed to evaluate the concurrent validity of LPS-derived sprint
mechanical outcome measures (MSS, TAU, MAC, and Pmax) using the embedded AVP
previously detailed in the literature [12,16] by quantifying the agreement with data sampled
simultaneously from a reference standard laser gun during short sprints performed by
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youth basketball athletes. Further, the sensitivity of the LPS-derived outcome measures in
detecting changes in the criterion (laser gun) scores was also examined.

2. Materials and Methods
2.1. Participants

This study involved the participation of 31 basketball players, comprising 23 males
(age = 16.1 ± 1.0 years; height = 188.3 ± 7.5 cm; body mass = 69.5 ± 10.8 kg) and 8 females
(age = 16.1 ± 1.4 years; height = 170.5 ± 7.5 cm; body mass = 60.9 ± 7.6 kg). All athletes
were selected from the highest youth level in Hungary. The participants were duly apprised
of the potential hazards and advantages of their involvement in the study, and a written
authorization was procured from both the participants and their parents. The research
adhered to the University of Belgrade ethical guidelines and was conducted in accordance
with the most recent version of the Declaration of Helsinki.

2.2. Procedures

Before evaluating sprint performance, a standardized warm-up protocol lasting 15 min
was executed. The warm-up protocol involved a series of mobility and low-intensity run-
ning exercises performed repeatedly within a 20 m distance, culminating in three incremen-
tal sub-maximal sprints covering a distance of 30 m. Following the warm-up procedure,
the participants executed two trials of maximal sprints covering a distance of 30 m, with a
minimum rest period of 3 min between each trial. Participants were given a “set” command
to take and maintain a stationary position, after which the laser gun was initiated. After
a few moments, an additional “go” signal was given, with athletes initiating sprinting
when they felt ready. If equipment failure occurred, an additional sprint was executed as
needed. This was necessary for another research interest involving photocells [2]. Due
to this strategy, one to three sprints were collected and measured for every participant.
The velocity measurements were continuously recorded for each attempt utilizing a laser
gun (CMP3 Distance Sensor, Noptel Oy, Oulu, Finland) at a sampling rate of 2.56 KHz.
A polynomial function was used to model the relationship between distance and time,
which was subsequently resampled at a frequency of 1000 Hz through the use of Muscle-
lab™ v10.232.107.5298 (Ergotest Technology AS, Langesund, Norway). The laser gun was
positioned roughly 3 m from the initial timing gate, while the reference point (i.e., zero
distance) was established at 1 m behind the initial timing gate. All of the sprints were
executed within the confines of an indoor basketball facility.

Positional data were continuously captured with an LPS (20 Hz, Kinexon GmbH,
Munich, Germany) throughout all experimental trials. The LPS setup incorporated a
specific local network access, 1 power-over-ethernet switch, 1 server, and 26 hardwired
anchors secured ∼8 m above the court’s surface. LPS devices were securely positioned
between each athlete’s scapulae. The devices communicated via ultra-wideband technology
with the anchors to achieve real-time localization and were equipped with an inertial
measurement unit (IMU: accelerometer, gyroscope, and magnetometer). The Kinexon
LPS has demonstrated reliability and validity in measuring instantaneous velocity and
acceleration over a range of starting velocities (coefficient of variation (CV) < 10%, ICC > 0.9;
mean biases: velocity < 0.5 km/h, acceleration < 0.01 ms−2) [17]. Raw positional data were
then exported using manufacturer software (basketball-specific app; version 10-3-9) and
processed using the R language [18].

To compare the short-sprint mechanical parameters, (1) the maximal sprinting speed
(MSS), expressed in meters per second (ms−1); (2) the relative acceleration (TAU), expressed
in seconds (s); (3) the maximal acceleration (MAC), expressed in meters per second squared
(ms−2); and (4) the net relative propulsive power (Pmax), expressed in Watts per kilogram
(W/kg), were estimated by using the open-source {shorts} package [19,20] available in the
R language [18].

Sprint mechanical parameters for the laser gun were estimated using the smoothed
(the exact filtering/smoothing method is a proprietary secret of Ergotest Technology)
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velocity–time signal and time correction mono-exponential model (Equation (1)) [2], after
filtering out velocities below 0.75 ms−1 and over the peak smoothed velocity provided
by the Musclelab™ software (Figure 1a). Additional model observation weighting was
utilized by using time (i.e., observations with higher time were given more weight).

v(t) = MSS ×
(

1 − e−
t+TC
TAU

)
(1)

The same sprint parameter estimation procedure was utilized for the Kinexon (Figure 1b).
Due to the continuous collection of Kinexon data throughout the whole testing session, specific
sprint trials had to be recognized using a bespoke script built in the R language [18] written
by one of the authors. For this study, the method of estimating sprint parameters using
time–velocity tracing and Equation (1) was named the time–velocity method.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 13 
 

 

To compare the short-sprint mechanical parameters, (1) the maximal sprinting speed 
(MSS), expressed in meters per second (msିଵ); (2) the relative acceleration (TAU), expressed 
in seconds (s); (3) the maximal acceleration (MAC), expressed in meters per second squared 
(msିଶ); and (4) the net relative propulsive power (P୫ୟ୶), expressed in Watts per kilogram 
(W/kg), were estimated by using the open-source {shorts} package [19,20] available in the 
R language [18]. 

Sprint mechanical parameters for the laser gun were estimated using the smoothed 
(the exact filtering/smoothing method is a proprietary secret of Ergotest Technology) ve-
locity–time signal and time correction mono-exponential model (Equation (1)) [2], after 
filtering out velocities below 0.75 msିଵ and over the peak smoothed velocity provided by 
the Musclelab™ software (Figure 1a). Additional model observation weighting was uti-
lized by using time (i.e., observations with higher time were given more weight). v(t) = MSS × ൬1 − eି୲ାେ ൰ (1)

The same sprint parameter estimation procedure was utilized for the Kinexon (Figure 
1b). Due to the continuous collection of Kinexon data throughout the whole testing ses-
sion, specific sprint trials had to be recognized using a bespoke script built in the R lan-
guage [18] written by one of the authors. For this study, the method of estimating sprint 
parameters using time–velocity tracing and Equation (1) was named the time–velocity 
method. 

 
(a) 

Sensors 2024, 24, x FOR PEER REVIEW 5 of 13 
 

 

 
(b) 

Figure 1. The grey rectangle represents time–velocity data that are used to train the model (Equation 
(1)), which involves velocity over 0.75 msିଵ until the observed peak velocity is reached (indicated 
by a dotted horizontal line). (a) Laser Gun. The thin solid line indicates raw velocity (sampled at 
1000 Hz). The thick solid line indicates smoothed velocity (the exact filtering/smoothing method is 
a proprietary secret of Ergotest Technology AS). The thick dashed line represents the mono-expo-
nential model prediction. (b) Kinexon. The thick solid line indicates the reported device velocity 
(sampled at 20 Hz). The thick dashed line represents the mono-exponential model prediction. 

To test the agreement and sensitivity of the embedded (i.e., in situ) sprint profiles 
[12,16], Kinexon velocity–acceleration data across all trials were used (Figure 2a). This 
method involves using velocity–acceleration tracing, which was named the velocity–ac-
celeration method for this study. This method is attractive to the practitioners because it 
does not require any additional manual processing of the continuous monitoring data. 
The procedure of estimating an acceleration–velocity profile (i.e., MSS and MAC) involves 
filtering in samples where acceleration is positive (i.e., over 0 msିଶ) and velocity over 3 msିଵ, and then computing linear regression from the 2 maximal acceleration points col-
lected for every 0.2 msିଵ increment (Figure 2b). Additional model observation weighting 
was utilized by using velocity (i.e., observations with higher velocity were given more 
weight). 

 
(a) 

Figure 1. The grey rectangle represents time–velocity data that are used to train the model
(Equation (1)), which involves velocity over 0.75 ms−1 until the observed peak velocity is reached



Sensors 2024, 24, 6192 5 of 12

(indicated by a dotted horizontal line). (a) Laser Gun. The thin solid line indicates raw velocity
(sampled at 1000 Hz). The thick solid line indicates smoothed velocity (the exact filtering/smoothing
method is a proprietary secret of Ergotest Technology AS). The thick dashed line represents the
mono-exponential model prediction. (b) Kinexon. The thick solid line indicates the reported device
velocity (sampled at 20 Hz). The thick dashed line represents the mono-exponential model prediction.

To test the agreement and sensitivity of the embedded (i.e., in situ) sprint profiles [12,16],
Kinexon velocity–acceleration data across all trials were used (Figure 2a). This method
involves using velocity–acceleration tracing, which was named the velocity–acceleration
method for this study. This method is attractive to the practitioners because it does not require
any additional manual processing of the continuous monitoring data. The procedure of
estimating an acceleration–velocity profile (i.e., MSS and MAC) involves filtering in samples
where acceleration is positive (i.e., over 0 ms−2) and velocity over 3 ms−1, and then computing
linear regression from the 2 maximal acceleration points collected for every 0.2 ms−1 increment
(Figure 2b). Additional model observation weighting was utilized by using velocity (i.e.,
observations with higher velocity were given more weight).
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observations across three sprint trials for a single individual. Note: Trial 1—T01 (# symbol); Trial
2—T02 (□ symbol); Trial 3—T03 (3 symbol). (b) Using the velocity–acceleration method, only positive
acceleration (i.e., over 0 ms−2) and velocity over 3 ms−1 observations were used (grey rectangle)
to estimate MSS and MAC parameters. A linear regression was then fitted (dashed line) using the
two maximal acceleration observations that were collected for every 0.2 ms−1 increment (filled points).
The MAC parameter, which is equivalent to the estimated intercept of the linear regression model, can
be visualized as the point where the regression line (dashed line) crosses the y-axis. The MSS parameter,
which is equal to the estimated intercept divided by the negative estimated slope of the linear regression
model, can be visualized as the point where the regression line (dashed line) crosses the x-axis.

The velocity–acceleration method for estimating AVP using the Kinexon data utilizes
all trials, which can involve 1–3 sprints for which we provide the aggregate or the best
profile (i.e., some of the data points in certain velocity zones can be from separate sprints).
To provide estimates of the agreement, laser gun estimates using the time–velocity method
were aggregated across multiple sprints using the best values for MSS, MAC, TAU, and
Pmax. This involves using the maximum estimate for all parameters except the TAU
parameter, for which the minimum estimate is utilized.

2.3. Statistical Analysis

The agreement between the laser gun and Kinexon for both the time–velocity and
velocity–acceleration methods was estimated using the percent difference (%Diff) estimator
(Equation (2)), which was calculated for every athlete and trial, as well as the sprint parameter.

%Diff = 100 × (Timing Gates − Laser)
Laser

(2)

In addition to the descriptive analysis of the %Diff involving the mean and 2.5th and
97.5th percentiles (i.e., 95% range), scatterplots with simple linear regression between laser gun
and Kinexon estimates were generated. Using individual percent difference scores, percent
bias (%Bias, or mean percent difference; Equation (3)) and percent mean absolute difference
(%MAD; Equation (4)) were calculated as metrics of agreement between the methods.

%Bias =
1
N

N

∑
i=1

(%Diffi) (3)

%MAD =
1
N

N

∑
i=1

∣∣∣%Diffi − %Diff
∣∣∣ (4)

Practitioners are frequently concerned about whether they may utilize estimated
parameter values to monitor changes in the true parameters in addition to estimating
agreement between them. Thus, an estimate of the sensitivity represents crucial informa-
tion to decide whether a given measure can be practically used to monitor changes. A
minimal detectable change estimator with 95% confidence (%MDC95) [21,22] was utilized
to estimate this sensitivity. The %MDC95 value might be regarded as the minimum amount
of change that needs to be observed in the estimated parameter for it to be considered
a true change. The sensitivity of the LPS in detecting changes in parameters, estimated
using agreement with the laser gun, assumes that there is no random error in laser gun
estimates. In other words, this method assumes that the laser gun estimates represent the
true parameter values.

The percent residual standard error (%RSE) of the linear regression between laser
gun (predictor) and Kinexon (outcome) (Equation (5)) was utilized to calculate %MDC95
(Equation (6)) for short-sprint parameters. Assuming no random error is involved in laser
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gun estimates, %RSE represents the percent standard error of the measurement (%SEM) in
the Kinexon estimates.

%RSE =

√√√√∑N
i=1

(
100 × yi−ŷi

ŷi

)2

N − 2
(5)

%MDC95 = %RSE ×
√

2 × 1.96 (6)

Statistical inferences for the %Bias, %MAD, and %MDC95 estimators were provided
using 5000 bootstrap resamples and 95% bias-corrected and accelerated (BCa) confidence
intervals [21,23–25] using a custom-written R package by one of the authors [26]. Estimated
95% BCa confidence intervals were used together with a selected 5% practically significant
threshold to visually interpret the magnitude inference of the agreement and sensitivity
metrics [21,27–33].

3. Results
3.1. Data Collected

Overall, the collected sample included 30 athletes and 57 sprint trials, with 1.9 trials
per athlete (range: 1 to 3 trials). These sprint trials were treated as independent when
estimating the agreement using the time–velocity method. Individual athlete aggregates
were used when estimating the agreement using the velocity–acceleration method, resulting
in 30 observations.

3.2. Descriptive

Distributions of the percent difference (%Diff) scores between the laser gun and
Kinexon for all parameter estimates using the (1) time–velocity and (2) velocity–acceleration
methods, together with the mean and 2.5th and 97.5th percentiles as descriptors, are
depicted in Figure 3. Percent differences ranged from −4 to 2.22% for MSS, from −16 to
14.24% for MAC, from −16 to 18.52% for TAU, and from −16 to 11.03% for Pmax for both
the time–velocity and velocity–acceleration methods.
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A scatterplot between the laser gun and Kinexon for all parameter estimates using the
(1) time–velocity and (2) velocity–acceleration methods is depicted in Figure 4.
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Figure 4. Scatterplot between laser gun and Kinexon estimates for (1) MSS, (2) TAU, (3) MAC, and
(4) Pmax estimates using (1) time–velocity and (2) velocity–acceleration methods. Each circle represents a
single athlete trial. The dotted diagonal line represents the identity line, at which all the observations
would be positioned for perfect agreement. MSS—maximum sprinting speed (ms−1); TAU—relative
acceleration (s); MAC—maximum acceleration (ms−2); Pmax—maximal relative power (Wkg−1).

3.3. Agreement and Sensitivity

The estimated agreement (%Bias and %MAD) and sensitivity (%MDC95) metrics,
together with their 95% BCa confidence intervals and 5% practically significant thresholds,
are depicted in Figure 5. Estimated %Bias ranged from −1 to 2.53%, %MAD ranged from
1 to 4.83%, and %MDC95 ranged from 3 to 14.79% across all parameters and for both the
time–velocity and velocity–acceleration methods.
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visual anchor. MSS—maximum sprinting speed (ms−1); TAU—relative acceleration (s); MAC—maximum
acceleration (ms−2); Pmax—maximal relative power (Wkg−1); Bias (%)—mean percent difference; MAD
(%)—mean absolute percent difference; MDC (%)—minimum detectable percent difference.

4. Discussion

Quantifying sprint mechanical characteristics provides valuable insight to practition-
ers monitoring and profiling athletes involved in sports requiring frequent sprint efforts.
The AVP represents a simple, two-parameter model describing the kinematics of an ath-
lete’s short-sprint performance, which may help identify and monitor factors limiting
their sprinting abilities [2,16,34]. Traditionally, AVP profiling required athletes to perform
maximal sprints during regularly scheduled testing sessions. However, recently, an embed-
ded AVP (velocity–acceleration method) was developed for the estimation of kinematic
parameters using GPS or LPS data sampled from training sessions where exposures to
maximal accelerations and velocities take place [12,13,34], possibly making sprint moni-
toring more time-efficient and non-invasive. The present study examined the concurrent
validity of LPS-derived (Kinexon) sprint kinematic estimates using the time–velocity and
velocity–acceleration methods by assessing their agreement and sensitivity to changes in
measures with a reference standard laser gun in elite youth basketball athletes, for the first
time, to the best of our knowledge.

The primary finding of the present study was that the agreement between LPS-derived
and laser gun estimates (%Bias) fell within the practically significant magnitude of ±5% for
all parameters using both the time–velocity and velocity–acceleration methods. Extending
on the findings of prior researchers, who have documented good reliability for MSS,
MAC, and ASslope using the velocity–acceleration method in team sport athletes (SEM:
~3–8%, ICC > 0.5) [16,34], our results indicate that LPS-derived estimates using the velocity–
acceleration method may provide a valid representation of an athlete’s AVP in situ with
negligible bias. In addition, these findings are consistent with those reported by Linke
et al. [9], showing acceptable accuracy of LPS-derived instantaneous velocity during very-
high-speed tasks in football players. However, caution should be applied, as the agreement
of TAU, MAC, and Pmax with laser gun estimates, as determined by %MAD, revealed
confidence intervals (CI) crossing the practical threshold of ±5% for both methods (Figure 5).
Specifically, using the CI for judgment of statistical significance and the laser gun as the
criterion, the velocity–acceleration method showed some misalignment in estimating MAC,
TAU, and Pmax, whereas the CI for the time–velocity method only overlapped the practical
significance region for TAU. Interestingly, visual inspection of the CIs indicated that apart
from Pmax, %Bias values for parameters using the time–velocity and velocity–acceleration
methods were not statistically different. Notably, defining the LPS trace using the time-
velocity method may be problematic and time-intensive for practitioners, and thus this
finding may suggest that the velocity–acceleration (in situ) method can provide an equally
valid yet more time-efficient alternative for calculating kinematic estimates besides the Pmax.

Although valid estimation of kinematic estimates is of crucial importance in profiling
athletes, the ability to accurately detect changes within and between athletes over time is
key in athlete monitoring. To date, the only study to investigate the measurement sensitivity
of embedded AVP estimates showed poor internal sensitivity (CV > smallest worthwhile
change (SWC)) for GPS-derived MSS, MAC, and ASslope values in elite footballers [12].
In the present study, the sensitivity using %MDC95 was within the practically significant
magnitude only for MSS (<5%) using both the time–velocity and velocity–acceleration
methods, while the %MDC95 for all other parameters was greater than 10% and up to
15%. This suggests that larger changes in LPS-derived sprint mechanical estimates may
be required to ascertain with 95% confidence that a true change in the criterion parameter
values (laser gun) took place. Our findings show consistency with a previous investigation
from our research group examining the sensitivity of short-sprint mechanical parameters
derived from timing gates to changes in laser gun scores [2]. Indeed, the results of this
study suggested that the MSS parameter, using the simplest no-correction model, achieved
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the highest degree of sensitivity (%MDC95 < 7%), and all other parameters demonstrated
unsatisfying levels of sensitivity (%MDC95 > 40%) [2]. Interestingly, the %MDC95 values for
LPS-derived kinematic estimates in the present study were smaller than those observed for
timing gates, potentially offering practitioners a more pragmatic assessment with slightly
better sensitivity. Owing to the current findings as well as prior evidence, practitioners may
be confident that the MSS indicator has now demonstrated satisfactory sensitivity using
both the time–velocity method and velocity–acceleration method. On the other hand, the
ability to estimate maximal acceleration traits from available methods remains questionable.

Although our results extend the current understanding of the validity and sensitivity
of sprint mechanical parameters derived from novel sprint-profiling methods, this study is
not without limitations. Firstly, the embedded AVP (velocity–acceleration method) was
originally designed for the assessment of sprint mechanical outcomes during live team
sports training and/or match play [12]. In the current study, the embedded AVP was
extracted during a discrete sprint-testing session, rather than during a training session with
maximal velocity and acceleration efforts, for which the method was intended. However,
given that the aim of this study involved assessing the concurrent validity of measures
derived from an embedded AVP, the study design necessarily required the inclusion of
discrete sprint tests (criterion measure) for comparison of concurrent data samples (i.e.,
Kinexon-LPS-derived and laser-gun-derived). Although this may mean that the results
could be too optimistic compared to when the AVP is eventually estimated during normal
training sessions, this study provides a conceptual basis for future applied studies to
examine these parameters in situ. Moreover, although we addressed the sensitivity of LPS-
derived kinematic estimates using the velocity–acceleration method to changes in criterion
scores for the first time to our knowledge, future research should extend these findings by
assessing minimum detectable changes over multiple assessments over non-consecutive
days, as well as longitudinal training-induced changes in sprint mechanical parameters.
Such work could elevate our understanding of whether the embedded AVP is suitable for
reliable and valid quantification of positive and negative changes in an athlete’s sprint
mechanical characteristics that may subsequently impact their sprint performance.

Furthermore, we hypothesize that the study’s use of an LPS with a 20 Hz sample
frequency may have contributed to the TAU, MAC, and Pmax parameters’ less reliable mea-
surement characteristics. It is recommended that future research investigate the potential
effects of raising the LPS sampling frequency on the measurement characteristics of the
TAU, MAC, and Pmax parameters.

5. Conclusions

Based on the data obtained in the present investigation, practitioners evaluating LPS-
derived estimates of sprint kinematics using the time–velocity and velocity–acceleration
methods may have confidence that MSS indices offer satisfactory agreement with and sensi-
tivity to changes in criterion scores. In addition, LPS-derived MSS estimates demonstrated
better sensitivity, as per %MDC95, than that reported for timing gates in a similar prior
investigation [2]. However, practitioners should also be cautious when using these methods
to infer an athlete’s maximum acceleration capabilities, for which the parameters (i.e., TAU,
MAC, and Pmax) have shown less robust measurement properties. Future studies should
attempt to replicate the current findings and potentially examine longitudinal changes in
kinematic parameters using the velocity–acceleration method across both elite and sub-elite
team sport athletes.
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