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Abstract: High-precision simultaneous localization and mapping (SLAM) in dynamic real-world
environments plays a crucial role in autonomous robot navigation, self-driving cars, and drone
control. To address this dynamic localization issue, in this paper, a dynamic odometry method is
proposed based on FAST-LIVO, a fast LIDAR (light detection and ranging)—inertial-visual odometry
system, integrating neural networks with laser, camera, and inertial measurement unit modalities.
The method first constructs visual-inertial and LiDAR-inertial odometry subsystems. Then, a
lightweight neural network is used to remove dynamic elements from the visual part, and dynamic
clustering is applied to the LiDAR part to eliminate dynamic environments, ensuring the reliability
of the remaining environmental data. Validation of the datasets shows that the proposed multi-
sensor fusion dynamic odometry can achieve high-precision pose estimation in complex dynamic
environments with high continuity, reliability, and dynamic robustness.

Keywords: simultaneous localization and mapping (SLAM); multi-sensor fusion; dynamic elimination

1. Introduction

High-precision simultaneous localization and mapping (SLAM) plays a critical role
in fields such as autonomous navigation for robots, self-driving cars, and drone control.
Achieving high-precision SLAM requires accurate localization, meaning that the intelligent
agent must know its exact position. Currently, precise localization methods widely rely
on the Global Navigation Satellite System (GNSS). However, in complex urban environ-
ments with tall buildings and dense trees, the GNSS can encounter denied environments.
Therefore, in GNSS-denied urban environments, SLAM requires high-precision localization
methods that do not depend on the GNSS.

Odometry is a measurement method that uses sensor data to estimate pose changes
over time. Traditional odometry relies on a single sensor, such as an inertial measurement
unit (IMU), visual camera, or light detection and ranging (LiDAR). However, because
of the sensors’ characteristics, single-sensor odometry is prone to significant cumulative
localization errors [1]. As the number of sensors onboard intelligent agents increases and
sensor technology advances, dual- and multi-sensor fusion odometry can combine the
advantages of various sensors to achieve higher localization accuracy.

In two-sensor fusion odometry, the mainstream approaches are visual-inertial odome-
try (VIO) and LiDAR-inertial odometry (LIO), both utilizing the IMU’s advantages of fast
data updates and high autonomy [2]. VIO is lightweight overall, primarily using feature
matching to estimate the agent’s pose between frames. Researchers [3] have developed
monocular and stereo visual-inertial SLAM systems using oriented FAST and rotated
BRIEF (ORB) feature point extraction and matching techniques [4] to calculate camera pose
changes between adjacent frames and improve pose estimation accuracy and robustness
through loose coupling with IMU data. Authors in [5], building on the work of [3], per-
formed a tight coupling of visual and IMU information using SuperPoint—a method based
on convolutional neural networks—for feature point extraction and descriptor matching [6].
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This approach enhances the accuracy and robustness of pose estimation. The authors of [7]
employed sliding window optimization and factor graph optimization, demonstrating
good performance in dynamic environments and high-speed motion.

Although VIO offers advantages such as lower device costs and higher autonomy and
concealment, its performance can significantly degrade under limited lighting conditions
because of its high sensitivity to environmental factors. However, LIDAR can better leverage
its advantages to obtain more precise distance information in harsh environments [8], thus
providing more accurate self-pose estimation. Research on LiDAR and its coupling with
LIO is relatively thorough [9]. The studies [7,10] both used sliding window optimization
methods to align each frame with a local map, ensuring that each frame established a
clear constraint relationship with the first frame. The authors of [11], building on [10],
constructed a local map by stitching together the latest keyframes and updated the local
map based on pose information. Several studies [12-14] used iterative error Kalman
filtering as a filtering framework, performing state updates through iterative solutions to
achieve more precise pose estimation.

LiDAR can provide precise distance information with high resolution and reliability,
but its performance deteriorates in dynamic environments and severely degrades in feature-
poor environments, such as open plains or long, straight corridors. By combining visual
cameras, LiDAR, and IMUs to form laser—visual-inertial odometry (LVIO), the advantages
of each sensor can be leveraged to effectively mitigate the limitations of individual sensors.

Authors in [14] constructed a tightly coupled factor graph model that integrates mea-
surements from visual cameras, LIDAR, and IMUs, treating primitives as landmarks and
tracking them across multiple scans, thereby enhancing robustness in complex scenarios.
Researchers in [15] built on the LIO system from [13] and the VIO system from [7], us-
ing a tight coupling method to combine both systems and incorporating high-frequency
odometry filtering. This approach enabled the proposed algorithm to be used for dense 3D
mapping over large indoor and outdoor areas. The work in [16,17], based on [15], continued
using the LIO component, separating VIO into inter-frame tracking and frame-to-map
tracking, and updating the iterative extended Kalman filtering process to achieve more
accurate map construction.

However, in the complex urban environment, city roads are filled with numerous mov-
ing vehicles and pedestrians. Achieving high-precision SLAM in dynamic environments
remains a significant challenge for current LVIO algorithms, as the movement of envi-
ronmental objects can lead to the misidentification of surrounding obstacles and severely
impact keyframe extraction and inter-frame tracking. To adapt to real-world dynamic
environments, we consider the excellent performance of neural networks in dynamic object
recognition [18,19]. Traditional neural network structures are complex, computationally
demanding, and difficult to integrate with SLAM algorithms. Lightweight neural networks
balance dynamic recognition performance with computational efficiency, and combining
these networks with LVIO algorithms can achieve high-precision SLAM in dynamic and
complex environments.

2. Multi-Sensor Fusion Dynamic Odometry Calculation Framework

The multi-sensor fusion dynamic odometry architecture presented in this paper refer-
ences the FAST-LIVO algorithm [17]. FAST-LIVO is a fast multi-sensor fusion odometry
system that primarily consists of LIO and VIO subsystems. In the preprocessing phase,
sensor information within a certain time frame is packaged into computational units. This
phase includes anomaly removal from visual information and dynamic object removal
based on a lightweight neural network. During the state estimation phase, iterative Kalman
filtering is applied through LiDAR point-to-plane residual calculation, IMU prior estima-
tion, and camera sparse-direct visual alignment. A local map and an ikd-Tree [20] global
map are built simultaneously. Additionally, the dynamic parts of the radar point cloud
corresponding to the dynamic segments removed from visual information are also removed
through dynamic clustering. The filtered global map information is then used in the LiDAR



Sensors 2024, 24, 6193

3o0f14

IMU

Camera

point-to-plane residual calculation. The specific system algorithm framework is shown in

Figure 1.
M ’Il” GlObal Map
. . Point-to-plane —‘—>
-»| LIDAR Dynamic Residual —+— LiDAR Global Map
' Outlier Removal . '
' Computation :
! Dynamic : .
!Clustering LiDAR : Stored by ikd-Tree .
E Measurement 1 :
VoS TTTTTe \ ; ]

Update H E
newscan| : Visual Global Map E

A

: E i : Forward . .
> Compl.mng i - State Estimation
. Unit ‘Propagation

Visual
Measurement

. __ | Visual Dynamic
Outlier Removal

T Project

Figure 1. Multi-sensor fusion dynamic odometry calculation framework diagram.
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3. System Description
3.1. State Transition Model

The state transition model, also known as the discrete model, describes the changes in
the system state over discrete time intervals. In this system, we assume that the LiDAR,
camera, and IMU have been pre-calibrated and synchronized, and that the time drift
between the three sensors is known. The state transition model is primarily based on IMU
data. By combining the measured angular velocity and acceleration and removing their
respective biases and noise, we obtain the net values. We assume that the three sensors are
rigidly connected. Equation (1) defines the state transition model at the moment i when the
IMU measurement is taken:

Xi+1 = X; H (Atf(xi, ll,',Wl')) (1)
where x; represents the system state vector at time step i, H represents generalized addition,
At is the time step, u; is the control input at time step 7, w; is the process noise at time step i,
and f(x, u, w) is the state transition function. Equation (2) provides detailed definitions for
x, u, w, and f(x, u, w):

M2 50(3) x R, dim(M) = 18

ue [w] af) w2 [of nl nf nf]
[ wm; — bg, — N, ] )
v, +%(GR1 (am; —ba; —ng;) + gi)At
f(x;,u;, W)= GRI,-(amz by —ny) +7 g;
Npg.
nbi
L 031 |

where the manifold M is an 18-dimensional composite manifold composed of the 3-
dimensional rotation group SO(3) and a 15-dimensional free Euclidean space R, the body
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coordinate system I is the IMU’s coordinate system, and the global coordinate system G
is established with reference to the first frame of the IMU coordinate system. GR I Gp I
and Cv, represent the attitude, position, and velocity in the global coordinate system,
respectively. a,; and w,, are the acceleration and angular velocity, respectively, measured
by the IMU. n, and ng are the white noises of a,, and w,, respectively. ny, and npg
represent the Gaussian noises, while b, and bg are the random walk processes of ny,, and
Ny, respectively.

3.2. Kinematic Model

The kinematic model, also known as the continuous model, describes the changes in
the system state over continuous time. In Section 3.1, we assume that the three sen-
sors are rigidly connected. Through joint calibration, the extrinsic parameter matrix
IT, = ('R;, 'p, ) from the LiDAR to the IMU can be obtained, where L denotes the LIDAR
coordinate system. Equation (3) provides a detailed definition of the kinematic model:

GRI = GRI lwm —by —ny ], bg = nbg,ba1 = Np,

where |w;,, — by, —ng |, represents the antisymmetric model of vector wy, — by — ne,
mapping the cross-product operation to the dot-product operation. The kinematic model
combines the IMU’s acceleration and angular velocity measurements, accurately describing
the changes in the IMU's attitude, velocity, and position, thus providing the foundation for
subsequent state estimation.

3.3. State Estimation Model

To estimate the state x in Equation (1), we use the iterative extended Kalman filter
(IEKF), as detailed in Section 3.4. The IEKF iteratively estimates and updates the system
state through nonlinear state transition and observation equations. We define the end time
of the previous LiDAR or camera scan as t;_1, at which the best state estimate of x;_1 is

X¢_1, and the corresponding covariance matrix is P;_;. The state error vector is defined by
Equation (4):
T

~ - - - ~T ~T ~
Xk—léxk—lgxk—lz{(SGT GpIT GVIT b, b, GgT 4)

where X;_1 is the error vector of x;_1, the prime symbol H represents generalized subtrac-

-TG
tion, and 50 = Log(CR; R;) is the attitude error, describing the slight deviation between
the true and estimated attitudes.

3.3.1. Forward Propagation

The state is propagated through Equation (1). Forward propagation begins upon
receiving the first frame of IMU data. By setting the process noise w; to 0, the forward
propagation in Equation (5) can be obtained:

Xiy1 = X1 HXiq
= (Xl' H Atf(xl-, ul-,wl-)) H (’21 H Ai’f(f(l, u;, 0)) (5)
~ FyX; + Fyww;

where F; and F,, are the Jacobian matrices of the error state vector x; and the process noise
w;, respectively. These are obtained by taking the partial derivatives of the state transition
function f(e) with respect to X; and wy;, respectively. This allows the state estimation model
to better handle nonlinear systems, describing how the state changes depend on the current
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state and system process noise. According to Equation (6), the covariance propagation
formula and the propagation initialization conditions can be defined:

P = F;PF] + FwQFL; Py = P, (6)

where Q is the covariance matrix of the process noise w. Time ¢ is noted as the time when
the current LiIDAR or camera scan is received. Equations (5) and (6) constitute the state
update for the LiDAR or camera.

3.3.2. LIO Data Alignment

This study improves data alignment in the LIO section relative to [18], as shown in
Figure 2. The LiDAR’s scanning frequency is lower than that of the visual camera and
significantly lower than that of the IMU. All sensor data within (;, ;] are packaged into a
computational unit. The data within the computational unit are processed in chronological
order. When processing IMU data at time 7; € (#, fx41], forward propagation is performed
using Kalman filtering. When processing image data at time T,,, € (fx, 1], a direct
visual residual updating system state is constructed. When processing LiDAR data at time
te+1, the most recent image data are used to remove dynamic points. Then, a point cloud
registration residual is established and used to update the system state.
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Figure 2. LIO data alignment diagram.
3.3.3. LiDAR Measurement Model

When registering these scan points {Lp]} to the map, assuming each point is on the
adjacent planes in the map, with the normal vector and center point of the planes being
u; and q;, respectively, the residual should be zero when transforming the scanned points
{Lp]} in the LiDAR coordinate system L to the global coordinate system G through a pose

change. From this, the geometric relationship between the LIDAR measurement points and
the map planes can be derived as follows:

0=r(x"p;) =u (°T,'T;"p; - q)) @)

3.3.4. Visual Measurement Model

This study uses a direct method for processing visual information by minimizing the
photometric error between the current image and the reference image patch to achieve image
alignment. At t;, the system receives a new camera scan frame and performs matching and
searching on the global visual map to find map points {Cp; } that fall within the current frame.
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For these map points, the image patch in the global visual map with the closest viewing angle
to the current image should be selected as the reference image patch Q;.

During this process, for accurate image alignment, the photometric error between the
reference image patch and the corresponding image patch in the current image should be
minimized. This method achieves optimal matching between image patches by comparing
and adjusting photometric differences pixel by pixel. The process of direct method image
alignment can thus be derived as follows:

0 = rc(x, % p;) = (e ('T'T; *py)) — AJQ; (8)

where 77(e) represents the pinhole camera model.

The direct method involves capturing the current frame with the camera and identify-
ing potential matching points in the global map. Next, the reference image patch with the
viewing angle closest to the current image is selected. Finally, the position and orientation
of the image patches are adjusted by minimizing the photometric error until the error
approaches zero, achieving accurate image alignment. This approach not only simplifies
the computational process but also enhances the accuracy and efficiency of the alignment.

3.4. Error Iterative Kalman Filter Model

In the state estimation model, the prior distribution of the system state x; should
satisfy the form of Equation (9):

Xk H )A(k ~ N(O, f’k) (9)

Furthermore, the maximum a posteriori estimate of x; is obtained as

my me
min (| xB% I3 + Y 10w p;) 15 + Y et p)) Iz, (10)
xxEM ko3 i=1

]

where x2 = xT £~ !x represents the weighted norm, measuring the magnitude of the state x

under the covariance matrix.

4. Dynamic Removal
4.1. Principle of Dynamic Object Removal

Dynamic removal is divided into four stages: dynamic object detection, potential
dynamic point detection, actual dynamic point detection, and dynamic point removal.
Dynamic object detection mainly identifies dynamic objects in image frames using the
lightweight neural network YOLOVS. In this study, for the complex urban environment,
dynamic objects are set as vehicles and pedestrians. If there are dynamic pedestrians or
vehicles in the image frame, dynamic recognition exports visual recognition areas VAp
and VA_, respectively. These visual recognition areas are projected onto the corresponding
LiDAR frame to obtain recognition areas LAp and VA, respectively, on the LiDAR, and
all points within these LiDAR recognition areas are considered potential dynamic points,
which are stored in the form of an ikd-Tree [20].

For the potential dynamic points within a single LiDAR recognition area, this paper
employs the Euclidean space clustering algorithm to identify the actual dynamic points.
Euclidean space clustering is a hierarchical algorithm based on Euclidean distance, which
groups points that are spatially close to each other. The clustering result is represented as
a dendrogram, where each node corresponds to a cluster. The steps are as follows: First,
all sample points are traversed, and a merge distance threshold ¢ is set. The Euclidean
distance between two points x and y in an n-dimensional space is calculated, defined as
d(x,y). During the traversal, if d(x,y) < ¢, the points x and y are merged into the same
cluster. This process is repeated until no further merging is possible. The advantage of
the Euclidean space clustering algorithm lies in its simplicity and high efficiency when
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LiDAR scan points ®

processing small-scale datasets. However, it is sensitive to noise and less efficient when
handling large-scale data. In this study, the algorithm is applied to LiDAR recognition
areas because the number of points requiring classification within each area is relatively
small, making it well-suited for this efficient processing approach. Additionally, it meets
the real-time requirements of dynamic odometry.

The steps of the Euclidean space clustering algorithm used for dynamic point removal
are as follows: For potential dynamic points within a single LiDAR recognition area,
Euclidean space clustering is used to identify the actual dynamic points. First, all potential
dynamic points D; within a single LiDAR recognition area and their spatial coordinates
(xi,vi,z;) are set. All potential dynamic points are traversed to identify the one closest to
the center of the LiDAR recognition area, D;. The merge distance threshold ¢ is set, and

all dynamic points are traversed again. When \/ (x; — x]-)2 + (yi — y]-)z + (zi — zj)2 <¢g D;
is marked as the actual dynamic point and removed from the LiDAR stored data. After
the traversal, the dynamic removal for that frame is completed, as shown in Figure 3. The
orange rectangle represents the visual recognition area Y A_, which identifies the specific
type of dynamic object and provides confidence scores. The red rectangle denotes the
LiDAR recognition area “A_. Green dots indicate LiDAR scan points within the current
image frame, red dots represent identified dynamic points, and blue dots are potential
dynamic points currently being converted through Euclidean space clustering. As shown
in Figure 3, the dynamic removal method eliminates the main dynamic components of
moving vehicles, leaving background points that can be used for mapping.

87ar 0.77

Potential dynamic
®  points undergoing
dynamic clustering

Actual dynamic
points

Figure 3. Dynamic removal diagram.

4.2. Dynamic Object Removal Strategy in Real-World Environments

In real urban environments, in addition to vehicles moving on the road, there are
often stationary vehicles parked alongside the road. These stationary vehicles, like the
road itself and the surrounding buildings, can provide accurate information for odometry.
However, the information they provide is limited. Compared to flat road surfaces and
building facades, static vehicles have a relatively minor impact on localization accuracy.
If we attempt to differentiate between truly dynamic and static vehicles in real-world
environments and only remove dynamic vehicles, the computational cost can increase
significantly, posing a substantial burden on algorithms that already utilize lightweight
neural networks.

Given these considerations, we removed all detected vehicles, both static and dynamic.
Although this method sacrifices some information from static vehicles, it primarily achieves
the goal of eliminating dynamic vehicles, which are the most impactful on real-world
road mapping.



Sensors 2024, 24, 6193

8 of 14

The results of subsequent simulation experiments confirm the feasibility of our strategy.
As shown in Figure 4, when comparing the mapping performance of the FAST-LIVO
algorithm with the improved dynamic odometry on sequence 05 of the KITTI dataset [21,22],
we observe a noticeable improvement in the mapping quality of the middle of the road. The
FAST-LIVO algorithm is significantly affected by dynamic vehicles when mapping around
corners, resulting in substantial deviations when re-entering the middle of the road for the
second time. In contrast, the improved dynamic odometry, after removing dynamic objects,
shows a clear improvement when re-entering the middle of the road for the second time.

LiDAR points available for
mapping after filtering

actual dynamic points

Figure 4. (a) Mapping results of FAST-LIVO, (b) mapping results of the improved algorithm, The blue
square represents the removal area for static vehicles, and the white square represents the removal
area for dynamic vehicles, (c) details of trailing effects, (d) Details of trailing effects from the driver’s
perspective, (e) Enlarged view of the static vehicle removal area.

Figure 5a provides a more intuitive observation of the improvement in mapping
accuracy from a global trajectory perspective. Before encountering dynamic vehicles
around corners, the difference in the mapping accuracies between FAST-LIVO and the
dynamic odometry is minimal. However, after encountering dynamic vehicles at corners,
the dynamic odometry shows a significant improvement in mapping accuracy compared
to FAST-LIVO.
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Figure 5. Comparison of global trajectory: (a) sequence 05, (b) sequence 07, and (c) sequence 09.

5. Simulation Experiments

To validate the performance of the proposed dynamic odometry algorithm in both
indoor and real-world dynamic environments, we conducted tests using the KITTI and
NTU VIRAL datasets. The NTU VIRAL dataset, collected by a small drone, represents
indoor environments. The KITTI dataset, collected by a car equipped with multiple sensors,
represents real urban road dynamic environments. The simulations in this study were
conducted on an Ubuntu 20.04 system with an Intel i7-1087H processor manufactured by
Intel (USA) and an RTX 2060 GPU manufactured by NVIDIA (Santa Clara, CA, USA).

The data processing method used in this study was a post-processing approach based
on offline simulation tests using publicly available datasets. The experimental data were
collected by the dataset publishers on their self-built experimental platform. The dataset is
stored in the form of “rosbag” and contains data from various sensors.

5.1. Real-World Urban Road Dynamic Environment Simulation Validation

The KITTI dataset [21,22] was collected using a platform that includes two grayscale
cameras, two color cameras, one 3D LiDAR, and one GPS navigation system, which
provides accurate ground-truth trajectories. The specific models and parameters of the
sensors used were as follows: The grayscale and color cameras were PointGrey Flea2
manufactured by PointGrey (Richmond, BC, Canada) with a resolution of 1392 x 512 pixels,
providing grayscale and color visual information at an actual publishing frequency of 10 Hz.
The 3D LiDAR was the Velodyne HDL-64E manufactured by Velodyne (San Jose, CA, USA),
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with an effective range of up to 100 m, providing LiDAR point cloud data at an actual
publishing frequency of 10 Hz. The dataset contains real-world image data from urban,
rural, and highway scenes and includes dynamic vehicles and pedestrians, making it
suitable for evaluating the algorithm proposed in this paper.

The dynamic odometry algorithm proposed in this paper was validated on sequences
05, 07, and 09 of the KITTI dataset. These sequences feature complex paths and a sig-
nificantly dynamic environment. Figure 4 shows the mapping results of the proposed
algorithm compared to the FAST-LIVO algorithm on sequence 05. The results reveal a
noticeable improvement in mapping accuracy with the improved algorithm.

In the figure, green dots represent LiDAR points used for mapping after removing
dynamic points, while orange-red dots indicate the removed dynamic points. Figure 4e
zooms in on the vehicle removal section within the blue box of Figure 4b, providing a
detailed view of the process of vehicle detection and removal. In the zoomed-in view of
Figure 4c, vehicles driving in the T-intersection area create trailing effects during mapping,
and Figure 4d presents these trailing effects more intuitively from the driver’s perspective.
Dynamic objects scanned by LiDAR are also perceived as continuous obstacles, resulting in
the appearance of obstacles in the middle of the road, which severely affects the mapping
accuracy of traditional algorithms. The improved algorithm removes these trailing effects
and retains static LIDAR points for mapping, thereby enhancing mapping accuracy.

A comparison of mapping accuracy between the improved algorithm and the FAST-
LIVO algorithm on sequences 05, 07, and 09 is shown in Table 1. The evaluation metrics
include the maximum distance error, minimum distance error, and RMSE. The global and
axial trajectory comparisons are shown in Figures 5 and 6. The comparison data indicate
that the improved algorithm shows significantly better accuracy metrics for mapping. The
original algorithm failed to map sequence 07, whereas the improved algorithm successfully
mapped it with high accuracy. We define d¢ as the mapping RMSE of FAST-LIVO in the
dataset sequences, d; as the mapping RMSE of our improved dynamic odometry in the

dataset sequences, and the average RMSE reduction as (afa;fad). The proposed method

reduced the RMSE of mapping by 72.73% and 57.50% in sequences 05 and 09, respectively.
For sequence 07, where the original algorithm failed to map, the improved algorithm
achieved high mapping accuracy.

Table 1. Comparison of mapping accuracy metrics.

Sequence Algorithm Max (m) Min (m) RMSE (m)

05 FAST-LIVO 58.67 5.61 19.17
Dynamic odometry 15.50 0.32 5.23

o7 FAST-LIVO 145.96 1.04 46.21
Dynamic odometry 3.59 0.32 2.04

09 FAST-LIVO 89.59 1.13 31.78
Dynamic odometry 31.06 1.08 13.50

5.2. Indoor Small-Scale Environment Simulation Validation

The NTU VIRAL dataset [23] is a public dataset for indoor small-scale environments
used for autonomous drone navigation. The data were collected by a small drone equipped
with two 3D LiDARs, two hardware-synchronized global shutter cameras, multiple IMUs,
and several ultra-wideband (UWB) ranging units, with the UWB providing precise pose
information. The specific models and parameters of the sensors used are as follows: The
IMU was the VectorNav VN1003 manufactured by VectorNav (Dallas, TX, USA) rugged
IMU, which provides measurements of angular velocity and acceleration with an effective
actual publishing frequency of up to 385 Hz. The 3D LiDAR was a 16-channel OS1 gen1 laser
scanner, which provides LiDAR point cloud data with an actual publishing frequency of
10 Hz. The stereo camera was the uEye 1221 LE manufactured by IDS (Obersulm, Germany)
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monochrome global shutter camera, with a resolution of 752 x 480 pixels, providing visual
information at an actual publishing frequency of 10 Hz. The UWB system was the Humatics
P440 manufactured by Humatics (Waltham, MA, USA), with two anchor points set by the
authors to measure the true trajectory of the drone and an actual publishing frequency of
10 Hz.
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Figure 6. Comparison of axial trajectory: (a) sequence 05, (b) sequence 07, and (c) sequence 09.
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The dynamic odometry algorithm proposed in this study was validated on all se-
quences of the NTU VIRAL dataset, with results from the eee_03 sequence used as a specific
example for detailed analysis. The blue box corresponds to the trees in the scene, while
the green and red boxes correspond to the pillars in the scene. Figure 7 illustrates the
mapping results of the proposed algorithm on the eee_03 sequence. The figure shows that
the improved algorithm effectively captures details such as trees, building supports, and
roads, providing a fairly complete reconstruction of the overall environment.

(b)

Figure 7. (a) Photo of the surrounding environment in the eee_03 sequence; (b) mapping results of

the improved algorithm.

Figure 8 shows the global trajectory, axial trajectory, and axial error variation of the
improved algorithm on the eee_03 sequence. As depicted in Figure 8, the predicted global
trajectory aligns closely with the ground truth with minimal error. In the axial trajectories,
the X- and Y-axes closely match the ground truth with minimal error, while the Z-axis
trajectory shows some slight jitter at 40 and 85 s. In the axial error variation plot, errors
for all axes fluctuate within 0.2 m. The experimental results in Figure 8 indicate that
the improved algorithm performs well in indoor small-scale mapping, maintaining high
positioning accuracy even after several minutes of flight and after covering hundreds
of meters.

Table 2 compares the mapping accuracy of the improved algorithm and FAST-LIVO
across all sequences of the NTU VIRAL dataset, with the evaluation metric being the root
mean square error (RMSE). As shown in the data from Table 2, although the NTU VIRAL
dataset does not contain dynamic objects, the improved algorithm consistently outperforms
FAST-LIVO in mapping accuracy across all sequences. This improvement indicates that
packaging sensor data into computational units enhances positioning accuracy. By sorting
the input data by time, the algorithm ensures that the IMU, image, and LiDAR data are
processed more consistently, improving data synchronization and reducing errors caused
by time delays. The mapping accuracy is successfully improved from the decimeter level
to the centimeter level.

Table 2. Comparison of RMSE on the NTU VIRAL dataset (m).

eee_01 eee_02 eee_03 nya_ 01 nya 02 nya 03 sbs_01 sbs_02 sbs_03
FAST-LIVO 0.28 0.17 0.23 0.19 0.18 0.19 0.29 0.22 0.22
Dynamic odometry 0.10 0.07 0.10 0.06 0.08 0.08 0.08 0.07 0.07

The method for calculating the average RMSE reduction in this section is the same as
in the previous section, with the average RMSE reduction being 60.29% in the eee01-03
sequences, 60.71% in the nya01-03 sequences, and 69.86% in the sbs01-03 sequences.
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Figure 8. (a) Global trajectory comparison, (b) axial trajectory comparison, and (c) axial error variation.

6. Conclusions

In this study, based on the FAST-LIVO algorithm, we devised a multi-sensor fusion
dynamic odometry method using the YOLOv5 neural network. Our approach enhances
the alignment in LIO by packaging sensor data into computational units, better leveraging
the advantages of batch processing and parallel computing, thereby improving the real-
time performance of the odometry. It ensures more consistent processing of IMU, image,
and LiDAR data, enhancing data synchronization and reducing errors caused by time
delays. In terms of dynamic removal, a lightweight neural network is utilized to remove
dynamic points at the LiDAR level, classifying the dynamic points within the detection
box as potential dynamic points and actual dynamic points. The actual dynamic points are
removed, while the potential dynamic points are retained for mapping.

The proposed dynamic odometry method achieved better mapping results on both
the KITTI and NTU VIRAL datasets, with improved mapping accuracy compared to the
FAST-LIVO algorithm.
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