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Abstract: The work is devoted to the consideration of methods for determining the strain of objects
using fiber Bragg gratings under a high-frequency vibration or pulsed mechanical action, which is
difficult to perform using widespread methods and devices. The methods are based on numerical
processing of the time dependence of the radiation power reflected from the fiber Bragg grating
at various wavelengths, which makes it possible to measure strain parameters in a wide range of
magnitude and frequencies. The efficiency of the proposed methods is demonstrated by numerical
simulation. It is shown that it is possible to restore the strain dependence on time in the range
±1000 µε or more from simultaneously measured power dependencies reflected by the fiber Bragg
grating using common fiber-optic components. The case of sequential registration of reflected
radiation power at different wavelengths to determine the probability density of the distribution
of the strain values is also considered. The results of signal processing obtained both by numerical
simulation and experimentally for the case of a linear vibration are presented. The technical problems
of using the proposed methods are discussed.

Keywords: fiber Bragg grating; sensor; vibration; deformation; strain; digital signal processing

1. Introduction

Many monographs and textbooks, such as [1–4], articles, reviews in scientific and
specialized journals, in particular [5–8], which contain extensive information on this area,
are devoted to the physics of vibrations and methods of their measurement. There are
international and national standards for measuring vibration parameters and industrial
measuring instruments. The main vibration parameters are amplitude, speed, acceleration,
and frequency. Measuring the deformation of machine elements, mechanisms, and building
structures under the influence of vibrations is also an important task, but such a task
requires other technical solutions, in particular, the use of strain gauge [9,10] or fiber Bragg
gratings (FBG) as a vibration sensor.

Fiber Bragg gratings are currently widely used to work in conditions of strong elec-
tromagnetic interference caused by pulsed magnetic fields, powerful ultrahigh frequency
radiation, radio transmitting devices, and other sources of interference. The demand for
FBG sensors is due to their high sensitivity, small dimensions, long service life, resistance
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to aggressive environments, explosion safety, insensitivity to electromagnetic interference,
and the possibility of multiplexing. Currently, FBG sensors are widely used in engineering
to measure temperature, deformation parameters, as well as for other applications.

The principle of operation of FBG sensors is based on measuring changes in the
resonant wavelength of the grating or the power of the reflected radiation due to changes
in the resonant wavelength of the grating and is described in detail in literary reviews and
monographs, in particular, in [11–22].

To measure temperature, as well as slow deformations, interrogators [11–13] are
successfully used in conjunction with FBG, in particular, using wavelength scanning, for
example, using linear CCD array. For slow processes, the problem of determining the
dependence of deformation on time is not related to the measurement speed of the resonant
frequencies of the FBG, but to the accuracy of measurements and the interpretation of
the resulting dependencies. In a uni-axial approximation, i.e., assuming that there is only
stretching or compression of the FBG along one axis at a constant temperature, such a
task is not seriously difficult within the technical capabilities of the equipment used. In
more detail analysis of peak tracking techniques for FBG sensors is given in the review [12].
However, the practical use of strain sensors based on FBG for various devices may have
its own specifics. The theoretical foundations and experience of creating such systems are
presented in reviews and scientific articles, for example [11–17,19–22].

It is necessary to use other methods, such as those described in [23–33] to register
signals with short pulse exposure. However, such methods are difficult to adapt for
vibration measurement. So, in [24,25], all measurements were carried our at the same
wavelength, which limited the measurement range of the strain value ε. The principle
of operation of some devices is based on a change in the reflective properties of the FBG
when it is destroyed by a propagating detonation wave, which cannot be used to measure
the parameters of continuous vibration. The basic principles and methods for measuring
vibration parameters using fiber Bragg gratings are summarized in the reviews [22,34–40],
and are also presented in scientific articles, for example, [41–43].

Measuring the parameters of high-frequency vibrations using FBG is a certain difficulty,
since it is necessary to provide the technical possibility of registering such signals, possibly
over a wide range of changes in the magnitude of strain ε, as well as determining the
ε parameters using obtained data. If it is possible to measure the power p reflected by
FBG radiation simultaneously at several wavelengths λ, the task of determining vibration
parameters is to restore the dependence of the strain (relative deformation) value ε on time t
according to several dependencies pm, where m is the number of the photodetector channel
with a central filtration wavelength λm. Technically, to implement the method, it is necessary
to use either a source with a wide spectrum of radiation or several narrow-band sources
simultaneously, with a system of several photodetectors registering radiation at specified
wavelengths and operating simultaneously, such as, for example, a WDM (wavelength-
division multiplexing) systems. It is necessary to know the type of spectral dependence of
the FBG reflection on which the calculation algorithm of ε depends to determine the value
of ε. Dependencies pm(t) can also be called signals that require digital processing to obtain
vibration parameters. The frequency range of measurement p(t) can extend from zero to
hundreds of megahertz and above, and the maximum measured magnitude ε is determined
by the number of channels m. The frequency range of measurement of ε using the technique
discussed below is limited by the condition of uniformity of stretching or compression of
the FBG along the entire length assumed in the calculations. If the mechanical effect is such
that the specified condition is violated, the model used requires taking into account the
heterogeneity of the impact on the FBG.

For stationary vibrations, i.e., vibrations whose parameters do not change over time,
various methods and devices can be used. In this paper, we propose the use of a tech-
nique based on a sequential change in the wavelength of an optical radiation source, the
preservation of FBG signals at different wavelengths recorded at different times, and the
determination of vibration parameters based on such a set of signals.
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The physical and mathematical basis of the proposed methods, consisting of numerical
simulation and theoretical harmonic analysis of signals, is presented below. The description
of the experimental implementation of the method and the results confirming the main
patterns of the theoretical consideration are also presented.

2. Numerical Simulation of Signals for a Fiber Bragg Grating with Trapezoidal
Reflection Spectrum

The numerical simulation task consists of modeling the initial dependence of defor-
mation on time with specified parameters, calculating the signal reflected from the FBG at
various wavelengths, adding a given noise level to the calculated signals, and restoring the
dependence of deformation on time based on the data obtained.

The simulation of ε(t) was performed using recurrent formulas [44] for a stationary
sequence of numbers Yn, where n is the number of the sequence element, with a normal
distribution, unit variance, and exponential auto-correlation function C of the form:

C(n) = D exp (−αn) cos (βn) (1)

where α is the attenuation decrement, β is the characteristic cyclic frequency, and D is the
proportionality coefficient depending on the amplitude of vibrations. Accordingly, the
sequence of relative strain values is calculated using the formula:

εn = AvYn (2)

where Av is the coefficient determining the vibration amplitude. It is enough to specify
only one coefficient Av and set D = 1 to model the Yn. Since this paper considered a time-
dependent process, the elements of the sequence εn could be represented as the amount of
strain at discrete time points tn: ε(tn).

Let us consider the simplest model describing the normalized dependence (R f ) of
the power of reflected radiation by a fiber Bragg grating on the wavelength of radiation λ
in the operating wavelength range in the following form (Figure 1) by analogy with the
dependence presented in [45]:

R f (λ) =


1 if λ < λe

1− γ(λ− λe) if λe ≤ λ < λe + ∆sFBG

0 if λ ≥ λe + ∆sFBG

(3)

where (Figure 1) λe is the wavelength corresponding to the beginning of the inclined
R f (λ) dependence, ∆sFBG is the spectral width of the inclined section of the R f (λ), γ is the
proportionality coefficient (γ = 1/∆sFBG), λc is the resonant wavelength of the FBG, and
λz is the wavelength corresponding to the end of the inclined section (∆sFBG = λz − λe).
If the transmission spectrum width of the photodetector filter (or the spectrum width of
the radiation source, if, for example, several semiconductor lasers are used) is significantly
less than the value ∆sFBG, then the R f dependence is actually the dependence of the
power p of the radiation reflected by the FBG, normalized to the maximum value, on the
wavelength λ.

It is known that the displacement of the resonant wavelength FBG under tension is
proportional to the magnitude of the relative FBG deformation (i.e., FBG strain) ε. We
assume that at the deformations considered below—uni-axial tension or compression—the
shape of the R f spectral dependence does not change, i.e., it takes place as follows:

λc = λc0 + kεε, λe = λe + kεε, γ = const(ε) (4)

where kε is the proportionality coefficient (kε ≈ 10−3 µε/nm at λ = 1310 nm, and
kε ≈ 1.2× 10−3 µε/nm at λ = 1550 nm). That is, when the FBG is stretched, the R f
dependence shifts towards longer wavelengths (in Figure 1—to the right along the 0× axis).
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Figure 1. The reflection spectrum of the fiber Bragg grating adopted in the model and the designations
of the wavelengths.

Let us choose the wavelengths of radiation λm at which the dependencies of the re-
flected radiation power on time will be most characteristic for considering the basic patterns.
At ε = 0, let λ0 be such that R f (λ0) = 1/2, ε(λ0) = 0, and λ1 = λ0 + ∆λsFBG, respectively,
λ2 = λ0 + 2∆λsFBG , . . . , λm = λ0 + m∆λsFBG, λ−1 = λ0 − ∆λsFBG, λ−2 = λ0 − 2∆λsFBG,
. . . , λ−m = λ0−m∆λsFBG, where m = {. . . ,−2,−1, 0, 1, 2, . . . } is an integer. Then, Formula
(3) can also be represented as:

R f (ε) =


1 if λm ≤ λe

1/2 + γ(kεε + λh − λm) if λe ≤ λm < λz

0 if λm ≥ λz

(5)

where λh is the central wavelength of the falling section, at which the equality
R f (λh) = 1/2 is satisfied, i.e., λ0 = λh. The dependence ε(t) is given in the form of
a series of numbers ε(tn) generated according to the above algorithm in accordance with
Formulas (1) and (2).

For small deformations, i.e., if the inequality kεε < ∆λsFBG/2 and λm = λh
always holds:

ε(t) = (R f (t)− 1/2)/(γkε) (6)

Thus, with a small deformation, no special algorithms need to be used to determine
the dependence of ε(t); it is enough to perform a measurement at one wavelength (λh),
since the magnitude of ε is proportional to the amplitude of the reflected FBG signal. The
linear elongation of the FBG leads to a linear increase in the reflected FBG power p until p
reaches its maximum value (i.e., R f = 1). When FBG is compressed, the power p is reduced
to zero (i.e., R f = 0).

If the vibration amplitude is such that kεε > ∆λsFBG/2, measurements must be per-
formed simultaneously at several wavelengths. Taking into account that the measurement
range at one wavelength is ∆λsFBG, it is advisable to select the measurement wavelengths
with an offset by the specified amount ∆λsFBG, as indicated above. Then, the magnitude
of the strain ε(t) can be determined from the sections of dependencies p(t) specified at
points tn, at which the dependence has a non-zero and non-equal-to-one value, as well as
assuming the same spectral sensitivity:

ε(tn) =


0 if R f (tn) = 0

∑m
j=−m(λj − λh + (R f (tn)− 1/2)/γ)/kε) if 0 < R f (tn) < 1

0 if R f (tn) = 1

(7)
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The described technique and Formula (7) assume the idealized dependence R f (λ).
When processing experimental data, it is necessary to take into account both the noise
level and the deviation of the R f (λ) dependence from 1 in the range λ < λh − ∆sFBG/2,
for example, excluding points near 0 and 1 from consideration and, if necessary, using
wavelength offset λm less than ∆λsFBG.

As an example, the modeling of signals recorded at various wavelengths with the
following parameters was performed: Yn was a sequence of numbers with normal distribu-
tion, whose sequence parameters were given by Formulas (1) and (2): α = 1/150, β = 1/20,
Av = 300, at λ0 = λc0 = 1310 nm, kε ≈ 1.014× 10−3 µε per nm, ∆λsFBG = 0.2 nm, γ = 5.
A random noise of 1% was added to the signal calculated by Formula (2). The specific
sampling value ∆τ = tn+1 − tn does not matter in this case, and all time dependencies
are given later in the article as dependencies on the reference number. An example of the
simulated initial dependence ε(t) obtained by interpolating the values of εn is shown in
Figure 2a. The dependencies of the normalized power p(t) for seven wavelengths are
shown in Figures 3 and 4.

Figure 2. Numerical modeling of the dependencies of the strain of the FBG on time in the form
of the sequence of samples n: (a)—given using recurrent formulas, (b)—reconstructed from seven
dependencies of the radiation power reflected by the FBG.

Let us consider the entity and basic patterns of the dependencies shown in Figures 3 and 4.
On the first flat section p0(n) for λ0, extending approximately from number 35 to number
100, there is a stretching of the FBG, leading to p0(n) = 1. Moreover, at wavelengths λ−1,
λ−2, and λ−3, pm(n) = 1 occurs due to p0(n) = 1 (Figure 4). At large wavelengths λ1,
λ2, and λ3, the value of pm(n) in this range n sometimes reaches 0, and at λ3 it becomes
different from 0 only at the moments of the largest stretching of the FBG (Figure 3). The
range of n is from 110 to 160 (Figures 3 and 4, curves “a”) corresponds to the compression
of the FBG at which p0(n) = 0. At wavelengths λ−1, λ−2, and λ−3, the value of pm(n) in
this range sometimes reaches 1, and at λ−3, it becomes different from 1 only at the moments
of the greatest compression of the FBG (Figure 4).

The dependence ε(t), reconstructed from the seven dependencies pm(t) at differ-
ent wavelengths, is shown in Figure 2b. As follows from Figure 2, the restored depen-
dence εr,n almost coincides with the original dependence εn even with the noise level of
1% introduced.
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Figure 3. Waveform of signals obtained by numerical simulation for channels m: (a)—0, (b)—1,
(c)—2, (d)—3.

Figure 4. Waveform of signals obtained by numerical simulation for channels m: (a)—0, (b)—−1,
(c)—−2, (d)—−3.

3. Numerical Simulation of Signals for a Fiber Bragg Grating with Gaussian
Reflection Spectrum

The fundamental difference between the signals of the FBG with a Gaussian reflection
spectrum from those previously considered is due to the fact that, unlike the trapezoidal
spectrum, any normalized value not equal to one of the reflected power always corresponds
to two different values of strain of the FBG, as well as the fact that the signal can be zero
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only, not equal to zero, and one, as for trapezoidal spectrum, at a deformation of the FBG
outside the range of Gaussian reflection.

The waveform of the pulse deformation in the FBG in the case of a Gaussian spectrum
is considered in [24,25]. It follows that the type of pulse signal, and even more so its
parameters, depend on the difference in the wavelengths of the radiation source and the
resonant wavelength of the reflection of the FBG.

The main properties of the vibration signal reflected from the FBG can be explained
based on the analysis of signals with harmonic deformations of the FBG at various operating
points (i.e., at different wavelength differences). Let

ε(t) = Aε sin(ωt) (8)

where Aε is the magnitude of the strain of the FBG at the vibration, ω is the cyclic deforma-
tion frequency, and t is the time. Then,

p(t) = Ap exp(−( kεε(t)− ∆λs

σs
)2) (9)

where Ap is the proportionality coefficient, σs is the equivalent half–width of the reflection
spectrum of the FBG [24,25], ∆λs = λm − λFBG0 is the difference between the wavelengths
of the radiation source and the resonant wavelength of the FBG at zero deformation (i.e., in
the absence of stretching or compression). Let us further consider the normalized functions
p(t), i.e., assuming Ap = 1.

First, let us consider the case of a weak vibration (Aε � σs/kε). An example of the
calculated dependencies of p(t) at four characteristic points, at the top of the spectrum (at
λm = λFBG0, i.e., at ∆λs = 0), on the slope of the spectrum (∆λs 6= 0, | ∆λs |≤ σs), and
in the region of small values of the reflected power (| ∆λs |> σs), is shown in Figure 5. It
follows from the obtained dependencies that at the top of the spectrum the reflected signal
(Figure 5, dependence 1) has a doubled frequency compared to the deformation frequency
and a relatively small amplitude. The signals have a shape close to sinusoidal but different
amplitudes (Figure 5, dependencies 2 and 3) on the slope of the spectral dependence at the
point of maximum sensitivity (∆λs = −σs/21/2) and slightly lower. The signal has a shape
similar to the above dependencies but a significantly lower amplitude at ∆λs < −2σs. The
phase of the reflected signal on a slope with ∆λs < 0 coincides with the phase of strain
oscillations, and on a slope with ∆λs > 0, it has the opposite phase.

A characteristic of this phenomenon is the dependence of the harmonic coefficient
of the signal on the position of the working point (i.e., the difference ∆λs). The harmonic
coefficients were calculated using formulas similar to the calculation of nonlinear distor-
tion coefficients:

kn =
(a2

n + b2
n)

1/2

(∑∞
n=1(a2

n + b2
n))

1/2 (10)

where

an =
1
π

∫ 2π

0
p(t) cos(nωt)dt (11)

bn =
1
π

∫ 2π

0
p(t) sin(nωt)dt (12)

n is the harmonic number in Formulas (10)–(12).
For the considered examples, the values of the fourth and higher harmonics were

neglected. Trends k1 → 0 and k2 → 1 took place when ∆λs = 0 and Aε → 0.
The example of the calculated dependencies is shown in Figure 6.
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Figure 5. The dependence of the power of the reflected FBG radiation on the oscillation phase during
a periodic deformation with Aε = 10 and various normalized wavelength difference ∆λs: 1—0,
2—∆λs = −σs/2, 3—∆λs = −σs , 4—∆λs = −2σs .

Figure 6. The dependence of the harmonic coefficient of the signal caused by the reflected radiation
from the FBG on the normalized wavelength difference: 1—the first harmonic, 2—the second, 3—the
third (on the graph, the harmonic value is increased 10 times).

For a strong periodic deformation, i.e., Aε � σs/kσ, the shape of the reflected FBG sig-
nal is close to Gaussian with an average period equal to the half-life of the FBG deformation
(Figure 7).
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Figure 7. Dependencies of magnitude of the strain and power of the reflected radiation on the
phase of deformation oscillations at Aε = 500 and various normalized wavelength differences ∆λs:
1—∆λs = 0, 2—∆λs = −σs/2, 3—∆λs = −σs , 4—∆λs = −2σs.

As follows from the data obtained (Figure 7), when compressing the FBG (the interval
from π/2 to 3π/2 in Figure 7) first, the pulse appears at ∆λ = −2σs, then at ∆λ = −σs and
∆λ = −σs/21/2. Dependence 1 (Figure 7) corresponds to the absence of deformation of the
FBG, which occurs at the oscillation phase ωt equal to π. When the FBG is compressed,
the specified pulse is the last of the specified ones. The pulse sequence is reversed when
stretching the FBG (the interval from 3π/2 to 5π/2 in Figure 7). The greater the value of
Aε, the shorter the duration of Gaussian-like pulses. The time interval between pulses
is always equal to the value π/ω at ∆λ = 0, greater than π/ω in the range of transition
from compression to tension at ∆λ < 0, and less than π/ω in the range of transition from
tension to compression (not shown in Figure 7).

Based on the studied patterns, it can be concluded that the method of signal reconstruc-
tion based on time dependencies measured simultaneously at several wavelengths requires
changes compared to the previously considered method for the trapezoidal spectral depen-
dence of the FBG. First, it is advisable to exclude measurements for m = 0 (i.e., for ∆λ0) in
order to avoid the difficulty of unambiguously determining deformation by choosing an
even non-zero number of wavelengths, for example, as ∆λ±1 = ±σs/2, ∆λ±2 = ±3σs/2,
∆λ±3 = ±5σs/2, . . . , ∆λ±m = ±(2m− 1)σs/2. The number of wavelengths at which the
measurement is performed (and, accordingly, the number of photodetectors) should be
such that the radiation reflected from the FBG during the measurement process is always
recorded by some photodetector.

An example of the simulated dependencies of the power, simultaneously measured
at different wavelengths, is shown in Figure 8. The example illustrates the patterns of
signals described above. The signal was restored using dependencies p(λ−4), p(λ−3), . . . ,
p(λ3), p(λ4), starting from the dependence p(λ4) according to the following algorithm. We
assumed that the change in the wavelength of the FBG under the action of vibrations was
in the range of the possibility of registering a signal by photodetectors at these wavelengths
or, at least, at the initial section of the function p(λ4). Let us assume that the reliably
recorded power value in each channel, taking into account noise, is, for example, in the
range 0.05 < pm < 0.95. Starting from n = 1 for each point in the sequence pm(n) power
values, we checked the fulfillment of the condition:
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0.05 < pm(n) < 0.95 (13)

for all channels m, starting from m = −4 (i.e., p−4). If the condition (13) was fulfilled, then
the value of the strain was calculated by the formula:

εn = (−σs(− ln(pm(n)))1/2 + ∆λs)/ke (14)

Figure 8. An example of waveform obtained by numerical simulation for the wavelength differences
∆λs: (a)—∆λs = σs/2, (b)—∆λs = 3σs/2, (c)—∆λs = 5σs, (d)—∆λs = 7σs.

For the remaining wavelengths of λm, the value of εn was not calculated. Random
noise in the amount of 1% of the maximum value was added to the pm signals of each
channel. An example of the initial waveform of strain (εn) of the FBG during vibration
and the resulting waveform restoration (εn,r) using eight wavelengths is shown in Figure 9.
As follows from Figure 9, there was a good coincidence of the dependencies εn and εn,r.
Note also that in the presented example, a fragment of the dependence εn was specially
selected for which, in the range n from 1773 to 1793, the value of ε exceeded 750 µε, which
made it impossible to accurately restore the signal in this n range. Therefore, if necessary,
in similar cases, for example, to identify the maximum values of stretching or compression
of the FBG during vibration, it is necessary to add another measurement channel at the
wavelength of λ−5 for which ∆λ−5 = −9σs/2 .

Thus, the sequence of actions for determining the dependence of ε(t) is as follows.
Starting from the first element (n = 1) of the pm samples, pm(n) values are scanned by
the index m, starting from the first or last value of m. In the above example, processing
was performed from m = −4 to m = 4. Condition (13) is checked for each index m. If the
condition is met, the ε value is calculated for this sequence of pm (i.e., for indices m and
n) using Formula (14). Further scanning by the index m is interrupted, the verification of
condition (13) is started anew for the next number of the sequence element (n + 1) from
the first or last value of m. The calculation is completed when the last element of the pm(n)
samples is reached.

Taking into account the ranges for determining the amount of deformation overlap,
the accuracy of the signal recovery can be improved by choosing a range in which this value
of deformation is calculated with greater accuracy. It can be assumed that the accuracy of
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the determination of ε is proportional to the modulus of the derivative of the dependence
p(ε), determined by Formula (9), with respect to ε. At Aε → 0, the maximum is reached at
∆λs = ±σs/21/2 [24,25], and in the case under consideration, it is advisable to choose an
array pm in which the modulus of the derivative p(ε) at this point (n) is greater.

Figure 9. The initial (a) and reconstructed (b) dependence of the strain on the sample number .

4. Determination of Vibration Parameters by Samples with Successive Changes in
the Wavelength

In many cases, it is not technically possible to measure the power of the reflected
radiation simultaneously at several wavelengths. If vibration is a stationary process,
i.e., the vibration parameters are constant at least during the measurement, then, in that case,
the density distribution of the strain can be determined from samples of signals measured
sequentially at different wavelengths at different times. Technically, such measurement can
be performed using a semiconductor laser mounted on a Peltier element, which allows
the temperature of the laser heterojunction to be changed, as well as the wavelength of the
radiation. The result of such measurement is m fragments of power versus time, measured
sequentially at m wavelengths. Naturally, it is impossible to restore the full dependence
of ε(t) in this case, but the density distribution of ε(t) calculated from m fragments will
correspond to the distribution density of the full ε(t).

In contrast to the used signal reconstruction technique described earlier for the Gaus-
sian spectral dependence of the FBG reflection, in this case, it is impossible to use the
exclusion of samples at other wavelengths after determining ε at any point in one of the
samples. Therefore, it is necessary to exclude in another way the influence of overlapping
areas of the pm(ε) dependencies on the result of calculating the probabilistic characteristics
of the process. This is achieved by selecting the signal levels in each channel, within which
the value of ε is determined; thus, the end of one range in one channel is the beginning of
the measurement range in another channel (for example, in channels pm and pm+1). Let
um,l , um,p be the lower and upper limits of the range of determination of ε. The wavelength
shift between the channels is equal to the value σs when:

um+1,l = exp(−(− ln(um,l))
1/2 − 1)2) (15)
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If the upper level (the upper limit of the measurement range in channel m) is set
as 0.95 of the maximum value, then when the wavelengths are shifted by the value of
σs, the corresponding lower level in the adjacent channel (m + 1) will be approximately
equal to 0.22218. Accordingly, the calculation range of ε used to calculate the probabilistic
characteristics will be from 0.22218 to 0.95.

The method was verified by numerical modeling for the Gaussian distribution ε(tn) ob-
tained using the previously described technique with the Gaussian FBG reflection spectrum.
The simulation result is described below.

5. Simulation of Determination of the Probability Density of the Strain Distribution
with a Sequential Change in the Wavelength of the Radiation

If there is no technical possibility of simultaneous measurement of the reflected radia-
tion at different wavelengths, then for a stationary process (i.e., with constant statistical
parameters), the probability density of the strain distribution can be determined by a
sequential change in the wavelength of the source radiation. Technically, this can be ac-
complished either by changing the wavelength of the laser or using a tunable spectral filter
for the reflected FBG radiation at a broadband radiation source. Since in this case, at each
wavelength, the dependencies p(t) are obtained sequentially at different points in time, it is
impossible to restore the dependence ε(t). However, due to the stationarity of the random
process ε(t), it is sufficient to determine the probability density of the distribution ε(t) in
the operating range of the measured values ε for the dependencies p(t) at each wavelength,
so that the measurement ranges ε do not overlap.

This technique was tested by numerical simulation for the case of reflected FBG
radiation with a Gaussian spectrum and the Gaussian distribution ε(n). Using the method
described earlier and Formula (14), 10 arrays of 4096 numbers each of Yn values with the
λ offset from −9σs/2 to +9σs/2 were generated. Then, the corresponding dependencies
of pm(n) were calculated at different wavelengths with a shift by the value of σs. The
coefficient Aε was set to 300, kε was 1.014× 10−3 nm/µε, and σs was 0.2 nm. For each
array, the values of ε corresponding to the elements of p were determined. A random noise
of 1% of the maximum value of p (in this case – 1) was artificially added to all the obtained
values of the pm(n) elements. Further, similar to the above-described technique for the
case of the Gaussian reflection spectrum of the FBG, the values of ε in each pm array were
determined. The obtained values of ε were combined into one array and, using a standard
statistical data processing program, a histogram of the distribution of ε was obtained. The
difference in the calculated histogram of the distribution ε(t) obtained from 10 fragments
and the histogram of the initial dependence ε(t) was no more than 5%. The average shape
of the histogram approached the Gaussian one, and the existing difference was due to
a statistical error when the numerical experiment was repeated many times. The result
can be considered expected, since it was initially assumed that the random process was
stationary. Therefore, an example of the resulting histogram is not provided.

6. Experiment

The experimental study was performed on a single-mode optical fiber with a fiber
Bragg grating with a central wavelength at room temperature of 1310 nm, a reflection
spectrum width of 0.0777 nm (σFBG = 0.0462 nm), an FBG length of 15 mm, with a
maximum reflection coefficient of 90%. The scheme of the experimental installation is
shown in Figure 10. The optical fiber 1 with the fiber Bragg grating was fixed in the upright
position on the special mechanical construction 2 by a holder 3. The electric motor 5 with
an eccentricity was attached to the optical fiber from below. The optical fiber was passed
through two holes 4 in the mounting brackets between FBG and the electric motor. The
diameter of the holes 4 exceeded the outer diameter of the fiber sheath by about 500 µm.
The distance between the brackets was approximately 0.5 m, and that between the FBG
and the electric motor was −1 m. The installation design made it possible to practically
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eliminate the bends of the FBG during vibration, which allowed us to assume the vibration
of the FBG to be uni-axial.

Figure 10. The scheme of the experimental installation: 1—optical fiber with FBG, 2—mechanical
construction, 3—device fixing the optical fiber, 4—holes in the brackets, 5—electric motor with an
eccentricity, 6—fiber optic splitter, 7—semiconductor laser with Peltier element, 8—laser temperature
control unit, 9—photodetector module, 10—personal computer with ADC converter, 11—motor
power supply.

The DFB-type semiconductor laser 7 with a wavelength of 1310 nm, a half-width of
the radiation spectrum σLD equal to 0.015 nm, and a temperature coefficient of wavelength
variation of 0.071 nm/◦C was used as a radiation source. The laser was mounted on the
Peltier element, which made it possible to change the temperature of the laser heterojunc-
tion within ±15 ◦C by changing the amplitude and direction of the current flowing through
the element, using the power supply 11. The possible wavelength adjustment exceeded
2 nm. The accuracy of the laser temperature measurement was approximately 0.1◦C. The
equivalent value of the half-width of the σs spectrum used in the calculations was set to
0.05 nm. The change in the laser temperature, leading to the specified value of the wave-
length offset by the value σs, was 0.7 ◦C.

The dependencies of p(t) were determined using standard passive fiber-optic
components—photodetector 9 and splitter 6 with a 50%/50% division coefficient according
to the standard scheme in [25] for measurements of the power of radiation reflected from
the FBG. The signal from the photodetector module was transmitted to the analog-to-
digital converter and stored in the memory of a personal computer 10. The sampling fre-
quency was 100 kHz, the arrays contained approximately 106 samples each; however, only
4096 array elements with the specified sampling interval were used to calculate the distri-
bution parameters. The optical fiber with the fiber Bragg grating was fixed in the upright
position. An electric motor with an eccentricity was mounted at the bottom of the fiber with
the FBG, creating uni-axial vibrations in the FBG, the shape of which could be assumed to be
sinusoidal. The resonant wavelength of the fiber Bragg grating, elongated by the weight of
the vibrating device in the absence of vibration, was taken as the initial wavelength λFBG0.

The p(t) dependencies obtained at different laser temperatures with a step of 0.1 ◦C
were preserved. An example of the obtained dependencies of p(t) for a relatively small
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deformation is shown in Figure 11. Figure 11a corresponds to the case of the location
of the working point near the sensitivity maximum, b—at the maximum, i.e., approx-
imately at λLD = λFBG0, c—near the maximum of the reflection spectrum of the FBG.
The characteristic properties of the obtained dependencies corresponded to the results
obtained by numerical simulation for harmonic oscillations (Figure 5). The dependence
p(t) in Figure 11a had a shape close to sinusoidal with a period of approximately 46 ms,
which corresponds to a frequency of 22 Hz. The dependence p(t) shown in Figure 11c was
due to the fact that the resonant wavelength of the FBG, which varied with the vibration,
reached the wavelength of radiation of the source and exceeded it for some time. This
led to a noticeable appearance of the second harmonic of the vibration signal. Figure 11b
corresponds to the case λLD = λFBG0 in which the signal p(t) had a doubled vibration
frequency of approximately 44 Hz. The estimated value of the vibration magnitude, as
shown in Figure 11a, was approximately 30 µε. The spectral density of the p(t) signals
shown in Figure 11 were calculated (Figure 12). It followed from the obtained dependencies
(Figure 12) that in the first case (dependence a, Figure 11), the first harmonic of the signal
was dominant. The maximum spectral density of the second (smax,2) and third (smax,3)
harmonics was approximately 11 and 14 times less than the first (smax,1), respectively. In the
second case (dependence b, Figure 11), the second harmonic dominated, in which smax,1 and
smax,3 were 1.5 and 3 times smaller than smax,2. In the third case (dependence c, Figure 11),
smax,2 and smax,3 were 2 and 16 times smaller than smax,1. That is, the experimental data
obtained confirmed the identified characteristic features of the signals generated by the
radiation reflected from the fiber Bragg grating during linear oscillations.

Figure 11. Dependencies of the power of the radiation reflected by the fiber Bragg grating on time at
different wavelengths: (a)—λLD ≈ λFBG0 − σs/21/2, (b)—λLD ≈ λFBG0, (c)—λLD ∼ λFBG0 .

Since in this case, the change in ε during vibration occurred in the measurement range
of ε at one wavelength, one dependence p(t) was sufficient to calculate the probability
density of the distribution of ε(t) using Figure 11a. Therefore, an example of the histogram
of the distribution of ε is not given in the work.

To increase the magnitude of the strain fluctuations, the flexible rods were attached
to the rotating part of the device, in contact with the fixed elements of the experimental
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installation during rotation. This allowed us to increase the magnitude of ε(t) by more than
two times, as well as to make the shape of the oscillations more complex. Similarly to the
previous case, the dependencies p(t) of the power of the radiation reflected from the FBG
at different temperatures of the semiconductor laser (respectively, at different wavelengths)
were measured. The histogram of the distribution of ε was calculated using the method
described above for the case of four wavelengths (Figure 13). The resulting distribution of
ε was asymmetric, which was explained by the appearance of a bending of the fiber, which
prevented the compression of the FBG when the zero value of ε was reached relative to the
free (i.e., unloaded) state of the FBG during vibration.

Figure 12. The spectral density of the signals, the waveform of which are shown in Figure 11: 1—(a),
2—(b), 3—(c).

Figure 13. Distributions of the magnitude of the strain.
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7. Discussion

This paper considered a uni-axial deformation—a stretching or compression of the
FBG. However, in most practical cases, in addition to stretching, there is a bending of the
optical fiber with the FBG. A detailed consideration of the effect of deformation fields on
the reflection spectra of Bragg gratings is given in [46,47], which can be taken into account
in the calculations. However, the values of ε calculated according to the above method can
be regarded as equivalent values of relative deformation.

Obviously, for strain measurements, it is necessary to ensure the stability of the wave-
lengths at which measurements are made. If a broadband radiation source, a spectral filter,
and photodetector modules are used, which are constantly tuned to the same wavelength in
the optical measurement scheme, then it is assumed that such a device ensures the stability
of measurements. However, with a wide spectrum of the radiation source, the power com-
ing from the filtered spectral ranges is significantly less than when using a narrow-band
laser. Consequently, the measured dependencies p(t) have the worst signal-to-noise ratio,
which has the strongest effect in the case of a wide frequency range of recorded signals.
The problem of using standard components of WDM systems (semiconductor lasers, multi-
plexers, demultiplexers, and photodetectors) is the difficulty of matching the wavelengths
of WDM elements with the reflection spectrum of the Bragg fiber lattice, since the latter
depends on temperature. An even more difficult case for the use of WDM components are
FBGs attached to or mounted in any structural elements, since the temperature coefficient
of expansion in this case may be significantly higher than the FBG itself, which may require
a significant change in the calculation algorithm.

When using a semiconductor laser, whose wavelength tuning is achieved by changing
the temperature of the heterojunction, it is relevant to determine the requirement for the
maximum allowable deviation ∆λp of the wavelength from the required one. This is most
relevant for a method using a sequential change in the laser wavelength. If we assume
that the condition ∆λp << σs must be fulfilled, then in order to fulfill this condition, it
is necessary to have:

∆Tp � σs/αT (16)

where ∆Tp is the maximum permissible temperature deviation from the required value dur-
ing the measurement process, and αT is the temperature coefficient of the laser wavelength
change. As indicated above, for typical parameters of FBGs and DFB lasers, the estimated
value is 0.1 ◦C, which is easily achievable.

However, if the temperature measurement uses a sensor built into the semiconductor
laser housing (for example, a thermistor), and even more so if the sensor is mounted
outside the laser housing, the temperature measured by the sensor may differ from the
temperature of the laser heterojunction. This temperature difference can be caused both
by the transient process of heating or cooling the laser structure when the temperature
changes to adjust the wavelength and by the specifics of the thermal resistances of the
structural elements of the Peltier element, the cooling radiator, and the laser, which re-
tain some temperature difference in thermal equilibrium after the end of the transition
process. If the calibration of the dependence of the laser wavelength on temperature was
performed for a structure used for deformation measurements, then the presence of this
temperature difference would not affect the methodology and accuracy of deformation
measurement, since the calculated wavelengths according to the calibration dependence
would correspond to the true value of the laser radiation wavelength. To eliminate the
influence of the transient thermal process on the measurement accuracy, it is sufficient to
start recording the signal from the photodetector after establishing thermal equilibrium,
which is easy to determine by stabilizing both the measured temperature and the average
value of p(t). The highest accuracy can be achieved by using a laser diode directly as a
temperature sensor. However, the measuring device for this purpose is non-standard and
requires calibration.
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It is necessary to know the maximum value of pmax at λLD = λFBG0 to determine
the dependence of the strain value ε(t) on the dependencies p(t). In the above method,
it was assumed that the spectral density of the radiation source was constant (i.e., either
a broadband source or several lasers). In measurements with a sequential change in
the wavelength of a semiconductor laser, it was also assumed that the laser radiation
power was constant with a change in wavelength. However, when the temperature of
a semiconductor laser changes, in addition to changing the wavelength, there may also
be a change in the radiation power if the laser does not have thermal stabilization. If
a semiconductor laser is equipped with a thermal stabilization system for the output
radiation power, then power stabilization is performed by changing the laser current,
which can also lead to a change in the laser radiation spectrum. Therefore, it is advisable
to pre-measure the radiation spectrum of the selected semiconductor laser at different
temperatures to obtain the calibration dependence pmax(T) and the possibility of using it
to determine the distribution of the strain ε(t) using a sequential change in the wavelength
of the laser radiation. The semiconductor laser used in the experimental part of the
work had a linear decrease in radiation power from temperature with the coefficient
of 1.57% per degree Celsius. Therefore, when the histogram of the distribution of the
magnitude of strain at the vibration (Figure 13) was determined, the described influence
was neglected.

The possible measurement range of strain (∆ε) can be calculated using the formula:

∆ε = mwσs/kε (17)

where mw is the number of wavelengths used. The ∆ε range is estimated at 500 µε for
mw = 10 and σs = 0.05 nm, which corresponds to the parameters of the FBG used in
the experimental part of the work. An increase in the ∆ε range can be achieved either
by increasing the number of wavelengths used simultaneously, or by using fiber Bragg
gratings with a wider spectral reflection band. Presumably, achieving a ∆ε measure-
ment range of 1000 µε or more is not a technical problem when using standard fiber-
optic components.

The paper considered two types of dependence of the reflection spectrum of fiber
Bragg gratings: trapezoidal and Gaussian. Such dependencies can be assumed to be a fairly
accurate approximation of typical reflection spectra of FBG, which allowed us to obtain
analytical expressions for calculating the strain of FBG (i.e., ε(p)). However, the algorithm
discussed above can also be applied to other types of reflection spectra of FBG, if there is an
unambiguous correspondence between the wavelength and the magnitude of the spectral
density in a certain wavelength range. In this case, the dependence of ε(p) can only be
determined numerically.

8. Conclusions

The developed algorithm for determining changes in the strain ε(t) of objects during
vibration based on simultaneously measured power dependencies p(t) of the radiation
reflected from the FBG can be implemented for various forms of the spectrum of the
radiation reflected from the FBG without the need to sort through all the elements of the
accumulated data arrays during their processing. In particular, the numerical simulation
method demonstrated the possibility of modeling p(t) signals detected by photodetectors
at various wavelengths, and the subsequent restoration of the dependence ε(t) for the FBG
and semiconductor lasers with typical parameters in the range up to ±1000 µε.

The numerical simulation method showed and experimentally confirmed the oc-
currence of the second harmonic of the signal recorded by the photodetector and the
disappearance of the first harmonic when the resonant wavelength of the FBG in the unde-
formed state coincided with the wavelength of the laser radiation at the sinusoidal linear
vibration of the FBG.
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It was also shown that it was possible to determine the probability density of the
distribution ε(t) for a stationary random process from the dependencies p(t) measured
with successive changes in the wavelength of the radiation, which was confirmed by the
results of the numerical simulation and experimental research.

The performed estimates showed that when using a semiconductor laser and a fiber
Bragg grating with typical parameters, the accuracy of maintaining the laser temperature
should be at least 0.1 ◦C for measurement at each wavelength.
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