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Abstract: Machine tool accuracy is greatly influenced by geometric and thermal errors that cause
positioning deviations within its working volume. Conventionally, these two error sources are treated
separately, with distinct procedures employed for their characterization and correction. This research
proposes a unified volumetric error compensation approach in terms of a calibration procedure and
error compensation model, which considers geometric and thermal errors as a single error source
that exhibits temporal variation primarily due to changes in the machine’s thermal state. Building
upon previous works that introduced a fully automated volumetric calibration procedure capable
of characterizing the variation in volumetric error over time, this study extends this methodology,
incorporating multiple temperature sensors distributed throughout the machine and generating a
digital twin based on a volumetric error compensation model capable of predicting and compensating
for the volumetric error over time at any point in the workspace, using temperature measurements
and axis positions as inputs. This methodology is applied to a medium-sized milling machine
tool. The digital twin is trained and validated on volumetric calibration tests, wherein various
controlled heat sources are employed to induce thermal variations while measuring the temperatures
in the machine.
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1. Introduction

Machine tool accuracy is of the utmost importance in modern manufacturing in-
dustries, where even small errors can significantly affect the dimensional accuracy of
manufactured parts. Geometric and thermal errors are among the primary error sources
regarding the volumetric accuracy of machine tools and have been of major concern for
decades [1–4]. Historically and up to the present, these two error sources have been
treated separately, as, for example, in [5,6], with distinct procedures employed for their
characterization [7,8].

The characterization of and compensation for the geometric errors affecting the vol-
umetric accuracy of machine tools have been widely discussed, as reviewed in [6,9,10].
State-of-the-art technology for characterizing the geometric errors in medium- and large-
sized machine tools often involves the use of Laser Trackers (LT) and multilateration-based
solutions. The standard solution is to position a Laser Tracker on the ground or the ta-
ble at different locations to measure a machine’s geometric errors [11–13], while another
approach involves attaching a tracker to the machine head and using fixed reflectors on
the ground [14]. An alternative, cost-effective method utilizes artifact-based solutions.
Although these may have limitations in terms of range and measurable positions, the
cost of the equipment can be an order of magnitude below that of the previous methods,
while maintaining a similar precision. Early techniques for volumetric error mapping in-
volved measuring a calibrated artifact or standard at various positions within a machine’s
workspace [15], and different procedures have been developed since [16–18]. Comprehen-
sive reviews of artifact-based machine error mappings can be found in the literature [19,20].
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These error-mapping solutions primarily focus on the geometric errors of machines, which
are mainly caused by manufacturing errors in the guideways, assembly errors, and the
flexibility of structural elements [21–23].

In the context of prior research, approaches to handling the effects of thermal errors
in volumetric calibration can be broadly divided into two categories. The first category of
approach assumes or requires that thermal conditions remain stable and have a minimal
impact on the characterization of geometric errors, as in [24,25] and most ISO standards
regarding geometric errors [26,27], where stable thermal conditions or previous warmup
cycles are recommended. However, this assumption is often impractical, particularly
in industrial settings and large machines, where maintaining stable thermal conditions
becomes challenging. The second category of approach is more reliable, as it incorporates
thermal effects as an uncertainty source, which influences calibration accuracy [17,28–30].
However, there is not a unified methodology for assessing thermal uncertainties, and these
approaches often rely on simplifications, such as considering only offset drifts and linear
expansion or assuming uniform and linear temperature changes. These oversimplifications
may lead to either an overestimation or underestimation of the actual thermal effects. Thus,
a more comprehensive and systematic evaluation of thermal influences is essential for
evaluating the precision and performance of calibration procedures.

In fact, the significance of managing thermally induced errors in machine tools is
being increasingly recognized by academia and the manufacturing industry. International
standards have been developed to assess thermal behavior [31,32], with updates as recent
as 2022 [33], which now include standard machining tests to evaluate thermal distortion.
Advances in measurement equipment, mechatronics, and computational techniques have
led to better estimations of temperature distribution and thermally induced displacements
at the Tool Center Point (TCP) [34]. As the manufacturing industry seeks a higher precision
for machine tools, the predictability of thermal stability becomes critical in order to avoid
costly design modifications later in machine development. The efforts to reduce such
thermal effects in the early stages of machine conception can be broadly divided into trying
to minimize the thermal distortion either by design [35–38] or by assuring thermal stability
with cooling or thermal shields [39].

On the other hand, thermal error compensation by the means of digital twins can be a
cost-effective solution to reduce the influence of thermal errors in machine precision, and
can complement previous thermal error reduction strategies, even when the machine is
already in production. Comprehensive reviews of thermal compensation strategies can be
found in the literature [5,40]. The most used approach consists of training digital twins
based on phenomenological models with experimental data, where the relation between
inputs (e.g., temperature and power consumption) and the Tool Center Point is estimated.
These digital twins are then implemented in the control of the machine, reading temperature
probes and axis positions to continuously estimate the thermal error and compensate for it.
These approaches include different variations of Multiple Linear Regression (MLR) [41],
identifications of linear time-invariant systems like autoregressive models with exogenous
inputs (ARX) [42], transfer functions [43,44], and neural networks [7,45]. In general, these
works focus on measuring and predicting the thermal errors of a single machine position
and lack the spatial or volumetric component of thermal behavior. This becomes especially
important in big machines where the working volume can be of several meters in each
direction and controlling the temperature of the whole machine frame becomes difficult.

Digital twins obtained from simulation data can, in principle, overcome this vol-
umetric limitation. A Finite Element model of the machine is normally used, and the
full deformation field can be estimated using thermal loads [46] or multiple temperature
measurements [47,48] as an input. The most advanced models have the capability to add
relative movements between bodies, i.e., machine axes, and, thus, reproduce the errors in
the volume [49]. However, these approaches do not usually allow for model adjustments
and rely on the accuracy of the simulation model, although recent efforts have been made
in trying to combine both approaches [50]. The modeling of the boundary conditions in
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thermomechanical systems is much more complex than its mechanical counterpart, and
great efforts are made to model even a single parameter or phenomenon accurately [51,52].
Such modeling efforts can make this simulation-based digital twin approach unfeasible,
especially in industrial environments, where different types of machines and environments
would need to be modeled while meeting demanding production deadlines.

Hence, conducting experimental training for a digital twin based on a phenomenolog-
ical model appears to be a promising approach. However, certain constraints need to be
addressed to ensure comprehensive error characterization across the entire volume. One of
the early works capturing the volumetric behavior of thermal errors can be found in [53],
where the position-dependent behavior of geometric errors is combined with a temperature-
dependent first-order term. Later efforts include the temperature- and position-dependent
behavior of a single axis based on measured temperature integration [54], multilateration-
based full volumetric calibrations at different constant ambient temperatures [55], and the
use of Position Sensitive Detectors (PSDs) to measure variations in straightness, squareness,
and roll error motions [56].

In previous works, an artifact-based volumetric calibration method was proposed
and optimized [57]. The procedure was implemented in a fully automated way so that
it could be repeated over time without any human intervention. In [58], it was shown
that this calibration procedure could be used to characterize the variation in volumetric
errors over time in a medium-sized milling machine. Different thermal error sources
were applied to the machine over a week-long test and different thermal behaviors were
measured and analyzed. This paper took the next logical step by introducing a digital
twin to compensate for the thermal errors within the machine volume. This was based
on an integrated methodology that treats geometric and thermal errors as a unified error
source, acknowledging their time-dependent nature, primarily driven by fluctuations
in machines’ thermal conditions. The above-mentioned volumetric calibration method
already extends geometric error calibration to thermal effects by repeated measurements
that capture variations with time, and temperature sensors distributed on the machine
structure are added to capture the variations in its temperature field. The compensation
model introduced here extends an existing phenomenological volumetric error calibration
model to capture the dependance of these errors with the temperature field in a machine.

A digital twin of the thermal–elastic behavior of a machine was obtained by identify-
ing the parameters of the volumetric thermal error model from experimental volumetric
calibration data, which include temperature and volumetric error data. This digital twin
can be deployed in the control of the machine to improve its accuracy by continuously
estimating the positioning error of the machine as a function of the axis positions, con-
ducting temperature measurements, and applying the corresponding corrections to the
commanded position of each axis.

This methodology was applied on a moving column milling machine. The research
involved conducting two distinct thermal tests, each spanning multiple days. The first
test, referred to as the training test, was undertaken to establish the compensation model,
while the second, known as the validation test, aimed to assess the quality and reliability
of the model. To comprehensively capture the machine’s thermal state, a network of 50
temperature sensors was strategically installed.

The structure of this paper is as follows: Section 2 provides a comprehensive account
of the methodology employed, showing both the experimental setup and the theoretical
basis of the digital twin for the volumetric thermal error compensation. Section 3 presents
a summary of the experimental results. Section 4 discusses the effectiveness and reliability
of the digital twin. Section 5 closes with conclusions and outlook.

2. Materials and Methods
2.1. Experimental Setup

Following methodology developed in previous works, an artifact-based calibration
procedure is carried out in a medium-sized milling machine. It is a moving column-type
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milling machine, with a fixed table on the workpiece side. The actual setup is shown in
Figure 1a, while a schematic view of the machine and the artifact set-up can be seen in
Figure 1b.
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Figure 1. (a) Calibration setup with the ball array, 3 individual spheres on the machine table, and the
measuring probe mounted in the machine head. (b) Schematic depiction of the machine kinematics.
XYZ linear axes of the machine are shown with arrows indicating travelling directions. The origin
and the axes of the machine reference system are shown, located on a working table corner.

As stated in [57], the calibration process consists of measuring a ball array with high-
precision spheres over several orientations inside the machine working volume. These
measurements are repeated over several days in order to capture the thermal variations in
the machine errors. In order to make this process automatic, the artifact is mounted in a
cylindrical base with an embedded rotary motor. The inclination around the horizontal
(elevation) angle is set manually and locked throughout the test, as the rotation around
the vertical (azimuth) angle is provided by the rotary motor. The volumetric calibration
procedure is depicted in Figure 2. Details about the calibration procedure are given in [58].
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In order to induce different thermal conditions, three controlled heat sources are
implemented. Two of them are hot air ventilators, focused on the lower part of the column,
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one on the side (H1) and another on the back (H2). The third heat source is the climate
control in the workshop (HENV), which is forced to warm up or cool down the ambient
temperature. Figure 3 shows a schematic view of the locations of these heat sources.
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along with the forced ambient temperature changes.

As stated in the introduction, the ultimate goal of this work is to build a digital twin
that will predict machine errors using temperature measurements as inputs. In order to
map the thermal state of the machine, up to 50 temperature sensors are installed in different
parts of the structure, as follows: 10 in the workpiece side table, 10 in the X axis bed, 16 in
the column, 12 in the ram, and 4 ambient sensors. The working volume of the machine
(the operator side) is encapsulated, and the main parts of the structure are on the back
side, directly in contact with the ambient environment of the workshop. Therefore, 2 of
the ambient sensors are located on the left- and right-hand sides of the working volume
and the other 2 are at the back. All the temperature sensors are type-T thermocouples
with an uncertainty of ±0.5 ◦C according to the manufacturer’s data. Figure 4 shows the
approximate locations of the sensors in the machine structure.
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ambient (purple). Sensors hidden behind bodies are shown with blank filling.
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2.2. Digital Twin for Thermal Error Compensation

A methodology for the generation of a digital twin that reproduces the thermal–elastic
behavior of a machine is proposed here. This digital twin can be implemented in the control
of such a machine to improve its accuracy by estimating and compensating for, in real time,
the positioning error induced in the TCP by the thermal growth. The digital twin uses
measurements from a few temperature sensors distributed within the machine and the
positions of the axes of the machine as inputs. This digital twin is generated by identifying,
from experimental data, the parameters of a phenomenological model that extends classical
volumetric error compensation models to include the influence of temperature. This process
is explained in the next three steps.

Following the procedure explained in the previous section, the volumetric error is
characterized by obtaining the geometric error parameters based on the kinematic model
of the machine. It consists of three linear axes, where each axis has 6 position-dependent
error motions (i.e., positioning, straightness, and angular errors) along with the squareness
errors between them. These errors are approximated by a series of different polynomials,
whose parameters are identified in a least squares minimization procedure. More details
on the obtention of these error parameters are given in [57,58]. At this point, a machine
model capable of predicting the error in the volume according to the axes’ positions and
the error parameters can be obtained as follows:

e = M(X, E) (1)

where X represents the axes’ positions (x, y, and z axes in this case), E is the set of parameters
that define the machine motion errors, M represents the kinematic model of the machine,
and e is the predicted error at the TCP. The inputs in E are considered to be parameters of the
model and are represented in bold characters to differentiate them from the axes’ positions
X, which are considered to be model variables. However, the model M only represents
the behavior of the machine at a specific time or state. If the calibration procedure is
repeated over time, the volumetric error of the machine will change, mainly due to thermal
variations. In this case, different error parameters, and in consequence, different machine
models, will be obtained for each time instant. Therefore, we can rewrite Equation (1) as:

e = Mt(X, Et) (2)

with the superscript t indicating the time step where the model is characterized.
With this set of machine models, the error of any point in the workspace can be

predicted within the duration of the test by using the machine kinematic models and
interpolating between them. However, in order to obtain a digital twin capable of predicting
and compensating for error variations beyond the duration of the test, a thermal model
must be obtained relating the measured temperatures and error parameters. Therefore, the
previous equations can be rewritten as:

e = MT(X, E(T)) (3)

thus obtaining a unique digital twin of the machine capable of predicting the error in the
volume and over time.

As discussed in Section 1, different thermal models have been proposed in the lit-
erature for error compensation. These approaches are usually inspired by the physics
behind the thermoelastic problem, which describes the relationship between the thermal
loads and the temperature field as a first-order differential equation, depending on the
heat capacity, material conductivity, and other boundary conditions. On the other hand,
once the full temperature field of a body is known, the deformation of any point can be
instantaneously computed.

Hence, if temperature measurements are to be used as inputs for the compensation
model, a direct relation should be established between them and the volumetric error, i.e.,
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the deformation at any point should be a linear combination of the temperatures multiplied
by different coefficients. Any dynamic effects derived from the differential equation
problem should be left out. However, in most cases, measuring the full temperature field is
unattainable, and the available information usually consists of a few scattered temperature
measurements. In fact, thermal modal analysis approaches have shown that these delays
can exist between individual temperature measurements and deformations [59–61]. On
the contrary, optimal sensor positioning techniques have shown that a very accurate
approximation of the temperature field can be achieved with few sensors [62,63], using
direct models with no delay, if these are adequately positioned. Therefore, it is expected
that choosing a model resembling partial differential equations will have benefits when
using one or few temperature sensors, as models based on simple linear combinations
should be used when more temperatures are available.

To answer this question, an autoregressive model with an exogenous input (ARX) is
adopted. In this type of model, the evolution of a parameter is predicted according to its
past values and one or several external inputs, which, in this case, refer to temperature
measurements. Hence, a multiple-input single-output (MISO) model is adopted to predict
each parameter. The MATLAB System Identification Toolbox is used to fit such models
according to the procedure described below.

Let E be the error parameter set obtained in the calibration model, designating each
individual error parameter as Em, where m = 1, . . . , dim(Em), and the measured temper-
atures as Tn, where n = 1, . . . , 50 (see Figure 4). Then, the ARX model predicting each
parameter can be expressed as:

Et
m = am·Et−1

m +
N

∑
n=1

bm
n ·Tt

n (4)

where the parameter am defines the autoregressive behavior of the parameter Em and
the coefficients bm

n define the relationship between the nth temperature and the mth error
parameter. At this point, overfitting effects must be taken into consideration in order to
obtain a model as robust as possible. The so-called bias–variance dilemma [64] states that
the use of excessive parameters trying to avoid model bias and minimize fitting residuals
can result in a higher variance in the predictive performance outside the training set. This
effect can be aggravated by the multicollinearity between temperatures, i.e., the fact that
the possible inputs of the model (measured temperatures) are highly correlated and can be
predictors of each other [65].

The aforementioned problems lead to the following questions:

• How many and which temperatures should be selected for each error parameter?
• Is it necessary to include the first-order autoregressive parameter am in the

prediction model?

For the temperature selection, an approach based on [66] is followed, called the split
unbiased estimation algorithm. The temperature selection is performed in a greedy way,
where, in each step, the single best input available is selected, until the final number of
desired inputs is achieved. Taking Equation (4) as a basis and assuming for the clarity of
the explanation that am = 0, the procedure can be described as follows:

(1) For a specific parameter Em, the desired number of inputs Nm is selected. This means
that, at the end of the procedure, only a limited set of Nm temperatures will be selected
out of the available N = 50 temperatures.

(2) An iterative process starts with the iteration steps j = 1, . . . , Nm. At the first iteration
(j = 1), a single-input single-output ARX model is fitted with each of the temperatures
available, selecting the one with the lowest mean squared error between the measured
and the predicted values.

min{Em − bn·Tn | n ∈ N} (5)
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Naming the selected temperature as Tn1, a new output is defined for the next step of
the iteration.

E∗
m = Em − bn1·Tn1 (6)

(3) The procedure is repeated for the subsequent iterations, where the temperatures
are selected one by one until the desired number of Em temperatures is reached.
Naming the temperatures selected in previous steps as Nj, the fitting procedure can
be summarized in the expression of Equation (7):

min{ E∗
m − bn·Tn | n ∈

[
N − Nj

]
, Nj < Nm

}
(7)

Repeating this procedure for each of the Em parameters, m multiple-input single-
output (MISO) models are obtained, with each one predicting the behavior of individual
parameters according to different temperature inputs. The predicted parameters are in-
corporated into the kinematic model of the machine so that the volumetric error can be
estimated at any moment, thus obtaining the digital twin of the machine with real prediction
capabilities for the thermal behavior in the volume.

Once the fitting procedure is defined, it is necessary to establish how many temper-
ature inputs (Nm) are needed to predict each parameter. For this purpose, an approach
based on information criterions will be used, following the methodology in [42]. Informa-
tion criteria offer a quantitative approach to comparatively evaluate regression models.
There exist different variations, but, in general, they prioritize a smaller squared error
while discouraging the inclusion of additional parameters, thereby mitigating the risk of
overfitting. The MATLAB® System Identification Toolbox used in this work for the ARX
model estimation already provides the values for the Akaike Information Criterion (AIC),
the Bayesian Information Criterion (BIC), and the corrected Bayesian Information Criterion
(BICc) for each model. The latter is used in this work.

These criterions will be used both to select the adequate number of temperature inputs
and to either include or exclude the autoregression parameter am. Different models will
be fitted for each parameter, starting with 1 temperature up to 10, with and without the
autoregressive parameter. The one with the lowest BICc is selected as the best model.

For validation purposes, two different tests are carried out, comprising the training
and testing data sets, respectively. Each test is a several-days-long thermal test where the
procedure explained in Section 2.1 is repeated under different thermal conditions. The
model fitting described in this section will be carried out with the data from the training
test. The performance of the prediction model will be evaluated with the testing data set.
More details about both tests are given in Section 3. Figure 5 shows a diagram summa-
rizing the whole process, from the experimental measurements to the error prediction
and compensation.

2.3. Quantification and Evaluation of Thermal Errors

The accurate assessment of thermal errors is of the utmost importance when reporting
the results of a thermal test or the performance of a compensation model. The typical
representation of test results consists of a graph representing thermal distortion versus
time, while the ISO 230—Part 3 standard [31] recommends plotting measured temperatures
alongside distortions. In the case where an estimation/compensation model is involved,
the estimation curve is usually included overlaying the distortion curve, and the difference
between the two can be added, representing the residual error after compensation.

Additionally, different ISO standards propose machining tests to evaluate thermal
distortions. These tests are based on test pieces with specific geometric features to evaluate
different error components. These features are machined several times in evenly spaced
time intervals and the measurements are carried out on the machine after a reasonable
cooling time has passed. Section 4.4 of this work provides a simulation of the trajectories of
2 machining tests proposed by the ISO 10791—Part 10 standard [33] in Sections A.2 and
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A.3, respectively, where the improvement after compensation is shown, simulating the
conditions of the validation test.
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over time; (bottom left) ARX regression with temperatures as inputs obtaining a compensation
model; (top right) validation test measuring distance errors; and (bottom right) volumetric error
prediction and compensation using model M over errors measured in validation test.

The numerical assessment of distortion curves typically consists of metrics such as the
range (peak-to-valley value) or dispersion (RMS and standard deviation) of the measured
distortion over the entire duration of the test. If a compensation model is involved, such
metrics are computed before and after the compensation is applied, and the improvement
rates are reported to assess the quality of the prediction model.

However, reporting thermal results in terms of single numerical values presents major
limitations, as this only represents the behavior of the machine at time spans comprising the
entire duration of the test. For example, a value reporting the variation in the thermal error
over a 4 h long test gives little information about how the machine behaves in shorter time
spans, although it provides an upper threshold. ISO standards recommend that the duration
of these tests should be agreed between the manufacturer and the user of the machine, based
on the typical machining times over which the machine will operate. However, a single
machine will frequently work with different workpieces, operations, and referencing points
with distinct machining times. Consequently, they will be affected differently depending
on the changing rates of thermal distortions and the specific operation.

To overcome this limitation, a new way to report thermal distortions is proposed in the
following, which can be applied both to characterization tests or compensation models, and
it is especially useful for comparing different machines, tests, or compensation strategies.
Figure 6 shows the evolution of a generic thermal distortion error measured during a test
of duration T. The error is segmented according to two different time intervals, ∆t1 and ∆t2
(where ∆t1 < ∆t2 ≪ T), e.g., representing a hypothetical serial machining of two different
workpieces, and the range of the error in each time interval is represented by the shaded
area in grey. Assuming that referencing is carried out between the workpieces, it is clear
that a different thermal distortion would be expected depending on the workpiece type.
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At this point, different parameters can be adopted to represent the thermal distortion
of each case, with some examples given in the following:

• Emax(range): The maximum variation happens in any of the individual segments. For
the example shown in Figure 6, this would correspond to the first segment for both time
intervals. This would give a conservative value for the thermal behavior, representing
the worst-case scenario between the measured values.

• Eµ(range)/Eσ(range): The mean value or standard deviation of the error range registered
in all segments. The standard deviation can be expanded or percentiles can be used
to represent different portions (e.g., EP95(range), meaning that 95% of time intervals
registered an error below this value). This represents a statistical approach to represent
the error evolution and can give a better sense of the general thermal behavior.

Other parameters can be computed with different variations, as, for example, when
using the linearity error of each segment instead of a range, if it can be assumed that a
constant changing rate will not affect the specific tolerance of a machining operation.

Nevertheless, the key aspect of this new approach is that each parameter should
be reported, indicating the time interval with which they have been calculated. For the
example shown in Figure 6, the maximum variation errors should be reported as E∆t1

max(range)

and E∆t2
max(range) for the left and right sides, respectively, giving a sense of the machine’s

thermal behavior when working at those specific time intervals.
When the time intervals of interest are not defined or a more generic evaluation of

thermal behavior is needed, a generalization of the previous approach can be used. Let
dt be the time step between subsequent measurements, i.e., the temporal resolution of the
measured thermal distortion curve. Assuming uniform sampling, time intervals can be
defined starting from ∆t1 = dt up to ∆tN = T, with N = T

dt . The former represents the time
interval between any pair of subsequent points, as the latter is the duration of the whole
test. Instead of establishing overlayed time intervals (as used for illustrative purposes in
Figure 6), intervals of the same length are taken from a sliding window of width ∆tn, giving
a total of N − n intervals to evaluate for a time interval of ∆tn. This is illustrated in Figure 7.

For each of the time intervals, the desired parameter or set of parameters is computed,
obtaining a value for each time interval. For example, computing the 95th percentile of the
range would lead to the array shown in Equation (8):

EP95(range) =
[

E∆t1
P95(range) E∆t2

P95(range) . . . E∆tN
P95(range)

]
(8)
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Figure 7. Illustrative example of sliding window sampling of time intervals of generic width ∆tn.

The first value of the array provides information about the thermal behavior in the
resolution limit of the test, dt, as the last value is directly the range of the thermal error
over the full duration of the test. To better illustrate the usefulness of this procedure to
evaluate thermal results, a naive example is shown in the following with synthetically
generated data. The left part of Figure 8 shows two thermal distortion curves with clear,
distinct behaviors. The blue line (“error 1”) shows a drift that extends over the whole
duration of the test. The red line (“error 2”) shows a stable long-term behavior, but a bigger
noise-type error compared to the blue line. Assuming a similar measurement uncertainty,
the EP95(range) parameter is computed for each curve and is shown in the right part of
Figure 8 in order to compare both behaviors.
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The red and blue lines on the right-hand side show the EP95(range) parameter for both
cases, which can be interpreted as follows: “when working at operation intervals of length
∆tn it has been measured that the thermal error variation is below the value E∆tn

P95(range)
in the 95% of the cases”. In other words, when performing machining operations of a
duration ∆tn, starting at any arbitrary moment, the expectation is that the thermal error
will vary less than that in the 95% of the cases. According to this, the graphs show that,
when working in time intervals below ∆tn = t0, the behavior represented by the blue line
seems to be a better option, and when working in longer time intervals, the red one should
provide a better accuracy. The selection of one over the other will depend on the specific
needs of the machine user.

2.4. Validation on Virtual Machining Tests According to ISO—10791

An additional virtual machining test is proposed to further validate the results. This
test simulates the trajectories of machining tests explained in Annex A of the ISO 10791—
Part 10 standard. The test is proposed in Section A.3 under the name “Machining test
to evaluate the machine tool distortion in the axial direction of the tool”, which is the Z
direction for this machine. The test consists of machining 16 slots (S1 to S16) on a square-
shaped workpiece, evenly spaced in time. The first slot (S1) is used as a reference and the
relative axial error is reported for the remaining 15 slots. According to the standard, the
waiting time between machining the slots can be modified depending on the time it takes
thermal deformations to occur. For this case, a waiting time of 1 h is selected, resulting
in a 15 h interval between the first and last slot. The finished geometry can be seen in
Figure 9 [33]. These virtual tests will be simulated starting at different times of the available
validation test so that the digital twin’s compensation behavior can be evaluated under
different conditions.
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Figure 9. Figure taken from [33] showing the workpiece from the test to evaluate machine tool
distortion in the tool direction described in the standard ISO 10791 Part 10, in Section A.3.

3. Results

Following the measurement procedure defined in Section 2.1, continuous measure-
ments were performed on the machine over two different time spans. The training test
was carried out from 24 March to 3 April, lasting 234 h (approximately 10 days). The
validation test (testing data set) was carried out from 8 June 8 to 15 June 15, lasting 169 h
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(approximately 7 days). Different thermal conditions were induced on the machine, using
the three controlled heat sources defined in Figure 3. The thermal conditions applied
throughout the training and validation tests can be seen in Figure 10.
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Figure 10. Thermal conditions applied to the training test (left) and the validation test (right). The
local heat sources H1 (yellow) and H2 (red) are switched on and off during the test, as the ambient
(green) is forced to cool down, maintain, or heat up the workshop temperature. Vertical marks are
added in switching moments.

The results obtained in the training and validation tests are summarized in the follow-
ing. Figure 11 shows the displacements measured in the training test. The left-hand side of
the figure shows the position and orientation changes in the volume as a whole, as defined
in [58]. The measured position deviations are expressed in the same coordinate system
as the machine, and vertical grid markers were added at time steps where the local heat
sources were switched on/off or when the ambient environment was forced to heat up or
cool down. The right-hand side of the figure shows the variation in the distances measured
between spheres. Since a large number of distances were measured at each measurement
cycle, the distribution of the variation in these distances is represented through the follow-
ing quartiles: minimum, maximum, median, and first (Q1) and third (Q3) quartiles. The
variations in these measured distances were in the same order of magnitude as in the fixed
balls, showing that both the overall drift and the volumetric variation are relevant.
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The measured temperatures can be observed in Figure 12, color coded according to
Figure 4. The same vertical markers are added to indicate heat sources switching on or off.
Temperature data were acquired every 30 s.
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Figure 12. Temperatures recorded during the training test, color coded according to machine
components: column (blue), ram (red), X base (green), workpiece table (yellow), and ambient
probes (purple).

As can be seen in Figures 11 and 12, the first 70 h of the test, under just the unforced
ambient variation, were relatively stable, with little consequent variation in the error. The
central part of the test, where the localized heat sources were activated, was noted primarily
in the column temperatures as expected, with considerable effects on both the offset and
distance errors. The last 48 h of the test were performed under forced ambient temperature
changes. The evolution of the temperatures was highly correlated in this section, with more
than 7 ◦C variation measured with the ambient probes and more mitigated changes in the
structure. The variation in the volumetric error was also significant in this period.

Similarly, Figures 13 and 14 show the measured errors and the temperature evolution
throughout the validation test.
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Figure 14. Temperatures recorded during the validation test, color coded according to machine
components: column (blue), ram (red), X base (green), workpiece table (yellow), and ambient
probes (purple).

Comparing Figures 12 and 14, it can be observed that the mean temperature of the
validation test was higher than that of the training test. The average ambient temperature
increased from 22 ◦C to 24.7 ◦C from training to validation. Furthermore, the changes
between daytime and nighttime were bigger and more sudden, as the climate of the
workshop was active during the day and switched off from 6 p.m. on. The validation
tests’ ambient temperature increased to 27 ◦C during some nights. This shows the seasonal
behavior of thermal issues and entails an additional difficulty when trying to predict the
thermal errors of a machine tool.

4. Discussion
4.1. Identification of the Digital Twin

Following the procedure shown in Figure 5 for the identification of a digital twin for
volumetric thermal error prediction, volumetric error estimation was performed with the
distances measured at each time step in the training test. Therefore, the evolutions of each
of the parameters defining the component errors were obtained for 234 h. The regression
model described in Section 2.2 was estimated for each of the parameters, which was used
along with the machine model M to compare the errors during the training test. The initial
distance errors are compared to those that would be measured if the digital twin was used
to compensate for the position of the machine during the training test in Figure 15.

As can be observed, the thermal regression model adjusted most of the distance errors
measured during the test. The peak-to-peak error was reduced from 101 µm to 33 µm (68%
reduction), and the root mean square (RMS) error was reduced from 9.7 µm to 2.5 µm (74%
reduction). Figure 16 shows the fitting curves adjusted for some of the error parameters.
Displacement parameters (positioning and straightness) are expressed in microns (µm),
and the angular errors are expressed in microns per meter (µm/m), assuming small-angle
approximation. The parameter names are given according to the ISO—230 Part 1 standard,
with an additional numerical term at the end indicating the order of the parameters for the
specific component error. In this case, the following parameters are shown: the zero-order
error in the X direction, the second-order parameter of the Z axis straightness in the X
direction, the first-order (linear) parameter of the Z axis angular error around the X axis,
and the first-order parameter of the positioning error of the Y axis (linear expansion).
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Each of the parameters shown in Figure 16 were fitted using the ARX model described
in Equation (4). A summary of all geometric error parameters can be found in Table 1.
This includes the initial peak-to-peak and RMS values, the improvements after the thermal
model training, the number of temperature inputs, and the inclusion or exclusion of the
autoregression parameter am.

Table 1. Summary of estimated parameters with the training data.

Parameter P2P0
[µm]

P2PFINAL
[%]

RMS0
[µm]

RMSFINAL
[%]

No. of
Inputs

am
(Yes/No)

EX0 92.2 78.1 24.9 84.7 3 0
EZ0 78.7 72.4 21.2 79.4 2 0
EY0 63.9 64.8 16.9 71 5 1
EA0 35.1 50.0 10.4 72.2 3 0
EC0 8.9 44.4 1.7 42.6 2 0
EB0 11.9 56.8 2.5 59.6 2 0

EXX1 23.6 63.3 4.6 67.5 3 0
EXX2 9.2 8.1 2 21.8 2 0
EZX2 23.7 48.9 8.2 71.3 4 0
EAX2 19.8 61.5 7.8 79.3 3 0
EBX1 29.9 55.3 6.8 60.6 2 1
EZZ1 40.9 51.1 8.2 60.9 4 0
EZZ2 11.1 56.0 3.1 68.4 3 0
EXZ1 19 2.2 3.9 12.9 2 0
EXZ2 17.8 62.2 5 78.8 4 0
EYZ2 6.2 39.9 2 68.3 4 0
ECZ1 9.2 7.3 2.2 38.9 4 0
EAZ1 25.2 59.2 7.5 77.4 5 0
EYY1 18.6 74.3 4.7 81.7 5 0
EYY2 7.7 52.6 2.1 68.7 2 0
EZY1 19.5 61.3 7 80.4 5 0
EZY2 7.6 34.0 1.7 50.9 4 0
EXY1 33.7 75.9 12.3 87.4 4 0
EXY2 5.8 13.1 1.3 21.1 2 0

As can be seen in Table 1, the number of temperature inputs varied from two to five for
different error parameters, a number that was chosen by comparing different models using
the information criteria described in Section 2.2. Using the same criteria, the autoregressive
parameter (am) was included in only 2 of the 24 parameters, i.e., the model selection
criteria established that, in most cases, there was no significant improvement with adding
the autoregressive parameter or priority was given to adding extra temperature inputs
(e.g., using two temperature inputs rather than one temperature plus the autoregressive
parameter). Even in the two cases where the parameter am was used, the improvement was
not especially significant, with differences in the RMS reduction of less than 5%.

Therefore, the estimation models of most of the parameters resulted in simple Mul-
tiple Linear Regression models rather than ARX models. Each parameter was predicted
by a linear combination of certain temperature values at a specific time instant. This re-
inforces the underlying idea that the relation between temperatures and deformations
can be established by such direct models if enough information on the temperature field
is available.

The interpretation of the results, i.e., how different heat sources affect the machine
component errors or tool trajectories, can be easily performed using the machine model
MT(X, E(T)), which, once it is trained, can simulate any machine position or trajectory. A
comprehensive analysis of the thermal volumetric errors using this approach can be found
in [58].
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4.2. Validation and Error Prediction of the Digital Twin

The use of the regression model obtained in the previous section as a digital twin for
the volumetric thermal error compensation is validated using the 168 h long validation
test described in Section 3. The ball position and distance variations measured in the
validation test are compared to those estimated using the regression model obtained
with the training test and the temperature inputs recorded during the validation test.
The kinematic machine model MT is used to calculate the estimation of distances from
the individual error parameters. Figure 17 shows the measured distance errors and the
residuals after compensating with the estimated ones.
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Figure 17. (Top) Measured distance errors during the validation test. (Bottom) Residual error after
compensating the errors with the regression model obtained with the training test.

As can be observed, the thermal regression model compensated for most of the
distance errors measured during the validation test. The peak-to-peak error was reduced
from 82 µm to 33 µm (59% reduction), and the root mean square (RMS) error was reduced
from 7.5 µm to 2.9 µm (61% reduction). As expected, the improvement in the testing data
was worse than the fitting quality with the training data. Still, the reduction rates were close
enough and the compensation model is considered to be sufficiently robust considering
the following:

• The training and testing datasets are of a similar size (58%/42% split), while the usual
rates are around 80%/20%.

• There is almost a three-month difference between both tests, which implies seasonal
differences in climate and possible changes in the machine state as it continued its
normal operation in between.

• The thermal load cycle changed, and the heat sources are recombined in a totally
different sequence with respect to the training test.
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Figure 18 shows the evolution of the individual error parameters, similarly to Figure 16.
This time, the fitting curves are estimations generated by the regression model according to
the temperature inputs during the validation test.
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Figure 18. Parameter evolution and model estimation for some of the component error parameters
during the validation test. Measured parameter evolution is pictured with a red line, the thermal
model fitting with a dotted black line and the residual error after fitting with a grey line.

Figure 18 shows some of the limitations and strengths of the compensation model. As
can be seen with the parameters EX0 and EXZ2, the compensation model predicts the short-
term variations due to changes in the local heat conditions relatively well, but there is a
long-term drift in the difference between the measured and compensated values, especially
in the EX0 case. A long-term defect in the compensation model is generally considered to
be less critical, as a typical machining process usually lasts several hours at most, and the
workpiece can be referenced at the beginning of the process or between different operations.

4.3. Analysis of the Volumetric Error Compensation

For a general analysis of the volumetric error of the machine, three straight trajectories
are simulated, with each one aligned with a machine axis and all crossing each other at the
center of the measured working volume.

The trajectory along the X axis corresponds to the linear motion at the midrange of
the Y and Z axes (X = [30–1460] mm, Z = 975 mm, and Y = 625 mm). The TCP component
errors are shown in Figure 19, which correspond to the positioning (X) and straightness (Z
and Y) errors of the X axis along the specified trajectory. The evolution of the error is shown
during the 7-day validation test. The machine model M is used to simulate the trajectories
and the errors of the machine.
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Figure 19. Evolution of the directional errors at TCP over a centered trajectory along the X axis during
the validation test. Initial (left) and compensated (right) errors are shown. Darker color means higher
(absolute) error. Same color scale applies to all figures.

To evaluate the error reduction achieved by the compensation model, the methodology
defined in Section 2.3 is used. The parameter selected to evaluate the error is the standard
deviation of each time interval, i.e., the dispersion of the error relative to its mean in the
specific interval ∆tn. The value representing each ∆tn corresponds to the 95th percentile of
all the intervals evaluated, referred to as EP95(σ). Figure 20 shows the reduction achieved for
different ∆tn for each component error in the X, Y, and Z directions for the X axis trajectory
shown in Figure 19.

Figure 20 shows the different behaviors for the residual errors in each direction. When
looking for the total duration of the test (∆t = 168 h), the overall reduction achieved in the
X direction was only 33%. However, there were time intervals where the compensation
model performed much better. For example, the time intervals between 5 h and 20 h
showed a reduction of 60% or greater when comparing the initial and residual errors after
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compensation. This effect is clearly observed in the top two graphs from Figure 19, where a
long-term drift is still noticeable after compensation, but the dominant shorter-term ups and
downs are greatly reduced. This may suggest that the strength of this compensation model
in the X direction is in predicting (relatively) short-term behavior rather than assuring
long-term stability.
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Figure 20. Error reduction for X axis trajectory evaluated at different time intervals according to the
parameter EP95(σ). Error components in X, Y, and Z directions are shown before (blue line) and after
compensation (red line).

Regarding the Y direction, the performance of the compensation model was quite
stable for every time interval when looking at the absolute values of the residual error. The
original error, on the other hand, was already quite low (< 4 m) when looking at 1 h and
2 h intervals, and the compensation model slightly worsened the original results. However,
for longer time intervals, reductions up to 60% were achieved.

The Z direction error showed the greatest variability in the time intervals between
10 h and 30 h, as shorter and longer intervals showed smaller values. The compensation
model performance was quite stable within the whole range, with a reduction of up to 62%
in the mentioned interval and a 50% reduction when looking at the full duration of the test.

The trajectory along the Z axis corresponds to the linear motion at the midrange of
the X and Y axes (Z = [460–1490] mm, X = 745 mm, and Y = 625 mm). The TCP component
errors are shown in Figure 21, which correspond to the positioning (Z) and straightness (X
and Y) errors of the Z axis along the specified trajectory.
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Figure 21. Evolution of the directional errors at TCP over a centered trajectory along the Y axis during
the validation test. Initial (left) and compensated (right) errors are shown.

Similarly, the errors before and after compensation are evaluated for different time
intervals. This is shown in Figure 22.

The error reduction achieved in the Y trajectory by the compensation model showed
similar behavior to that in the X trajectory. The X direction error was reduced by more
than 50% in the time intervals between 20 h and 40 h, but the long-term reduction was
less than 20%. The error compensation showed better behavior in the other directions,
with better long-term results for the Y error, while the Z error reduction was better in the
10–20 h intervals.

The trajectory along the Y axis corresponds to the linear motion at the midrange of
the X and Z axes (Y = [50–1200] mm, X = 745 mm, and Z = 975 mm). The TCP component
errors are shown in Figure 23, which correspond to the positioning (Y) and straightness (X
and Z) errors of the Y axis along the specified trajectory.
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The error analysis in the time interval domain showed similar behavior to the X and Z
trajectories, as can be seen in Figure 24.
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4.4. Validation on Virtual Machining Tests According to ISO—10791

As seen in the previous section, the digital twin obtained above MT(X, E(T)) can
simulate any trajectory under various thermal conditions and make a prediction of the
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errors at the TCP. To further validate the results of the compensation model, the virtual test
presented in Section 2.4 is carried out.

The machining trajectories are simulated using the digital twin of the machine MT on
different time intervals over the duration of the test. Figure 25 shows the evaluation of
thermal distortions in the Z direction for machining tests starting at the 0 h, 40 h, 70 h, and
100 h marks of the validation test (see Section 3). Table 2 shows the error reduction by the
means of range (peak-to-peak error) and RMS for these four cases.
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Figure 25. Virtual machining test results, presented according to standard ISO—10791 Part 10. Initial
(red) and compensated (grey) errors are shown with the machining test simulated at different intervals
of the validation test.

Table 2. Error reduction for the ISO 10791-10 A.3 machining test for different intervals of the
validation test.

t0
P2P0
[µm]

P2PFINAL
[µm]

P2PRED
[%]

RMS0
[µm]

RMS0
[µm]

RMSFINAL
[%]

0 h 74.6 29.1 61.0 55.7 14.7 73.6
40 h 65.8 22.1 66.3 30.3 8.6 71.6
70 h 111.2 26.6 76.1 35.5 10.6 70.0
100 h 40.0 22.5 43.8 18.2 6.0 67.2

In order to generalize the results throughout all the validation tests, the evaluation
method pictured in Figure 7 is used. A moving window of 15 h is used and the test is
simulated starting at each time step, with the first one being the 0–15 h interval and the
last one ranging from 153 h to 168 h. Figure 26 shows the error range (peak-to-peak value)
before and after compensation for the tests starting at successive time steps.
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Figure 26. The error range values for the 15 h long A.3 machining test starting at successive time
steps before and after compensation.

The 15 h interval error variation was reduced from 57.5 µm to 29.5 µm, on average, a
49% reduction. The maximum error was reduced from 112 µm to 54 µm, a 52% reduction.
In general, the greatest reductions were achieved in intervals where the error variation was
high (e.g., tests starting 60 h and 80 h), as there was almost no improvement in intervals of
a lower variation (e.g., between 20 h and 30 h).

4.5. Modeling Considerations and Uncertainties

The results shown throughout Section 4 show a significant reduction in the thermal
error after compensation was applied with the digital twin of the machine. However, the
error prediction was far from perfect and showed some limitations. This section analyzes
the modeling assumptions and uncertainty sources that may have been the causes of these
limitations. The digital twin for volumetric thermal error compensation was built upon a
double assumption, as follows:

• The first was that geometric errors can be approximated by lower-order polynomials
of smooth forms. In principle, these geometric errors can adopt any arbitrary form,
but it can be useful to approximate them by the means of different polynomial approx-
imations. This simplifies the characterization problem at the expense of losing some,
hopefully residual, geometric information.

• The second and less common assumption was that the parameters related to the
polynomials characterizing the geometric errors experience a temporal variation that
can be predicted by the means of temperature variations or other related inputs. In
other words, not only can geometric errors be approximated by polynomials, but their
variation due to temperature changes can also be approximated. Furthermore, these
changes can be predicted by measuring thermal inputs. The existence of such relations
between inputs and specific parameter variations is not granted, and it was the key
aspect in establishing a two-step thermal volumetric compensation model that extends
from temperatures to parameters and from parameters to geometric error values at
any given position and time.
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The first assumption was expected to be fulfilled, as this approximation by polynomials
is common knowledge in the field of the geometric error characterization of machine tools,
and was demonstrated in the work preceding this publication [58]. The compensation
results shown in Section 4 demonstrated that the second assumption turned out to be
appropriate, at least partially. A great part of the thermal volumetric error variation
was predicted and compensated, and a significantly good correlation was found between
temperatures and most of the parameters. The deviations and improvement rates shown
by the results in the validation sections are considered to be robust and reliable, as a
comprehensive validation procedure was carried out, with a duration comparable to
the training test, which included seasonal variations and pattern changes in thermal
load sequences.

The kinematic model of the machine (denoted as M in this work) was the key enabler in
order to understand and validate the measurements and compensation results. The model
incorporated the position-dependent behavior of geometric errors, which is a usual func-
tionality of this kind of model, but this time with the addition of temperature-dependent
effects. In other words, using the machine position and temperatures as inputs, the model
predicts the error at the TCP in any point in space. This model was a powerful tool to
validate our results by the means of different trajectories and workpiece machining tests.
Furthermore, the model could be used to simulate future thermal scenarios by synthetically
generating temperature data and using them as inputs to simulate different trajectories.

Regarding the model established between temperatures and thermal distortions, it
should be noted that the model selection based on the information criteria discarded ARX
models and favored simple Multiple Linear Regression, which established direct relations
between multiple temperature inputs and thermal distortions. Considering the fact that the
relation between a body’s temperature and thermal distortion is immediate, it seems logical
that, in the hypothetical case where the full temperature field is known, a direct model (i.e.,
MLR model) should be identified between both. However, when measuring one or few
temperature spots, it is usual to observe delays and “dumped” thermal effects between
them and the distortion measured on a single point, suggesting that models incorporating
such effects (such as ARX models or transfer functions) are more appropriate for these
cases. Therefore, it seems reasonable to think that, at a certain point between measuring
one or few temperature spots and knowing the full temperature field, MLR models will
begin to become more and more suitable, to the detriment of other types of models. This
seems to be the case for the thermal effects shown in this work.

However, the results after compensation were far from perfect, as can be seen in the
validation procedures shown in Section 4. The results were dissimilar when compensating
for the error changes of different time intervals, and small but significant long-term drifts
remained even after compensation. The main aspects and uncertainty sources responsible
of this suboptimal performance are listed in the following:

• Uncertainties related to the measurement system and the calibration procedure. The
details of these were extensively discussed in works preceding this publication [57,58]
and included aspects such as sensor uncertainty, machine repeatability, ball spheric-
ity, and especially the time taken by the calibration procedure to complete a full
measurement cycle, as thermal effects continuously change.

• To what extent are the two assumptions fulfilled? The assumptions listed earlier in this
section may not be a good enough approximation of the actual physical phenomena,
i.e., the polynomial approximation may not be appropriate to model the actual values
of geometric errors, and their variation may not be predictable with the measured
inputs, at least to a certain extent.

• Incomplete information of the temperature field. The fact that the thermal distortion
of the body can be predicted by knowing its temperature is only true if the full
temperature field is measured. Predicting such distortions by measuring only some
specific spots (as is the case) is only an approximation that may work to a certain
extent. This is especially true when working with big machines under environmental
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thermal effects that are distributed over large areas. The limitation of only measuring
50 spots instead of the full temperature field of the machine could result in thermal
effects not being measured at all or without the necessary accuracy.

5. Conclusions

In this work, a novel method to measure and compensate for the thermal variations
in volumetric errors was presented. The compensation was performed with a digital
twin that can be implemented in the control of machines, continuously estimating the
positioning error as a function of some measured temperatures and the axes’ positions.
In contrast with the typical approach to separating geometric and thermal errors, this
work considered that all geometric errors present in a machine tool can, and ultimately do,
change with the influence of the temperature over time. Therefore, a unified methodology
was presented, combining the spatial (volumetric) dimension to characterize the geometric
errors and the temporal dimension needed to measure thermal effects. This was achieved
by implementing a fully automated measuring methodology to calibrate geometric errors,
which was then repeated over time.

The improvement in the error after compensation was significant but limited due to
the several factors and modeling limitations discussed in Section 4.5. However, the results
are considered to be robust enough to represent a promising approach, as an extensive
validation test was performed, varying the conditions of the calibration test.

Finally, in Section 2.3, a novel systematic method to evaluate thermal behavior was
proposed. Roughly inspired by the frequency domain analysis of time series, this method
allows for selecting the more appropriate parameter or evaluation metric and applying it
to increasing time intervals of the corresponding signal (e.g., thermal distortion measured
at one point). This results in a graphical representation loosely mirroring a frequency
response function, which permits a quantitative and qualitative evaluation of the errors at
different time intervals at a glance. This method permits simple and visual comparisons
between the measured error and the residual after compensation is applied, discerning, for
example, short-term and long-term compensation capabilities, and overcoming simplistic
numerical representations by just reporting overall results. This methodology can be used
not only to evaluate compensation models, but also to compare the thermal behaviors of
different machines or situations and selecting the optimal time intervals for machining.
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