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Abstract: The widespread use of wearable devices has enabled continuous monitoring of biometric
data, including heart rate variability (HRV) and resting heart rate (RHR). However, the validity of
these measurements, particularly from consumer devices like Apple Watch, remains underexplored.
This study aimed to validate HRV measurements obtained from Apple Watch Series 9 and Ultra 2
against the Polar H10 chest strap paired with the Kubios HRV software, which together served as the
reference standard. A prospective cohort of 39 healthy adults provided 316 HRV measurements over a
14-day period. Generalized Estimating Equations were used to assess the difference in HRV between
devices, accounting for repeated measures. Apple Watch tended to underestimate HRV by an average
of 8.31 ms compared to the Polar H10 (p = 0.025), with a mean absolute percentage error (MAPE) of
28.88% and a mean absolute error (MAE) of 20.46 ms. The study found no significant impact of RHR
discrepancies on HRV differences (p = 0.156), with RHR showing a mean difference of −0.08 bpm, an
MAPE of 5.91%, and an MAE of 3.73 bpm. Equivalence testing indicated that the HRV measurements
from Apple Watch did not fall within the pre-specified equivalence margin of ±10 ms. Despite
accurate RHR measurements, these findings underscore the need for improved HRV algorithms in
consumer wearables and caution in interpreting HRV data for clinical or performance monitoring.

Keywords: heart rate variability; Apple watch; wearable devices; photoplethysmography; validity;
Polar H10; Kubios HRV

1. Introduction

The adoption of wrist-worn wearable technology is growing rapidly, with an esti-
mated 31% of the United States population owning a smartwatch [1]. In 2022 alone, over
450 million wearable devices were sold [2]. These devices enable hundreds of millions of
users to continuously track biometric data [3]. From basic measurements, such as heart
rate and step count, to more sophisticated metrics like sleep quality, energy expenditure,
maximal oxygen consumption, peripheral oxygen saturation, and heart rate variability
(HRV), these devices have great potential for personal health monitoring [4,5].

HRV is a measure of the variation in the time intervals between successive heart-
beats [6]. It is closely associated with the autonomic nervous system, representing the
balance between parasympathetic and sympathetic nervous activity [7]. As an indicator of
the heart’s response to physiological stress, HRV has been shown to be a useful clinical met-
ric [8]. For example, low and downward-trending HRV has been linked with high stress [9]
and increased inflammatory blood markers [10–12]. HRV has also been shown to have
prognostic value in various medical contexts, including post-myocardial infarction [13–15],
assessing the risk of sudden cardiac death [16], managing critically ill patients [17], and
predicting cancer patient survival [18,19]. Higher HRV values are typically associated
with good sleep quality and reflect the increased activity of the parasympathetic nervous
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system, which promotes relaxation and reduces heart rate [20]. Conversely, low values may
be indicative of sleep disruptions, potentially caused by factors including alcohol intake,
anxiety, and sleep apnea [21,22].

In athletic populations, HRV can guide training and monitor recovery from exercise
by providing insights into an athlete’s autonomic nervous system and overall readiness to
perform [23–25]. Higher HRV values usually indicate good recovery and resilience, while
lower values may signal fatigue or inadequate recovery [26]. Coaches and athletes use HRV
to periodize training by adjusting the intensity and volume of workouts based on HRV
readings [25]. For instance, lower HRV might suggest reducing training load or focusing
on recovery, whereas higher HRV might support more intense or longer sessions. For the
general population, HRV can also help guide recreational physical activity planning and
monitor overall mental and physical well-being [9].

Findings from this research highlight that a healthy heart is not a metronome; natural
variation influenced by heart–brain interactions exists as our bodies adapt to stress stimuli
of daily life [27]. The oscillations of a healthy heart are complex and non-linear, requiring
advanced mathematical summarizations [28]. Two widely used time-domain metrics for
HRV are derived from the QRS complex in electrocardiographic (ECG) recordings: the
standard deviation of all normal-to-normal (NN) R-R intervals (SDNN), which measures
the variability between heartbeats, and the root mean square of successive differences
between normal heartbeats (RMSSD), which assesses the short-term variability in heart
rate (HR).

The widespread adoption of smartwatches and fitness trackers by the general public
has the potential to significantly enhance personal health monitoring by providing con-
tinuous and non-invasive measurement of various biometric data, including HRV. These
devices use photoplethysmography (PPG) technology to detect blood volume changes in
the wrist, enabling regular HRV assessments without the need for cumbersome equip-
ment [29]. The convenience and accessibility of wearables make them a promising tool
for widespread HRV monitoring, which can provide valuable insights into an individual’s
autonomic nervous system function and overall well-being. Apple Watch, for instance,
uses PPG to calculate HRV through SDNN every two to four hours [29].

However, further research is needed to validate the accuracy of these devices in real-
world settings. A recent umbrella review highlighted that fewer than 5% of consumer
wearable devices have undergone formal validation for the biometric data they capture [30].
The gold standard for HRV measurement, particularly for assessing cardiac risk, is a 12-lead
electrocardiogram (ECG) recorded over a 24-h period, with the results interpreted by an
experienced cardiac physician [6,7]. While chest-worn wearables like the Polar H10 (Polar
Electro Oy, Kempele, Finland) can accurately record HRV using single-lead ECG [31], they
are often impractical for long-term use due to issues related to convenience, comfort, and
user compliance.

Therefore, the aim of this study was to evaluate the validity of HRV measurements
obtained from Apple Watch Series 9 and Ultra 2 by comparing them with the established
reference standard, the Polar H10 chest strap. Specifically, this research sought to assess the
accuracy of these devices in measuring HRV under free-living conditions, where factors
such as daily life stressors, physical activity, and environmental influences may affect
HRV. Additionally, the study aimed to investigate the relationship between resting heart
rate (RHR) and HRV measurements, examining whether discrepancies in RHR impact the
accuracy of HRV data.

2. Materials and Methods
2.1. Study Design

This prospective cohort study validated the HRV measurements recorded by Apple
Watch Series 9 and Ultra 2. Apple Watch measurements were compared with those obtained
from the Polar H10 chest strap paired with the Kubios HRV software, which together served



Sensors 2024, 24, 6220 3 of 10

as the reference standard. Ethical approval was granted by the University College Dublin
Human Research Ethics Committee (LS-23-55) in 15 November 2023.

2.2. Study Population

Participants were recruited through a combination of word of mouth, social media, and
posters distributed across relevant locations, including community centers and university
campuses. Recruitment materials provided detailed information about the study objectives,
procedures, and eligibility criteria to ensure informed participation.

Participants were healthy adults who either owned or were provided with an Apple
Watch Series 9 or Ultra 2 for the duration of the study. Upon expressing interest in par-
ticipation, prospective recruits were informed about the study procedures, and informed
written consent was obtained prior to their participation.

2.3. Measurement Protocol

After providing informed consent, participants completed an onboarding question-
naire to collect baseline demographic data and information on their Apple Watch usage.
They were then familiarized with the use of both Apple Watch and the Polar H10 chest strap,
as well as the experimental protocol. Specifically, each morning upon waking, participants
were instructed to fit their Apple Watch and Polar H10 according to the manufacturer’s
instructions. They simultaneously recorded 5-min HRV readings using both devices. HRV
data from the Polar H10 were captured using the Kubios HRV mobile app, while Apple
Watch data were recorded via the Breathe app on Apple Watch. Measurements were taken
at the same time each morning under consistent, relaxed environmental conditions, with
participants lying supine and keeping still. Following the 5-min HRV measurement, par-
ticipants completed a daily questionnaire (SurveyMonkey Europe UC) and submitted a
screenshot of the Kubios HRV app summary page. Participants were asked to follow this
protocol daily for between 7 and 14 consecutive days.

Apple Watch Series 9 and Ultra 2 were selected for this study as they were the most
recently released models at the time of this trial; they are fitted with Apple’s 3rd generation
optical HR sensor (which they share with Apple Watch Series 10). The Polar H10 chest
strap was chosen as the reference standard because of its validated accuracy for HRV mea-
surement, with strong agreement and minimal bias compared to 12-lead ECG readings [31].
The Kubios HRV mobile app was utilized for its accessibility and widespread use in HRV
analysis, showing excellent reliability and validity in previous studies [32,33].

2.4. Statistical Analysis

The primary outcome variable was the difference in HRV, measured by SDNN, be-
tween Apple Watch and the Polar H10 paired with the Kubios app. To account for repeated
measures (whereby participants contributed multiple observations to the analysis), we em-
ployed Generalized Estimating Equations (GEEs) with an autoregressive (AR(1)) working
correlation matrix, which assumes that the correlation between repeated measurements
decreases as the time between measurements increases. The dependent variable was the
difference in HRV between the two devices, and the key covariate was the difference in
resting heart rate (RHR) between Apple Watch and the Polar H10. An intercept term was
included to estimate the average difference in HRV (SDNN) between the devices.

To assess the accuracy of HRV and RHR measurements, we calculated the mean
absolute percentage error (MAPE) and the mean absolute error (MAE) between Apple
Watch and the Polar H10. MAPE provided a relative measure of the size of the error in
percentage terms, while MAE offered an absolute measure of the differences between the
devices. These metrics were used to quantify the degree of accuracy and to compare the
performance of Apple Watch with the reference standard.

To further assess the agreement between Apple Watch and the Polar H10, we per-
formed a Bland–Altman analysis; we plotted the difference between the HRV measurements
from the two devices against their means, which allowed us to visualize any systematic
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bias and the limits of agreement (LoAs). The mean difference (bias) and the 95% limits of
agreement (calculated as the mean difference ±1.96 times the standard deviation of the
differences) were determined.

To determine if the HRV measurements from Apple Watch were equivalent to those
from the Polar H10, we also conducted an equivalence test within the GEE framework. The
equivalence margin was set at ±10 ms for the difference in HRV, based on prior research
and clinical relevance [34,35]. Equivalence was concluded if the 95% Wald confidence
interval for the mean difference in HRV fell within these bounds. Model fit was evaluated
using the Quasi-Likelihood under Independence Model Criterion (QIC) and the Corrected
QIC (QICC). The significance of the covariate (the RHR difference) was assessed using the
Wald chi-square test, with a significance level set at p < 0.05.

Descriptive statistics were used to summarize and analyze the baseline characteristics
of the study participants, including demographic information, such as age, gender, and
body mass index (BMI). Means and standard deviations (SDs) were calculated for continu-
ous variables, while frequencies and percentages were used for categorical variables.

All analyses were performed using SPSS version 29.

3. Results
3.1. Participant Demographics

A total of 39 participants were included in the study, contributing 316 HRV measure-
ments. The mean age of the participants was 24.6 years (SD = 8.2), with 17 males and
22 females. The mean BMI was 23.65 kg/m2 (SD = 1.97), the mean height was 1.69 m
(SD = 0.34), and the mean weight was 73.08 kg (SD = 10.52).

3.2. Comparison of HRV and Resting Heart Rate Measurements

The mean difference in HRV (SDNN) between Apple Watch and the reference standard
was −8.31 ms (SD = 20.46 ms), with a 95% confidence interval ranging from −11.04 ms to
−5.59 ms. The mean difference in resting heart rate between Apple Watch and the reference
standard was 0.08 bpm (SD = 3.73 bpm), with a 95% confidence interval ranging from
−0.78 bpm to 0.93 bpm.

The MAPE and MAE were calculated to assess the accuracy of Apple Watch compared
to the reference standard. For HRV (SDNN), the MAPE was 28.88% (95% CI: 26.18% to
31.57%) and the MAE was 20.46 ms (95% CI: 18.57 to 22.34 ms). For resting heart rate, the
MAPE was 5.91% (95% CI: 4.78% to 7.03%) and the MAE was 3.73 bpm (95% CI: 2.97 to
4.49 bpm).

These results are summarized in Table 1.

Table 1. Comparison of mean HRV and resting heart rate measurements between Apple Watch and
Polar H10 + Kubios reference standard.

Measurement Kubios Apple Watch Mean Difference MAE MAPE

HRV (SDNN) 85 ms 93.3 ms −8.3 ms (95% CI: −11
to −5.6)

20.5 ms (95% CI: 18.6
to 22.3)

28.9% (95% CI: 26.2%
to 31.6%)

Resting Heart Rate 60.7 bpm 60.7 bpm −0.08 bpm (95% CI:
−0.78 to 0.93)

3.7 bpm (95% CI: 3
to 4.5)

5.9% (95% CI: 4.8%
to 7%)

bpm = beats per minute, HRV = heart rate variability, MAE = mean absolute error, MAPE = mean absolute
percentage error, SDNN = standard deviation of NN intervals.

3.2.1. Bland–Altman Analysis

To further assess the agreement between Apple Watch and the reference standard (Po-
lar H10 and Kubios) for HRV (SDNN) measurements, a Bland–Altman plot was generated.
The plot visually represented the mean difference (bias) and the limits of agreement (LoAs)
between the two devices. This is displayed in Figure 1.



Sensors 2024, 24, 6220 5 of 10

Sensors 2024, 24, x FOR PEER REVIEW 5 of 10 
 

 

Table 1. Comparison of mean HRV and resting heart rate measurements between Apple Watch and 
Polar H10 + Kubios reference standard. 

Measurement Kubios 
Apple 
Watch Mean Difference MAE MAPE 

HRV (SDNN) 85 ms 93.3 ms 
−8.3 ms (95% CI: −11 

to −5.6) 
20.5 ms (95% CI: 

18.6 to 22.3) 
28.9% (95% CI: 
26.2% to 31.6%) 

Resting Heart Rate 60.7 bpm 60.7 bpm −0.08 bpm (95% CI: 
−0.78 to 0.93) 

3.7 bpm (95% CI: 3 
to 4.5) 

5.9% (95% CI: 
4.8% to 7%) 

bpm = beats per minute, HRV = heart rate variability, MAE = mean absolute error, MAPE = mean 
absolute percentage error, SDNN = standard deviation of NN intervals. 

3.2.1. Bland–Altman Analysis 
To further assess the agreement between Apple Watch and the reference standard 

(Polar H10 and Kubios) for HRV (SDNN) measurements, a Bland–Altman plot was gen-
erated. The plot visually represented the mean difference (bias) and the limits of agree-
ment (LoAs) between the two devices. This is displayed in Figure 1. 

 
Figure 1. Bland–Altman plot for HRV (SDNN) measurements 1. 1 The x-axis represents the means of 
the HRV values measured by both devices, while the y-axis shows the differences between the HRV 
measurements (Apple Watch minus Polar H10). The solid black line represents the mean difference 
(bias) of −8.31 ms, indicating that Apple Watch generally underestimates HRV compared to the Polar 
H10. The dashed lines indicate the 95% limits of agreement (LoAs), calculated as the mean difference 
±1.96 times the standard deviation of the differences, which range from −53.8 ms to 37.2 ms. 

3.2.2. Generalized Estimating Equations 
The GEE model revealed a significant intercept for HRV (B = −8.31 ms, 95% CI: 

[−11.04, −5.59], p = 0.025), indicating that, on average, Apple Watch underestimated HRV 
(SDNN) by 8.31 ms compared to the reference standard. The effect of differences in resting 
heart rate on HRV differences was not statistically significant (B = 0.36 ms per bpm, 95% 
CI: [−0.14, 0.85], p = 0.156), suggesting that variations in resting heart rate did not signifi-
cantly impact HRV measurement differences. 

  

Figure 1. Bland–Altman plot for HRV (SDNN) measurements 1. 1 The x-axis represents the means
of the HRV values measured by both devices, while the y-axis shows the differences between the
HRV measurements (Apple Watch minus Polar H10). The solid black line represents the mean
difference (bias) of −8.31 ms, indicating that Apple Watch generally underestimates HRV compared
to the Polar H10. The dashed lines indicate the 95% limits of agreement (LoAs), calculated as the
mean difference ±1.96 times the standard deviation of the differences, which range from −53.8 ms to
37.2 ms.

3.2.2. Generalized Estimating Equations

The GEE model revealed a significant intercept for HRV (B = −8.31 ms, 95% CI:
[−11.04, −5.59], p = 0.025), indicating that, on average, Apple Watch underestimated HRV
(SDNN) by 8.31 ms compared to the reference standard. The effect of differences in resting
heart rate on HRV differences was not statistically significant (B = 0.36 ms per bpm, 95% CI:
[−0.14, 0.85], p = 0.156), suggesting that variations in resting heart rate did not significantly
impact HRV measurement differences.

3.2.3. Equivalence Testing

The equivalence test aimed to determine if the HRV measurements from Apple Watch
were equivalent to those from the Polar H10 and Kubios software (version: 1.5.0) within a
pre-specified margin of ±10 ms. The 95% confidence interval for the mean difference in HRV
(SDNN) was −11.04 ms to −5.59 ms. Since this confidence interval extended beyond the
upper bound of the equivalence margin (10 ms), equivalence could not be concluded. This
result suggests that while Apple Watch’s HRV measurements were generally close to those
of the reference standard, the observed differences exceeded the acceptable equivalence
margin, indicating that Apple Watch’s HRV measurements cannot be considered equivalent
to the reference standard within a meaningful range of ±10 ms.

These findings are summarized in Figure 2.
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4. Discussion

This study validated HRV measurements from Apple Watch Series 9 and Ultra 2
against those recorded by the Polar H10 chest strap paired with the Kubios HRV software,
which served as the reference standard. Our findings indicate that Apple Watch tends
to underestimate HRV (measured using SDNN) by an average of 8.31 ms. Variations in
resting heart rate (RHR) measurements between Apple Watch and the reference standard
did not significantly impact HRV measurement differences, suggesting that the inaccuracies
observed in HRV readings may not be directly related to errors in the PPG-derived heart rate
measurements. Overall, the RHR measurements demonstrated close levels of agreement
(mean difference: −0.1 bpm).

The discrepancies in HRV measurement were consistent with previous research, which
also found a tendency for consumer wearables to underestimate values [36–38]. For
instance, a validation study of six wearable devices found that Apple Watch Series 6
underestimated HRV by an average of 9.6 ms [38]. Although these authors invited the
device manufacturers to provide raw data to enhance the precision of the comparisons, not
all accepted, and this may have led to unfavorable comparisons between certain devices.
Raw data were also used for HRV calculations in a separate study [37], and while this
approach provided an explicit assessment of the RR intervals captured by Apple Watch, it
did not directly evaluate the native HRV values from the device, as the proprietary software
was not used for their calculation. This distinction emphasizes the need for validation
studies that compare not only raw data outputs but also the performance of algorithms
used by consumer wearables which generate the values presented to end users.

For this reason, we considered it important to control for the accuracy of the under-
lying RHR readings in our GEE analysis. While the effect of differences in RHR on HRV
differences was not statistically significant and a low mean difference was found, the mean
absolute and mean average percentage errors were larger. This variance may be indicative
of outliers among the data or larger deviations in certain individual comparisons. Although
inaccurate reporting of measurements by participants is one potential source of this de-
viation, even small discrepancies in the RHR measurements recorded by Apple Watch
could potentially impact HRV readings, given that the metric relies on millisecond-level
accuracy. However, the strong overall agreement between RHR measurements reinforces
the reliability of the device in capturing heart rate data.
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To determine the utility of Apple Watch’s readings, given the observed discrepancies,
the clinical relevance of its short-term SDNN HRV measurements requires further consid-
eration. SDNN is regarded as the gold standard for medical stratification of cardiac risk
when measured over a 24-h period [7]. LF band power makes a significant contribution to
such recordings, and these longer measurements provide data about cardiac reactions to a
greater range of environmental stimuli when compared to shorter-term measurements [6].
Based on 24-h recording, patients with SDNN values over 100 ms demonstrate a lower
risk of mortality, whereas individuals with values below 50 ms may have compromised
health [39]. However, resting values obtained from short-duration measurement correlate
poorly with 24-h indices, and their physiological meanings may differ [40]. Although
small changes in HRV within the range of 5−10 ms may be meaningful in specific clinical
contexts, such differences may be less impactful for general health monitoring, and given
the marked inter-individual variation that exists for HRV measurement [41], it is difficult
to establish specific thresholds for clinically important changes. The practical implication
is that while Apple Watch may provide valuable insights for trend analysis or relative
changes in HRV over time, caution should be exercised when interpreting absolute HRV
values for clinical decision making. Whether short-term SDNN is the most appropriate
measure of HRV, particularly when assessed using consumer wearables like the Apple
Watch (compared to other metrics such as RMSSD), remains a topic of ongoing debate.
Further research is needed to fully determine its reliability and relevance across both clinical
and non-clinical settings.

One of the primary challenges in wearable technology research is conducting agile
validation studies that can keep pace with the rapidly evolving commercial ecosystem
and the annual release cycle of devices like Apple Watch. This is exemplified by the
findings of a recent umbrella review highlighting that most consumer wearables have
been replaced by newer models by the time validation research assessing their accuracy is
published, and that <5% of devices released to data have been validated [30]. Our protocol
was designed with this challenge in mind, emphasizing the practical application of HRV
measurement in free-living conditions over a two-week period. This approach contrasts
with the more controlled environments of laboratory-based HRV validation studies, which
may not fully capture the variability and real-world conditions in which these devices
are typically used. Home-based morning measurements offer several advantages. They
are less burdensome for participants, replicating the everyday context in which wearable
data are most often collected, thereby enhancing the ecological validity of our findings.
This practical and accessible protocol also makes it easier to implement and ensures that
measurements are taken in an idealized at “rest” physiological state, reducing potential
biases introduced by the stress or discomfort that can accompany laboratory visits [42,43].
By capturing HRV data in a naturalistic setting, we designed this study to reflect the
true utility and performance of wearable devices like Apple Watch in daily life while also
addressing the need for more flexible and responsive research methodologies in this rapidly
advancing field.

The benefits of this approach are important, but they are accompanied by several
limitations. First, while opportunistic, real-world data capture is less burdensome for
participants, it is also unsupervised and uncontrolled; this ‘citizen science’ approach has
the potential to introduce error and deviation from the intended protocol in the absence
of oversight from the research team. To tackle this, all participants were thoroughly famil-
iarized with the protocol in advance of data collection and were sent regular reminders to
complete the protocol each morning. Second, the two-week protocol may not fully capture
long-term variations in HRV or changes across different contexts, such as varying levels
of physical activity, stress, or a complete menstrual cycle. Lastly, a relatively small conve-
nience sample consisting of predominantly young, healthy adults was recruited. This limits
the extrapolation of our findings to older adults or those with varying health conditions.
Studies with more diverse populations would facilitate an improved understanding of
Apple Watch’s HRV measurement accuracy.
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5. Conclusions

This study demonstrated that while Apple Watch Series 9 and Ultra 2 tend to underes-
timate HRV compared to the Polar H10 chest strap, a well-established reference standard,
they nonetheless provide a relatively accurate measure of resting heart rate. Despite the
observed discrepancies, which suggest that further refinement is needed to achieve clinical-
level accuracy in HRV measurements, our study’s ecological validity and robust statistical
approach offer valuable insights into the potential and current limitations of consumer-
grade wearables for HRV monitoring. Future research should focus on improving data
accuracy, extending data collection periods, and including more diverse populations to
enhance the generalizability and clinical applicability of HRV data obtained from wear-
able devices. As wearable technology continues to evolve, these improvements will help
to bridge the gap between consumer-grade devices and clinical standards, ultimately
enhancing their utility in both personal health management and clinical practice.
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