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Abstract: In modern cloud environments, container orchestration tools are essential for effectively
managing diverse workloads and services, and Kubernetes has become the de facto standard tool for
automating the deployment, scaling, and operation of containerized applications. While Kubernetes
plays an important role in optimizing and managing the deployment of diverse services and applications,
its default scheduling approach, which is not optimized for all types of workloads, can often result
in poor performance and wasted resources. This is particularly true in environments with complex
interactions between services, such as microservice architectures. The traditional Kubernetes scheduler
makes scheduling decisions based on CPU and memory usage, but the limitation of this arrangement
is that it does not fully account for the performance and resource efficiency of the application. As a
result, the communication latency between services increases, and the overall system performance
suffers. Therefore, a more sophisticated and adaptive scheduling method is required. In this work,
we propose an adaptive pod placement optimization technique using multi-tier inspection to address
these issues. The proposed technique collects and analyzes multi-tier data to improve application
performance and resource efficiency, which are overlooked by the default Kubernetes scheduler. It
derives optimal placements based on the coupling and dependencies between pods, resulting in more
efficient resource usage and better performance. To validate the performance of the proposed method,
we configured a Kubernetes cluster in a virtualized environment and conducted experiments using
a benchmark application with a microservice architecture. The experimental results show that the
proposed method outperforms the existing Kubernetes scheduler, reducing the average response time
by up to 11.5% and increasing the number of requests processed per second by up to 10.04%. This
indicates that the proposed method minimizes the inter-pod communication delay and improves the
system-wide resource utilization. This research aims to optimize application performance and increase
resource efficiency in cloud-native environments, and the proposed technique can be applied to different
cloud environments and workloads in the future to provide more generalized optimizations. This is
expected to contribute to increasing the operational efficiency of cloud infrastructure and improving the
quality of service.

Keywords: microservice architecture; container orchestration; kubernetes; inspection;
system optimization

1. Introduction

Cloud systems continue to grow, with the global cloud computing market projected to
reach USD 678.8 billion by 2024 [1]. This growth is a reflection of the widespread adoption
of cloud systems across various industries, as well as the implementation of container
technology, which is a key component in building cloud systems. Containers leverage the
isolation features of modern operating systems, minimizing resource usage and enhancing
deployment flexibility. Microservice architecture, which encapsulates various services
within an application in separate containers and deploys them across physical or virtual
machine clusters, has become more popular due to its efficiency and flexibility. Many cloud
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service providers now offer containers-as-a-service (CaaS), simplifying the deployment of
containerized applications in the cloud [2]. The growing number of enterprises seeking
to avoid vendor lock-in and capitalize on container portability between environments has
led to a surge in CaaS adoption. CaaS platforms typically handle authentication, logging,
security, monitoring, networking, load balancing, auto-scaling, and continuous integra-
tion/continuous delivery (CI/CD). The Cloud Native Computing Foundation (CNCF) [3]
defines cloud-native as a new computing paradigm that builds applications using mi-
croservice architecture, packages them in containers, and dynamically manages them with
orchestrators. Google has operated large-scale container systems for commercial use for a
long time. Despite the benefits of cloud computing, the lack of a suitable orchestrator led
Google to develop its own solution, despite containerizing all services. In 2014, Google in-
troduced Kubernetes, an open-source container orchestration tool evolved from its previous
systems, Borg and Omega [4,5].

Kubernetes automates many tasks traditionally handled by system administrators,
including infrastructure optimization, failover procedures, centralized logging, and monitor-
ing. Additional functions and third-party applications developed through the Kubernetes
API further enhance the essential features of Kubernetes, such as load balancing and auto-
scaling. Kubernetes manages groups of one or more containers, called pods, handling
deployment and resource control directly. However, Kubernetes’ default scheduler does
not consider the coupling and dependencies of the containers, which can lead to inefficient
resource usage and degraded performance in complex architectures [6]. To address these
challenges, this paper proposes the Opportunistic Optimization Scheme for Pod Deployment
(OOSP), a novel technique that optimizes pod placement by analyzing multi-layer data
related to pod coupling and dependencies. By analyzing communication patterns between
pods, the OOSP method reduces network latency by strategically placing frequently interact-
ing pods on the same or nearby nodes, enhancing communication efficiency. Additionally,
OOSP accounts for resource usage patterns by prioritizing resource-intensive pods, ensuring
optimal allocation of CPU and memory across the cluster.

Experiments conducted in a virtualized Kubernetes environment using a microservice
architecture benchmark application demonstrated significant performance improvements.
Compared to the default Kubernetes scheduler, the proposed OOSP method reduced the
average response time by 11.5% and increased the requests per second by 10.04%. These
results indicate that the data-driven approach of OOSP minimizes communication delays
between pods and improves overall system resource utilization. This research contributes
a practical solution for optimizing performance and resource efficiency in cloud-native
environments, addressing limitations in current Kubernetes scheduling strategies. We can
generalize the OOSP approach to various cloud environments and workloads, providing a
pathway for future research in container orchestration optimization.

This paper’s structure is as follows: Section 2 reviews the background and related
work. Section 3 details the model design and implementation of the opportunistic pod
placement optimization technique through system multi-layer inspection. Section 4 evalu-
ates the proposed model’s performance by applying the algorithm to pod placement in a
microservice architecture application. Section 5 examines potential malicious activities that
could exploit the proposed optimization technique. Finally, Section 6 concludes the paper
and discusses future research directions.

2. Related Work

This section reviews existing research on container scheduling, both general and
Kubernetes-specific, highlighting their limitations and the distinctions of the system pro-
posed in this paper.

2.1. Research on Container Scheduling

Wydrowski et al. [7] introduced Prequal, a novel load balancing approach for distributed
multi-tenant systems. Unlike traditional methods focused on CPU load distribution, Prequal
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dynamically adapts to server heterogeneity and variable loads to minimize real-time request
latency. It uses a probing mechanism to gather and process real-time server data, emphasiz-
ing Requests-in-flight (RIF) and response time. Deployed across various Google services,
including YouTube, Prequal demonstrated significant improvements in latency, error rates,
and resource utilization, proving more effective than traditional CPU-centric load balanc-
ing. However, Prequal’s asynchronous probing mechanism can lead to increased overhead
with a higher number of probes, posing challenges in environments with limited CPU
and network resources. Additionally, achieving optimal performance requires fine-tuning
multiple parameters, which, if misconfigured, can degrade performance.

Safaryan et al. [8] proposed SLAM, a memory optimization method for serverless ap-
plications, focusing on Service Level Objectives (SLOs). SLAM aims to balance cost and
performance by optimizing memory settings in a serverless computing environment. Unlike
previous studies, which focused on cost optimization and SLO compliance for individual
Function-as-a-Service (FaaS) functions, SLAM addresses multiple FaaS functions within com-
plex application workflows. By employing distributed tracing, SLAM identifies relationships
between FaaS functions and estimates execution times based on memory configurations to
determine optimal settings. Experiments on AWS Lambda with four applications showed
that SLAM’s configurations ensured over 95% of requests met predefined SLOs. However,
increased the complexity in serverless applications can lead to tracing and modeling over-
heads, with large data volumes extending analysis time. Additionally, SLAM’s optimization
algorithm may not fully account for interactions between memory configurations, potentially
yielding lower performance improvements than expected in real applications.

Saidi et al. [9] discussed task scheduling and container deployment on physical nodes
in cloud computing environments. Emphasizing the importance of optimizing task schedul-
ing and container placement to enhance energy efficiency and overall system performance,
the authors conducted a literature review from 2016 to 2023. They concluded that devel-
oping new scheduling algorithms capable of dynamically adapting to fluctuating cloud
systems and efficiently handling requirements is essential.

Lavanya and Priya [10] proposed a multi-objective container scheduling and resource
allocation approach using the Tuna Swarm Optimization (TSO) algorithm. The TSO algo-
rithm, inspired by the swarm behavior of tuna fish in nature, is a metaheuristic algorithm
specifically designed to optimize multiple objectives simultaneously. Container cloud
environments, which require effective balance in resource allocation and task scheduling,
particularly benefit from this approach. By using TSO, Lavanya and Priya were able to
significantly reduce resource imbalances and improve response times. The algorithm simul-
taneously optimizes multiple objectives, including CPU and memory usage, and ensures
the efficient deployment of containers to meet workload demands.

Zheng et al. [11] presented the GAIPPTSC method to address the orchestration and
scheduling of containerized applications. The suggested solution employs a hybrid method-
ology that integrates a genetic algorithm (GA) with the Iterative Priority-based Preemptive
Task Scheduling and Clustering (IPPTSC) algorithm. GAIPPTSC aims to minimize the
execution duration of container tasks and decrease energy usage. Experimental findings
indicate that GAIPPTSC realizes an average reduction in execution time of 24.7% and a
decrease in energy usage of 53.6% relative to conventional container scheduling meth-
ods. Nonetheless, it may result in elevated communication expenses, and the algorithm’s
execution duration can escalate by around fivefold relative to conventional methods.

Tang et al. [12] presented the Resource Overbooking and Container Scheduling (ROCS)
algorithm to concurrently optimize resource overbooking and container scheduling in edge
computing. ROCS employs a Soft Actor–Critic (SAC) reinforcement learning framework to
enhance resource utilization while reducing the likelihood of errors related to container pre-
emption and evictions. The proposed technique persistently evaluates the resource status
of each edge node while simultaneously optimizing resource overbooking and scheduling
decisions to improve the long-term profitability for cloud service providers. Experimental
results demonstrate that ROCS improves resource utilization (CPU, memory, network band-
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width) by up to 75% and reduces the risk of overbooking compared to existing methods.
Nonetheless, there exists a possibility of resource saturation resulting in container eviction,
and the reinforcement-learning-based methodology may need substantial computational
resources. Moreover, as the algorithm requires training time and data to adapt to new
conditions, it may be unable to respond to sudden changes.

The algorithms in the previous studies mentioned above often focus on improving
metrics such as memory and CPU utilization and focus on resource efficiency. The proposed
OOSP technique is an algorithm that quantifies communication frequency and memory
variation by jobs, then optimizing container placement based on the computed coupling
and dependencies. OOSP aims to enhance resource efficiency and performance by assessing
data across several layers and analyzing communication patterns and resource utilization
among pods to facilitate optimal pod placement on nodes. In contrast to conventional
scheduling algorithms that prioritize resource use, OOSP offers advanced placement tactics
by taking into account the interactions across pods to determine optimal placement.

2.2. Research on Kubernetes Scheduling

Jung et al. [13] proposed a container orchestration placement technique to support
the loose coupling of microservices. This study aims to improve performance by reflecting
the characteristics of microservices when deployed in container orchestration frameworks.
Utilizing frameworks like Kubernetes and Docker, the researchers presented a placement
specification that considers the interconnectivity of microservices, enhancing performance,
and reducing response latency. The study specifically designed the microservices archi-
tecture based on the Boundary-Control-Entity (BCE) pattern and incorporated this into
Kubernetes deployment templates to maximize loose coupling characteristics. The results
demonstrated the effectiveness of this approach in improving performance. However, the
proposed technique’s reliance on extended templates to reflect specific microservice traits
can increase complexity, requiring additional setup and management.

Goyal et al. (2021) [14] introduced a framework based on the Whale Optimization
Algorithm (WOA) to optimize energy-resource allocation in cloud environments. This
framework addresses the limitations of existing algorithms in balancing load, scheduling
resources, and achieving energy efficiency. The researchers compared various optimization
algorithms (PSO, CSO, BAT, CSA) and found that WOA significantly improved energy
efficiency. In experiments, WOA outperformed other algorithms, demonstrating 0 ms
response times and lower energy consumption (4536 J with seven servers and 8165.603 J
with eight servers). Despite its superior performance in response time, energy consumption,
execution time, and throughput, WOA’s computational complexity can increase in large-
scale cloud environments, necessitating additional computational resources.

In Kubernetes, Ding et al. [15] proposed a method for microservice placement through
dynamic resource allocation. This approach addresses the shortcomings of existing Ku-
bernetes placement algorithms in managing dynamic resource contention and shared
dependencies among microservice instances. The researchers created an integer nonlinear
programming model for microservice placement. They wanted to keep costs as low as
possible by figuring out how available each instance is and taking into account the total
demand for resources when there is resource contention. They applied an improved
genetic algorithm to this model. Experimental results showed higher throughput at the
same cost. However, because genetic algorithms are so complicated, they might need
more resources in large-scale cloud environments. And when there is a lot of dynamic
contention, giving too many resources to the problem could slow it down.

Rossi et al. [16] proposed me-kube, a hierarchical scaling solution for Kubernetes-
based microservice applications. Traditional horizontal scaling in Kubernetes uses system-
oriented metrics like CPU utilization, which is inadequate for latency-sensitive applications.
Me-kube introduces a hierarchical architecture where a central application manager co-
ordinates subordinate microservice managers, allowing local control over microservice
elasticity. To optimize performance, this approach employs pre- and post-hierarchical
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control policies based on queue theory. Experiments indicated that me-kube outperforms
the default Kubernetes auto-scaler in response time and resource utilization. However, this
hierarchical approach can create bottlenecks in central components, complicating manage-
ment and scalability, especially in large systems. Additionally, designing and implementing
the hierarchical architecture adds complexity.

Lai et al. [17] introduced a new scheduling algorithm known as Delay-Aware Container
Scheduling (DACS), specifically designed to minimize latency in edge computing environ-
ments. DACS assesses applications’ latency sensitivity and calculates an acceptable delay
range for each workload. The algorithm continuously monitors the real-time status of edge
nodes, dynamically selecting the optimal node for container placement based on latency
and node heterogeneity. By dynamically adjusting the scheduling decisions as network
and node conditions change, DACS achieves significant reductions in latency when com-
pared to the default Kubernetes scheduler. It is particularly effective for latency-sensitive
applications, such as video streaming and real-time data processing, where even slight
improvements in response time can lead to substantial performance gains.

In conclusion, while current research on container and Kubernetes scheduling ad-
dresses specific issues with distinct methodologies, challenges such as setup complexity,
numerous parameters, overhead, and resource limitations persist in practical applica-
tions. Therefore, we need simpler, workload-specific container and Kubernetes scheduling
techniques that we can directly apply to real workloads with minimal overhead.

As shown in Table 1, we can see that resource utilization and system performance can
be improved simultaneously by considering the coupling and dependencies between pods,
which have not been the main focus of previous studies. While existing methods focus
on a single aspect, our proposed OOSP takes a multi-layered approach to achieve a more
comprehensive optimization.

Table 1. Analysis of existing Service Scheduling research results.

Research Purpose Algorithms Performance

[8] Memory
Optimisation

SLO-aware
Techniques Optimise memory usage

[9] Job Scheduling and VM
Placement

- Speed up task processing

[10] Container cloud resource allocation
and scheduling

Tuna Swarm
Optimization (TSO)

Reduce resource imbalance and improve
response time

[11] Container Tasks
Scheduling

GA (Genetic Algorithm) + IPPTSC Reduced execution time and energy

[12]
Resource
Overbooking and Container
Scheduling

SAC Reinforcement
Learning

Increased resource utilization, reduced
eviction risk

[13] Deploying
Microservices

- Improve scalability and maintainability

[14] Energy-Resource
Allocation

Whale
Optimisation
Algorithm

Increase energy efficiency

[15] Deploying
Microservices

Dynamic Resource
Allocation Algorithms Increased resource utilisation

[16] Scaling
Microservices

Hierarchical
Scaling

Efficient scaling

[17] Optimize container placement based ondelay
sensitivity

DACS (Delay-Aware
Container Scheduling)

Reduce latency and improve real-time
application performance

[18] Scheduling deep learning jobs Intelligent Resource
Estimation

Improved performance and increased
network efficiency

OOSP Optimising
Pod Placement

Multilayer Data
Analytics

Reduced response times and
increased throughput

3. Model Design and Implementation

This section describes the design and implementation of the proposed opportunistic
pod placement optimization system using multi-layer data sensing. It first examines
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the placement model and overall system architecture, followed by the workflow within
each structure.

3.1. Overview of the Pod Placement Optimization Model

Designing a perfect container scheduling algorithm remains an unresolved issue,
with many studies attempting various approaches to address its limitations. However,
most research encounters practical application challenges and does not directly implement
scheduling within Kubernetes [19].

Often, when designing and deploying applications using Kubernetes, the default
scheduler and placement solutions fail to align with the characteristics of the running work-
loads or have low resource utilization for deployment [18]. Additionally, administrators
manually specifying resource requirements may result in inaccurate settings, negatively
impacting the entire cluster and leading to various human errors. To address these is-
sues, administrators adjust the Kubernetes scheduler to suit operational service objectives,
typically focusing on three main goals [20]:

• The optimization of workload performance.
• The optimization of resource utilization within the cluster.
• The reduction ion negative environmental impacts.

The proposed system in this paper focuses on optimizing workload performance among
these three main goals. It implements scheduling that considers avoiding increased latency
due to placing frequently communicating pods on distant nodes. The system identifies
and assesses the coupling and dependencies of pods, recommending and applying pod
placements to minimize human error resulting from inaccurate administrator settings.

The overall system architecture is shown in Figure 1. This system follows the basic
architecture of Kubernetes, consisting of a master node with the Kubernetes Control-plane
and worker nodes for pod deployment. Additionally, a sensing node is designed to collect
multi-layer data from workloads without interfering with the performance of Worker
nodes while still being managed within the same cluster using the Kubernetes API from
the Master node.

Figure 1. Overall system architecture.

3.2. Pod Placement Optimization Model Workflow

The workflow of the OOSP proposed in this paper is shown in Figure 2. First,
the existing workload of the application is executed in the Run Workload module to
identify what the service is doing in the state and which pods are used to perform the
actions. Based on the information of the identified pods, the Data Collection module
logs and extracts workload data at the cluster level and application level, which belongs
to the Data Collection module, and preprocesses and parses them to the Data Analysis
module to derive the coupling and dependency between pods. The Scheduling module
suggests pod placement to the administrator based on the number of nodes to place the
pods and the data derived, and the Orchestration module allows the administrator to
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perform orchestration by modifying the YAML file that deployed the existing workload
in reference to the proposed pod placement [21]. YAML is a human-readable data
serialization language used to write configuration files for infrastructure configuration
and management.

Figure 2. Overall System process flow.

3.3. System Architecture for Multi-Layer Data Sensing and Collection

The sensing node performs data collection at both the cluster level and application
level within the Data Collection module to optimize pod placement. To ensure data are
captured simultaneously, the cluster level and application level operate together. Each
module collects data as follows.

3.3.1. Cluster Level Data Sensing and Collection

The cluster level in the Data Collection module collects workload data, as shown
in Figure 3. When scanning at the Cluster Level, queries are sent to Prometheus using
the Kubernetes API to collect data. Prometheus detects and gathers data about workload
services. Identified pods are monitored for individual metrics using Node Exporter Dae-
monsets for node state and performance metrics and cAdvisor functionality for container
metrics. We aggregate all collected metrics back to Prometheus and then send them to the
Sensing node via the Kubernetes API, where we store them as cluster.log data.

Figure 3. Cluster Level data collection structure.
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3.3.2. Application Level Data Sensing and Collection

As shown in Figure 4, the application level in the Data Collection module collects
workload data. When scanning at the application level, the Kubernetes API identifies
the pods used by the service, and Tcpdump captures network traffic between pods. The
Kubernetes API saves the captured traffic in pcap format and sends it to the Sensing node.
We preprocess the saved pcap files to filter method calls invoked in the workload between
nodes and store the resulting data as application.log.

Figure 4. Application Level data collection structure.

3.4. System Architecture for Multi-Layer Data Analysis

Based on the collected data, the Data Analysis module performs analyses to optimize
pod placement. The objective is to derive the coupling and dependencies between pods
using application.log and cluster.log.

3.4.1. Inferring Coupling Through Multi-Layer Data Analysis

Analysis of application.log, which contains preprocessed network traffic logs captured
between pods, quantifies coupling between pods. Figure 5 shows the process flow for deriv-
ing coupling from application.log. The log data include timestamps, source IPs, destination
IPs, HTTP response codes, HTTP methods, and brief packet contents. Kubernetes maps
source and destination IPs to pod information to identify pod communication and count
occurrences. Coupling is defined by the frequency of communication between pods during
workload execution, with higher communication frequency indicating stronger coupling.
We save the analyzed coupling data as a CSV file and visualize it to provide an intuitive
understanding of workload coupling patterns.

Figure 5. Cohesion Inference Process Flowchart.
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3.4.2. Inferring Dependencies Through Multi-Layer Data Analysis

We quantify dependencies between pods by analyzing cluster.log, which records
memory usage logs for each pod during workload execution. Figure 6 shows the process
flow for extracting dependencies from cluster.log. The log data include timestamps, pod
names, nodes to which the pods belong, and memory usage. We rank pods based on their
memory change rates by analyzing memory usage changes during workload execution. We
prioritize pods with the highest memory change rates, assuming they can handle the most
processing within the workload. We calculate dependency scores by summing the priority
scores for each pair of pods, and then save the analyzed dependency data as a CSV file.

Figure 6. Dependency inference process flowchart.

3.5. Pod Placement Optimization Algorithms

Based on the Data Analysis module’s results, this section presents the pod placement
optimization algorithms using multi-layer data sensing proposed in this paper.

3.5.1. Pod Placement Optimization Algorithm Using Coupling

Algorithm 1 describes the algorithm for optimizing pod placement based on the
coupling between pods. First, step 1 determines the coupling degree. It is calculated based
on the frequency of communication between pods. The coupling represents a value for
how often pods communicate with each other. After the administrator enters the number
of nodes to place, the function retrieves the coupling data from the CSV file and sorts them
in descending order. Step 2 is to set a threshold value. Pods whose coupling value exceeds
the calculated threshold (the average of all non-zero communication frequencies between
pods) are considered strongly coupled and added to the list. Step 3 groups the pods. Pairs
of pods that are measured to be strongly coupled are added to the list and sorted in order
of coupling. We sequentially place the sorted pods from step 3 on nodes, rotating the
excess pods between them. During this process, if we place a strongly coupled pod on a
different node, we relocate it to the same node, prioritizing nodes with fewer pods. We
calculate the coupling threshold by averaging all non-zero values in the data structure. This
algorithm produces an optimal placement of pods based on the number of nodes specified
by the administrator.
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Algorithm 1 Suggest optimal pod placement using coupling

Require: DataFrame d f _counts, List of Nodes nodes, Mean Threshold mean_threshold
Ensure: Optimal Pod Placement placement

1: sorted_pods← Sort pods by total communication count in descending order
2: for each pod1 in d f _counts.index do
3: for each pod2 in d f _counts.columns do
4: if pod1 ̸= pod2 and d f _counts[pod1, pod2] > mean_threshold then
5: Append (pod1, pod2, d f _counts[pod1, pod2]) to pod_coupling
6: end if
7: end for
8: end for
9: Sort pod_coupling by communication count in descending order

10: for each i, pod in sorted_pods_coupling do
11: node← nodes[i%len(nodes)]
12: Append pod to placement[node]
13: end for
14: for each (pod1, pod2, count) in pod_coupling do
15: node1← Node containing pod1 in placement
16: node2← Node containing pod2 in placement
17: if node1 ̸= node2 then
18: if len(placement[node1]) < len(placement[node2]) then
19: Move pod2 to node1
20: Remove pod2 from node2
21: else
22: Move pod1 to node2
23: Remove pod1 from node1
24: end if
25: end if
26: end for
27: return placement

3.5.2. Pod Placement Optimization Algorithm Using Coupling and Dependencies

The algorithm for optimizing pod placement using both coupling and dependencies
inferred from memory usage changes is shown in Algorithm 2. The administrator inputs
the number of nodes, and the function references the coupling and dependency CSV files,
normalizing the values between 0 and 1. Weighted values are applied to these normalized
data to create a new data structure, with the sum of weights equaling 1. The weights can
be adjusted by the administrator based on the importance of communication efficiency,
assigning a higher weight to coupling, or memory efficiency, assigning a higher weight to
dependencies. Pods are sorted by their coupling values, with strongly coupled pod pairs
added to dependency groups, which are also sorted. Pods are then placed on nodes in
sequence, with excess pods being circulated among nodes. If dependent pod pairs are
placed on different nodes, they are relocated to nodes with fewer pods. This algorithm
returns an optimized pod placement that considers both coupling and dependencies,
reducing communication latency and enhancing overall system performance.
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Algorithm 2 Suggest optimal pod placement using coupling and dependency

Require: DataFrame counts_d f , DataFrame dep_d f , List of Nodes nodes, Mean Threshold
mean_threshold, Weight X, Weight Y

Ensure: Optimal Pod Placement placement
1: norm_counts_d f ← counts_d f /counts_d f .values.max()
2: norm_dep_d f ← dep_d f /dep_d f .values.max()
3: combined_d f ← X× norm_counts_d f + Y× norm_dep_d f
4: sorted_pods ← Sort pods by total communication and coupling count in descending

order
5: for each pod1 in combined_d f .index do
6: for each pod2 in combined_d f .columns do
7: if pod1 ̸= pod2 and combined_d f .at[pod1, pod2] > mean_threshold then
8: Append (pod1, pod2, combined_d f .at[pod1, pod2]) to pod_dependencies
9: end if

10: end for
11: end for
12: Sort pod_coupling by combined count in descending order
13: for each i, pod in enumerate(sorted_pods) do
14: node← nodes[i%len(nodes)]
15: Append pod to placement[node]
16: end for
17: for each (pod1, pod2, count) in pod_coupling do
18: node1← Node containing pod1 in placement
19: node2← Node containing pod2 in placement
20: if node1 ̸= node2 then
21: if len(placement[node1]) < len(placement[node2]) then
22: Move pod2 to node1
23: Remove pod2 from node2
24: else
25: Move pod1 to node2
26: Remove pod1 from node1
27: end if
28: end if
29: end for
30: return placement

3.5.3. Threshold Calculation Algorithm for Pod Placement Optimization

In Algorithm 3, the algorithm for calculating the threshold used in the pod placement
optimization algorithms is shown. Algorithm 3 computes the threshold by averaging all
non-zero values in the data structure. The algorithm flattens the data structure into an
array, filters out zero values, and calculates the average of the remaining values. The pod
placement optimization algorithms then evaluate coupling and dependencies using this
calculated average threshold. Using an average threshold provides a balanced and adaptive
mechanism for determining which pods should be prioritized for optimized placement in
a dynamic Kubernetes environment, with a balanced degree of coupling and reliance on
the data collected.

Algorithm 3 Calculate mean threshold

Require: DataFrame d f _counts
Ensure: Mean Threshold mean_threshold

1: all_counts← d f _counts.values. f latten()
2: non_zero_counts← all_counts[all_counts > 0]
3: mean_threshold← 1

n ∑n
i=1 xi for xi ∈ non_zero_counts

4: return mean_threshold
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4. Experiments and Performance Evaluation

This section evaluates the performance of the proposed model. We implemented
the model on nodes deployed with Kubernetes in a virtualized environment, managing
each node as a single cluster. We used Linux as the operating system and conducted the
performance evaluation using a web application with a microservice architecture.

4.1. Evaluation Metrics

Average response time: The proposed model aims to improve performance by opti-
mizing the pod placement of applications deployed on Kubernetes. Average response time
measures the time taken for the application to complete a user’s request. This metric helps
determine if the new pod placement reduces latency and enhances the user experience.
The speed of processing users’ requests is a crucial performance metric in a cloud-native
environment. The average response time directly reflects the user experience and mea-
sures how fast the system processes requests with the given resources. This was directly
related to the goal of the proposed technique to reduce response time by reducing inter-pod
communication latency and optimizing resource utilization.

Requests per second (Requests/s): This metric indicates the number of requests the
system or server can handle per second. The experiment’s web application processes
requests like loading web pages and making API calls. This metric demonstrates whether
the proposed model’s pod placement changes improve processing capabilities and handle
high traffic volumes more effectively. We believe that the number of requests a system can
process in a given amount of time is an important metric for evaluating a system’s process-
ing power. By increasing the number of requests per second, we can see how the proposed
technique contributes to maximizing cluster resource utilization and increasing throughput.

4.2. Experimental Setup

Table 2 describes the experimental setup for evaluating the performance of the pro-
posed model. We deployed Docker on each node to leverage the container system. The
Kubernetes control plane was hosted on the Master node, while Kubernetes clients were
installed on the Worker and Sensing nodes, forming a managed cluster.

Table 2. Experimental system environment.

Master Node

CPU Cores 8

Memory 16 GB

Operating System Ubuntu 20.04.6 LTS

Docker version 26.0.0

Kubernetes version 1.28.8

Worker, Sensing Node

CPU Cores 4

Memory 4 GB

Operating System Ubuntu 20.04.6 LTS

Docker version 26.0.0

Kubernetes version 1.28.8

4.2.1. Benchmark Applications

To evaluate the model, we selected Teastore [22], an e-commerce platform developed
to study microservice operations. Teastore is a representative benchmark application based
on a microservice architecture. Figure 7 illustrates the architecture of Teastore.
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Figure 7. Teastore architecture.

Our research goals focus on optimizing performance and improving resource efficiency.
Response time and throughput are the most appropriate metrics to evaluate our goals.
These metrics provide a snapshot of the overall resource utilization and performance of
the system.

Robot-shop [23] was also selected for evaluation. It is an online application for selling
robots, consisting of 12 microservices. The architecture of Robot-shop is shown in Figure 8.

Figure 8. Robot-shop.

To simulate actual workloads of microservices, we used the Locust [24] load testing
tool. Locust allows administrators to write and execute load tests, simulating user behavior.
The Locust script for the experiment involves users visiting the shop page, logging in with
a random username, browsing, adding items to the cart, making purchases, and visiting
the profile page to log out. We repeat this sequence to generate the load.

To simulate actual workloads of microservices, we used the ApacheBench [25] bench-
marking tool. ApacheBench is a widely used web service benchmarking tool that measures
the performance of HTTP servers. The tool can generate significant load by sending nu-
merous requests to a web server, thereby simulating high traffic. For our experiment,
ApacheBench was configured to send a series of HTTP requests to the Teastore and Robot-
shop application, measuring metrics such as the number of requests per second, the time
per request, and the transfer rate. This setup allowed us to assess the system’s performance
under varying levels of load and identify potential bottlenecks.

4.2.2. Experimental Configuration

The experimental configuration for evaluating the proposed model’s performance in-
volves deploying application pods on Worker nodes from the Master node using Kubernetes’
default scheduler. Figure 9 illustrates the deployment of the Teastore application on Worker
nodes using the default Kubernetes scheduler. We excluded policies like NodeSelector or
NodeAffinity and deployed pods using YAML files with default configurations. To gather
actual workload data, the Locust load testing tool was used to simulate five virtual users
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operating for one minute. Simultaneously, the Data Collection module performed scans at
both the cluster level and the application level.

Figure 9. Example of pod placement using a Kubernetes scheduler.

The administrator then calculated the coupling and dependencies to determine the
pod placement. The administrator manually applied the placement recommendations of
the proposed model to the YAML files for orchestration. In the experiment, the weights
for Algorithm 2 were set to 0.3 for coupling (X) and 0.7 for dependency (Y), assuming a
workload prioritizing memory efficiency.

4.3. Experimental Results and Performance Evaluation

This section compares the performance of the proposed pod placement algorithms
using the Teastore and Robot-shop applications. The scenarios include Native, which uses
only Worker nodes without Kubernetes; Kubernetes, which uses Kubernetes’ default
scheduler; Count Coupling, which applies Algorithm 1 from this study; and Resource
Opportunistic, which applies Algorithm 2 from this study. To evaluate the proposed model,
we measured the average response time and requests per second for each pod placement
scenario using a load tester simulating the behavior of five virtual users over two minutes.

4.3.1. Pod Placement Changes by Algorithm

Figure 10 shows the pod placement results for the benchmark application Teastore with
the default scheduler and the two proposed algorithms. It shows the initial pod placement of
the Teastore application using the default Kubernetes scheduler called Kubernetes State and
the modified pod placement by Algorithm 1, which improves communication efficiency by
placing pods based on coupling, and Algorithm 2, which optimizes resource efficiency and
communication efficiency simultaneously by considering coupling and dependency together.

Algorithm 1 measures coupling based on the frequency of communications and reflects
this in the pod placement. Algorithm 2 prioritizes pods based on the memory changes
observed in the workload, calculating dependencies and incorporating these into the
pod placement.

Figure 11 shows the change in pod placement for the benchmark application Robot-
shop, starting with the default Kubernetes pod placement and applying Algorithm 1, which
improves communication efficiency, and Algorithm 2, which optimizes communication
efficiency and resource efficiency.
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Figure 10. Changes in Teastore pod placement by the algorithm.

Figure 11. Changes in Robot-shop pod placement by the algorithm.
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4.3.2. Performance Evaluation

To evaluate the performance of the proposed model, we used a load tester that sim-
ulates the behavior of actual workloads. We measured the average response time and
requests per second for each pod placement scenario. The load tester was configured to
simulate five virtual users operating the application for two minutes.

Figure 12 shows the change in average response time for each pod placement method
in the Teastore application. We compared the default Kubernetes scheduler with the pro-
posed algorithms (Algorithms 1 and 2). Because the default scheduler does not consider
the communication patterns between pods, pods with high communication frequencies
are placed on different nodes, causing network delay. As a result, the average response
time increases. Algorithm 1 places pods according to their degree of coupling, reducing
network delay by placing pods with high communication frequencies on the same node.
As a result, we see an 8.61% reduction in average response time. Algorithm 2 considers de-
pendencies (memory usage) in addition to coupling to place resource-intensive pods. This
optimizes not only communication efficiency but also resource usage efficiency, improving
the average response time by 1.49%.

Figure 12. Average response time by pod placement in Teastore.

Figure 13 shows the change in requests per second for each method of pod placement
in the Teastore application. It shows how many requests the system can handle. The
default scheduler fails to optimize resource usage and communication patterns, result-
ing in network latency, which limits the number of requests per second it can handle.
By applying Algorithm 1, highly coupled pods are placed on the same node, which
reduces network latency and allows more requests to be served. This results in an 8.7%
increase in requests per second. Algorithm 2 takes resource usage patterns into account,
optimizing both communication and resource efficiency, resulting in a 1.49% increase
in requests per second. These results indicate that count coupling is a more efficient
orchestration method for the Teastore workload, emphasizing low resource usage and
communication efficiency [26].

Figure 14 shows a graph comparing the average response time for each pod placement
scheme in the Robot-shop application. Because the default scheduler does not consider
communication patterns and resource efficiency, the average response time is high due to
communication delays between pods. By applying Algorithm 1, pods with high commu-
nication frequency are placed on the same node, which reduces network delay, resulting
in a 7.61% improvement in average response time. Algorithm 2 optimizes the balance of
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resources and communication by considering both resource usage and coupling, resulting
in an 11.5% improvement in average response time.

Figure 13. Requests per second by pod placement in Teastore.

Figure 14. Average response time by pod placement in Robot-shop.

Figure 15 shows the change in requests per second for each arrangement for the
Robot-shop application. The default Kubernetes scheduler’s placement does not take into
account resource usage efficiency and communication patterns, resulting in a relatively low
number of requests per second. Algorithm 1 increases the number of requests processed per
second by 7.49% by optimizing communication between pods to reduce network latency.
Algorithm 2 optimizes not only communication but also resource usage, showing a 10.04%
increase in requests per second. These results indicate that Resource Opportunistic is a more
efficient orchestration method for the Robot-shop workload, emphasizing resource efficiency
over communication efficiency [27]. From our experiments with the two applications above,
we can see that pod placement using Algorithms 1 and 2 performs better than traditional
Kubernetes scheduler placement, and we can use resources more efficiently to obtain better
performance with the same amount of resources.
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Figure 15. Requests per second by pod placement in Robot-shop.

4.3.3. Limitations of the Experiment

However, since the experiments were conducted in a specific cloud environment
and benchmark application setup, these settings may not reflect the many variables and
complex situations that may occur in real-world diverse cloud infrastructures. Therefore,
further research is needed to generalize to a variety of cloud environments and applications.
For example, different network architectures, resource allocation schemes, and hardware
configurations used by different cloud providers may lead to performance differences,
and different workloads or application types may exhibit different responses, so further
experiments should validate the proposed techniques on different infrastructures such as
public, private, and hybrid environments.

In addition, you can think about what happens when the number of nodes and pods
increases, which is one of the hallmarks of cloud systems: flexible scaling up and down.
In the proposed technique, when the number of pods increases (scale up), when a pod with
the same purpose is created within a node, it is possible to track and collect data from the
time it is created. This is not the behavior of a normal application, but it shows that it is
designed to track the behavior of pods during scale-up.

If a pod failed during application operation, we configured the ReplicaSet to track
copies of the pod created through the same image that is recovered through the ReplicaSet
so that we could collect data from the previously failed pod and the newly recovered pod
to obtain qualitative results. Again, this is not the behavior of a normal application, but it
shows that we designed it so that we can track the behavior of a Pod in the event of a failure.

4.3.4. Discussion on the Scalability of the Algorithm

The algorithm of the OOSP proposed in this paper was implemented on a small to
medium-sized Kubernetes cluster. However, we also need to consider the possibility of
scaling to larger Kubernetes clusters.

Scalability: The algorithms within OOSP are designed to optimize placement by ana-
lyzing the coupling and dependencies between pods based on multi-tiered data, allowing
data analysis and placement decisions to be done in parallel as the cluster size grows,
provided the overhead of data collection is addressed. In addition, the Kubernetes API
allows you to monitor the health of each node and pod in real time, so you can maintain
efficient resource management even in large clusters. However, in this paper, the OOSP
algorithm is tailored for small and medium-sized Kubernetes clusters, and the part about
large-scale scalability is a consideration for future research. The current algorithm is diffi-
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cult to apply to complex distributed systems, so it must be modified to apply to separate
large-scale systems.

Calculation complexity: In the proposed algorithm, the computation required to com-
pute the coupling degree increases as the cluster size increases, but this can be optimized
by applying distributed processing techniques and clustering algorithms to the algorithm
proposed in this paper.

Realizability: As the number of nodes and pods increases, there is a possibility of
network latency or communication overhead. Designed to maintain communication efficiency
and resource utilization in large environments, the proposed technique addresses the overhead
of data collection in large clusters by placing highly coupled pods on physically close nodes
and applying a deployment strategy that takes resource utilization patterns into account.

Real-time pod scaling: OOSP algorithms aim to capture adaptive data and schedule
pods based on workload characteristics rather than focusing on real-time fluctuations.
Nonetheless, the techniques utilized in “real-time data streaming” can be applied to achieve
real-time [28,29]. The aim of real-time data streaming is to decrease latency and ensure a
continuous data flow by reducing network latency and optimizing bandwidth efficiency.
Similarly, the proposed OOSP reduces the frequency of matrix collection and transfers the
gathered data to a separate analytics server to enhance scheduling by utilizing computed
values to swiftly adjust pod placement while minimizing reaction time. The OOSP can
achieve real-time objectives by using the concept of continuous data stream processing,
which involves dynamically adjusting data collection intervals based on workload intensity
and utilizing parallel processing techniques for matrix collection and computation on
the analytics server. Nevertheless, achieving this realism results in an increase in system
burden and complexity, as it necessitates the allocation of additional processing power
and resources to manage real-time computation and decision-making, as well as to handle
more frequent data cycles. Further research is necessary to address these issues, which
are comparable to the obstacles encountered by real-time network management systems.
This research should focus on reducing system burden, enhancing processing speed, and
increasing resource efficiency.

5. Security Implications and Vulnerabilities in Pod Deployment
5.1. Possible Administrative and Technical Vulnerabilities in Pod Deployments

Increased attack surface: If pods are placed together on the same node with a high
degree of coupling, a malicious user can use an attack on one pod to affect neighboring
pods. In particular, side-channel attacks can be used to exploit vulnerabilities between
pods that frequently communicate with the network.

Vulnerabilities on shared resources: When multiple pods share the same resources
(CPU, memory, etc.) during resource optimization, certain pods may overuse resources and
cause DoS internally, which can be exploited by malicious users to crash the application.

Network vulnerabilities: Placement is based on the frequency of communication
between pods, which can lead to an increase in network intrusion attack attempts on nodes
with concentrated communication paths.

5.2. Administrative and Technical Vulnerabilities with Optimization Techniques

While optimization algorithms are focused on maximizing performance, they can
introduce vulnerabilities based on resource placement and communication patterns. For
example, when optimizing the placement of pods based on resource usage and commu-
nication frequency, a focus on optimization alone can concentrate the attack surface on
certain nodes.

5.3. Security Hardening Measures

Pod isolation and network segmentation: Even if highly coupled pods are placed
together, each pod can be isolated at the network level or network segmentation using
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subnets can be used to propose direct communication between pods. This reduces the risk
of side-channel attacks or network intrusions.

Monitoring resource allocation: Processes or security mechanisms should be in
place to monitor resource usage to detect resource exhaustion attacks or unusual resource
usage patterns.

Deploy security awareness: security-aware placement techniques should be added
using security-embedded algorithms to optimize applications for performance while also
introducing security enhancements.

6. Conclusions

In this study, we presented an opportunistic pod placement optimization technique
using multi-layer data sensing to improve resource utilization and system performance
in Kubernetes environments. The method, which considers both pod communication
efficiency and resource usage, significantly reduced average response time by up to 11.5%
and increased requests per second by up to 10.04%, outperforming the default Kuber-
netes scheduler.

The key contribution of this work is the integration of communication patterns and
resource dependencies into the pod placement process, which enhances both performance
and efficiency. While the experiments were conducted in controlled environments, future
research should focus on validating the approach in more dynamic cloud settings and
exploring real-time optimization techniques to further enhance system responsiveness.

Future work will focus on applying the proposed methodology to real-time cloud sys-
tems with dynamically changing workloads and resource demands, and will augment the
technique with environmental variables such as workload, complex workloads, network,
and resource contention found in real cloud environments. Furthermore, investigating the
scalability of the approach in large-scale cloud environments and its ability to handle live
pod migration without service interruption is essential for further validation.
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