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Abstract: UAV thermal infrared remote sensing technology, with its high flexibility and high temporal
and spatial resolution, is crucial for understanding surface microthermal environments. Despite
DJI Drones’ industry-leading position, the JPG format of their thermal images limits direct image
stitching and further analysis, hindering their broad application. To address this, a format conversion
system, ThermoSwitcher, was developed for DJI thermal JPG images, and this system was applied to
surface microthermal environment analysis, taking two regions with various local zones in Nanjing
as the research area. The results showed that ThermoSwitcher can quickly and losslessly convert
thermal JPG images to the Geotiff format, which is further convenient for producing image mosaics
and for local temperature extraction. The results also indicated significant heterogeneity in the study
area’s temperature distribution, with high temperatures concentrated on sunlit artificial surfaces,
and low temperatures corresponding to building shadows, dense vegetation, and water areas. The
temperature distribution and change rates in different local zones were significantly influenced by
surface cover type, material thermal properties, vegetation coverage, and building layout. Higher
temperature change rates were observed in high-rise building and subway station areas, while lower
rates were noted in water and vegetation-covered areas. Additionally, comparing the temperature
distribution before and after image stitching revealed that the stitching process affected the temper-
ature uniformity to some extent. The described format conversion system significantly enhances
preprocessing efficiency, promoting advancements in drone remote sensing and refined surface
microthermal environment research.

Keywords: thermal infrared remote sensing; land surface temperature; unmanned aerial vehicle;
format conversion; surface microthermal environment

1. Introduction

The surface thermal environment (STE) results from interactions among the surface,
atmosphere, and human activities, impacting climate change, energy use, and human
health [1–5]. Urbanization has replaced natural surfaces with impermeable, complex,
and dense artificial surfaces, disrupting heat balance and increasing sensible heat while
decreasing latent heat, leading to significant changes in the STE, notably, to the urban heat
island (UHI) effect [6–8]. As demands for comfort, health, and safety rise, understanding
and improving the STE becomes increasingly urgent [8–11].
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Thermal infrared remote sensing is an effective method for directly observing surface
temperatures on regional and global scales [12] and has been widely used to study the
spatial patterns and temporal evolution of surface thermal environments, especially the
UHI effect [13–15]. Traditional research often calculates UHI intensity by subtracting the
suburban surface temperatures from the urban ones, exploring urban–suburban thermal
differences [16,17]. However, this method is overly simplistic, neglecting differences in
three-dimensional structures and surface materials within urban and suburban areas, thus
affecting the accurate STE assessment [18]. Increasing attention is now given to the micro-
scale STE, with research shifting from urban regions to local areas [4,19]. The local climate
zone (LCZ) classification system emerged to address this [20]. Based on surface cover,
structure, materials, and human activities, the LCZ system established 10 quantitative
indicators to divide the surface into 17 types [20]. The LCZ scheme provides detailed
descriptions of the thermal environment of homogeneous surfaces and is widely used in
micro-scale studies [21–23]. These studies often rely on satellite remote sensing data and
face limitations in time and spatial resolution, which makes it difficult to capture fine-scale
changes in heterogeneous STEs. For example, the spatial resolutions of commonly used
Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper
(TM) surface temperature products are 1 km and 120 m, respectively [17,24–26].

With the advancement of unmanned aerial vehicle (UAV) technology, characterized by low
cost, high flexibility, high resolution, and high revisit frequency, the limitations of current satellite
thermal infrared remote sensing are poised to be addressed. Recently, UAV remote sensing
has become crucial for detailed STE studies [19,27–31]. DJI drones lead the UAV industry,
being equipped with professional flight control programs and high-precision RTK modules
for sampling surface temperatures and recording flight and geographic data. They feature
advanced thermal infrared sensors, such as the Zenmuse XT and XT2 (DJI, Shenzhen, China,
powered by FLIR) and the DJI self-developed Zenmuse H20T, H20N, Matrice 30T, Mavic 2EA,
and 3T sensors (DJI, Shenzhen, China), providing high-quality thermal images (centimeter-
level spatial resolution, half-hour temporal resolution, ±2 ◦C accuracy). DJI self-developed
sensors are highly integrated into drone systems, ensuring stability and supporting extensive
mission planning and data analysis. However, they have limitations in image stitching and
processing. FLIR sensors output TIFF and radiometric JPEG (RJPEG) formats, compatible with
most processing software (e.g., ContextCapture (v10.20.0), Pix4dMapper (v4.4.12), PhotoScan
(v1.2.7)) [19,32,33]. Although DJI self-developed sensors also use radiometric JPEG (file suffix
*.JPG), carrying temperature and geographic data, they are essentially RGB format files and lose
temperature information in the existing processing software. Single JPG images can be analyzed
with the DJI Thermal Analysis Tool (v3.0) (https://www.dji.com/). For stitching multiple
JPG images, technical challenges exist. Although the DJI thermal software development kit
(TSDK) (v1.5) (https://www.dji.com/) can convert JPG images to the RAW format, retaining
temperature data, geographic information is lost, hindering extensive analysis in image stitching
and processing software. This limits the broad application of UAV thermal infrared remote
sensing in STE research.

In recent years, the use of DJI drones with a thermal sensor for STE research has in-
creased. To achieve thermal image stitching, two main methods are commonly used. One in-
volves format conversion software [27,34–36], such as ATygeo Thermal (v2.0) (www.atyges.
es/en/product/atygeo-thermal/) and ThermoConverter (v1.8.0) (www.thermoconverter.
com), which convert JPG images to the TIFF format (containing temperature and geo-
graphic information) for easier stitching. However, these commercial software options
are expensive, which limits their use. The other method separates temperature and ge-
ographic information, inputting it separately into the stitching software [29,37,38]. JPG
thermal images are converted to the TIFF format (losing sensor parameters and geographic
information), and other software (e.g., DJI Terra) extracts geographic information from the
JPG images for input into a stitching software (e.g., Pix4dMapper (v4.4.12)). This method
has drawbacks, including the loss of sensor parameters and flight angle information, which
can affect the stitching accuracy, and complex processing steps, which increases error
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likelihood and reduces efficiency. A key issue in current research is the lack of simple,
low-cost software or systems to losslessly convert JPG thermal images to the Geotiff for-
mat. Additionally, high-spatial-resolution UAV thermal images are needed for detailed
spatiotemporal studies of the local/micro-surface thermal environment.

We addressed these issues in this study. The main contribution of this paper includes
two aspects: (1) this paper developed a format conversion system, ThermoSwitcher, for
processing DJI drone thermal JPG images, enabling lossless conversion to the Geotiff format;
(2) ThermoSwitcher was applied to analyze the urban thermal environment and explore
the spatiotemporal variations in surface temperature from a high-resolution perspective.
Specifically, two study areas in Nanjing with various local zones were selected. We used a
DJI drone with a thermal sensor to collect surface thermal images; then, ThermoSwitcher
performed format conversion, Pix4dMapper (v4.4.12) handled image stitching, and ArcMap
(v10.8) facilitated sub-area surface temperature extraction and statistics. This enabled the
analysis of the spatial and temporal characteristics and differences in thermal conditions
across different local zones. Overall, ThermoSwitcher provides convenience and support
for preprocessing DJI thermal images, potentially advancing fine-scale studies on surface
microthermal environments using UAV remote sensing.

This paper is organized as follows: Section 2 describes the methods and data of this
paper, including the design and operation mechanism of ThermoSwitcher, a UAV thermal
infrared image format conversion system, the study area selected to carry out the spa-
tiotemporal analysis of local thermal environments, as well as the process of experimental
collection and data processing; Section 3 shows the application of ThermoSwitcher in the
analysis of local microthermal environments, where we analyzed the collected data and
compared the differences in the spatiotemporal distribution of different local area thermal
environments, as well as the temperatures before and after the splicing of the UAV thermal
infrared images; Section 4 discusses the strengths and weaknesses of this paper, as well as
the outlook for future research work; and finally, Section 5 provides a short summary and
some perspectives.

2. Methods and Data
2.1. Format Conversion System

To achieve the lossless conversion of JPG format thermal images to the Geotiff format,
we designed a system called ThermoSwitcher (Figure 1). It should be noted that the
DJI-developed thermal sensors have preset environmental parameters that may affect
temperature measurements. Therefore, calibration is needed during data preprocessing
based on the actual sampling scenario (https://www.dji.com/). The four calibration
parameters are the following: (1) Distance: Range, 1 to 25 m. Enter 25 m if it exceeds
this range. The default calibration distance is usually 5 m, where measurements are most
accurate. Distances too close or far increase errors. (2) Humidity: Range, 20 to 100%. The
default value is usually 50% or 70%, depending on the sensor model, and should be set
according to the actual environment. Accurate settings have a minor impact on precision.
(3) Emissivity: Range, 0.10 to 1.00. The default value is usually 0.95 or 1.00, depending on
the sensor model. Set it based on common material emissivity tables and the surface cover
type. Accurate settings significantly affect precision. (4) Reflection temperature: Range,
−40.0 to 500.0 ◦C. The surrounding objects’ energy may be reflected by the target surface
and received by the sensor, causing errors. The default value is usually 23.0 ◦C or 25.0 ◦C,
depending on the sensor model. Generally, set it to ambient air temperature if there are no
special high- or low-temperature objects. Accurate settings affect precision, with greater
deviations causing larger impacts.

https://www.dji.com/
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Figure 1. Format conversion process (a) and software user interface (b). In (a), the red and blue text 
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resolution is the same as that of the original JPG image. The only difference is that the data 
for each pixel in this image no longer represent color information but rather correspond 
to temperature. Note that this step involves a call to the DJI Thermal SDK (call code 
example: “…/dji_irp.exe -s …/DJI_0001_R.JPG -a measure -o …/DJI_0001_R.raw --
distance 25.0 --emissivity 0.96 --humidity 40 --reflection 30.0 --measurefmt float32”, note 
that the ellipsis represents the file path). Due to the commercial confidentiality agreement, 
the source code of the DJI Thermal SDK is not disclosed, and the specific mathematical 
formulas of the four parameters involved in temperature correction cannot be shown. 
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Read the EXIF information from the JPG image to obtain the sensor parameters and GPS 
coordinates, then write these data into the TIFF image to create a Geotiff image. 
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Figure 1. Format conversion process (a) and software user interface (b). In (a), the red and blue text
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The workflow of ThermoSwitcher includes three steps (Figure 1a):
Step #1: Convert the original thermal JPG image to a RAW format image with

temperature information. Use the ‘dji_irp.exe’ program from DJI Thermal SDK (https:
//www.dji.com/) to convert the JPG image to a RAW format image (32-bit float), based
on the calibration parameters sampled during the measurement experiment. Compared
with the thermal JPG format file, the RAW format file is still an image, and the resolution
is the same as that of the original JPG image. The only difference is that the data for
each pixel in this image no longer represent color information but rather correspond to
temperature. Note that this step involves a call to the DJI Thermal SDK (call code example:
“. . ./dji_irp.exe -s . . ./DJI_0001_R.JPG -a measure -o . . ./DJI_0001_R.raw --distance 25.0
--emissivity 0.96 --humidity 40 --reflection 30.0 --measurefmt float32”, note that the ellipsis
represents the file path). Due to the commercial confidentiality agreement, the source code
of the DJI Thermal SDK is not disclosed, and the specific mathematical formulas of the four
parameters involved in temperature correction cannot be shown.

Step #2: Convert the RAW format image to a TIFF format image with temperature informa-
tion. Read the temperature data from the RAW image and write it into a new TIFF image.

Step #3: Add geographic information to the TIFF image to create a Geotiff image.
Read the EXIF information from the JPG image to obtain the sensor parameters and
GPS coordinates, then write these data into the TIFF image to create a Geotiff image.

The ThermoSwitcher interface is depicted in Figure 1b. Set the file paths for the original
JPG and the converted Geotiff images, configure the temperature calibration parameters
based on the observed environmental variables, and perform the conversion. Note that this
system and the user’s manual are provided as Supplementary Materials (Supplementary
Software S1), free of charge, for researchers to facilitate the processing of UAV thermal
infrared imagery and to expand its potential research and applications.

2.2. Study Area

To verify the application ability of ThermoSwitcher in surface microthermal environ-
ment analysis, two regions in the suburbs of Nanjing, China, (32.13◦ E, 118.97◦ N) were
selected as the area of interest (AOI), i.e., AOI_A and AOI_B (Figure 2). The region has a
subtropical monsoon climate with distinct seasons. AOI_A and AOI_B cover 220 × 2000 m
and 410 × 1800 m, respectively, and are oriented to the northwest–southeast (Figure 2a).

https://www.dji.com/
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Figure 2. Study area. (a) Geographic location and satellite full-color images of the areas of interest
A and B (AOI_A and AOI_B), (b) illustrations of the surface cover types of local zones in the areas of
interest A and B.

The land use types of the study areas are diverse. AOI_A and AOI_B are divided
into six local interest zones each (Figure 2b). Specifically, zone A1 is a high-rise residential
area with 25-to-27-story buildings (mainly concrete) and 46% vegetation cover, primarily
evergreen trees, shrubs, and grass. Zone A2 is a mid-rise residential area with 11-story
buildings and 45% vegetation cover, mainly evergreen trees and shrubs. Zone A3 is a river
area with bare soil and 15% vegetation cover. Zone A4 is a metro station area with buildings
and concrete/asphalt surfaces and 5% vegetation cover. Zone A5 is a mountainous forest
area with 99% vegetation cover, mainly trees. Zone A6 is a low-rise residential area with
3-story buildings and 45% vegetation cover, mainly evergreen trees and shrubs. Zone B1 is
a high-rise residential area with 17-to-18-story buildings and 45% vegetation cover. Zone B2
is a school area with 5-story buildings and large playgrounds, with 15% vegetation cover,
mainly evergreen trees and shrubs. Zone B3 is a lake park with vegetation and water bodies
and some bare soil. Zone B4 is a high-rise residential area with 20-to-34-story buildings and
45% vegetation cover. Zone B5 is a commercial area, similar to Zone A4, with buildings
and concrete surfaces and 5% vegetation cover. Zone B6 is a river area, similar to Zone
A3. Note that the vegetation cover values might vary due to different image collection
times and were extracted using ImageJ software (v1.45) (https://imagej.nih.gov/ij/), a
JAVA-based image processing tool with a simple visual interface.

2.3. Measurement Experiments and Data Processing

This study used a DJI M300 RTK quadcopter with Zenmuse H20T (DJI, Shenzhen, China)
(Figure 3) to obtain thermal images. The Zenmuse H20T includes a thermal infrared lens,
two visible (wide and zoom) lenses, and a laser rangefinder. The thermal infrared sen-
sor has a resolution of 640 × 512 pixels, a pixel pitch of 12 µm, a wavelength range from
8 to 14 µm, a temperature measurement range from −40 ◦C to 150 ◦C, an accuracy of
±2 ◦C, and a sensitivity of <0.05 ◦C. For AOI_A and AOI_B, the UAV flight paths are shown
in Figure 3d,e. The drone maintained a flight altitude of 300 m, thermal lens sampled at nadir
direction with a spatial resolution of 0.26 m per pixel, and the flight speed was 13 m/s, with
both 75% lateral and longitudinal overlap. The experiment was conducted on 19 August 2022,
with two sampling sessions in the AOI_A area, each lasting about 8 min. The midpoint times

https://imagej.nih.gov/ij/
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were 15:30 (local time, 216 images collected) and 16:48 (197 images collected) (Table 1). Similarly,
two sampling sessions were conducted in the AOI_B area, each lasting about 11 min. The
midpoint times were 16:35 (284 images collected) and 18:35 (217 images collected) (Table 1). To
ensure a quasi-synchronous surface temperature collection and reduce the impact of temporal
changes, the number of images collected varied slightly depending on the drone battery life.
The solar angles during the measurement are shown in Table 1; the weather was clear with light
winds, and the maximum and minimum temperatures were about 35.7 ◦C and 31.2 ◦C, respec-
tively. Considering the actual situation, the distance in ThermoSwitcher was set to the maximum
(25 m), with an emissivity of 0.96 [39], and the air humidity and reflection/air temperature
values were measured at a weather station (Figure 3c, refer to Ref. [40] for more details) about
1.5 km from the study area (Table 1).
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Figure 3. Observation equipment (a–c) and flight path (d,e).

Table 1. Meteorological parameters measured during the observation period.

Observation Area Observation Time Sun Position
(Zenith Angle, Azimuth Angle) Humidity (%) Air Temperature (◦C)

AOI_A 15:30 (50◦, 259◦) 27 35.7
AOI_B 16:35 (64◦, 269◦) 30 34.7
AOI_A 16:48 (66◦, 271◦) 31 34.3
AOI_B 18:35 (88◦, 284◦) 35 31.2

The data processing workflow is as follows:
Step #1: Convert the DJI UAV thermal images from JPG to Geotiff format using

ThermoSwitcher, retaining temperature and GPS information. The conversion took about
3 min on a standard laptop. Note that this study did not perform temporal normaliza-
tion due to the short sampling duration, and the temperatures were surface brightness
temperatures without emissivity separation and atmospheric correction.

Step #2: Mosaic the Geotiff thermal images using Pix4Dmapper (v4.4.12) to create a
thermal image of the entire AOI_A and AOI_B, respectively.

Step #3: Clip the local zones and extract the surface temperatures using ArcGIS (v10.8).
Import the stitched ortho-mosaic thermal images, clip them based on local zone boundary
kml files, and extract the pixel temperature values for each zone for further analysis.
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3. Results
3.1. Spatiotemporal Differences in Local Surface Brightness Temperatures

Based on the stitched ortho-mosaic thermal images, this section analyzes the spatial
distribution and temporal variation patterns in different local zones (Figures 4 and 5). The
results revealed significant spatial heterogeneity across the whole study areas and notable
spatiotemporal differences in surface temperatures across different local zones.
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Figure 4. The spatial distribution (a,b) and frequency histograms (c–h) of the brightness tempera-
tures in different zones at different observation times for AOI_A. (a,b) were sampled at 15:30 and
16:48 local time, respectively. The dashed lines and the values are the mean temperatures in (c–h).

Regarding the overall spatial temperature distribution, high-temperature areas were
mainly concentrated on sunlit artificial surfaces (e.g., asphalt roads and playgrounds),
while low-temperature areas were found in shaded building areas, dense vegetation, and
water bodies. This was primarily due to differences in the received solar radiation and
the thermal properties of the surface materials. For instance, in the AOI_A study area at
15:30, the surface temperature difference exceeded 25.0 ◦C (Figure 4a), with the temper-
atures of asphalt roads, building rooftops, and subway station areas exceeding 45.0 ◦C,
while vegetated and water body areas had temperatures below 20.0 ◦C. In more detail,
taking advantage of the high-spatial-resolution images of UAVs, Figure 6 clearly shows
the difference in the ground temperature of different features, including 10 vegetated fea-
tures and 10 artificial features. The temperature distribution for the 10 vegetated features
ranged from 28.1 ◦C (Blue No. 2, maple tree) to 35.7 ◦C (Blue No. 4, wilted grassland)
(Figure 6), with an average temperature of 29.8 ◦C. Except for the withered flower (Blue
No. 2) and withered grassland (Blue No. 4)—both of which were close to the bare soil—
the temperatures of other vegetated features were concentrated between 28.1 ◦C and
29.6 ◦C. The temperature difference between the latter was relatively small (less than
1.5 ◦C). These subtle differences may be mainly related to vegetation type, leaf size, and spa-
tial location. In contrast, the artificial features were hotter, and the temperature difference
between them was greater. Specifically, the temperatures of the 10 artificial features were
significantly higher than those of the vegetation features, ranging from 32.6 ◦C (Red No. 2,
black metal car) to 44.1 ◦C (Red No. 6, glass roof) (Figure 6), with an average temperature of
36.8 ◦C. The metal vehicles (Red Nos. 2, 3, and 4) and the solar water heater (Red No. 9,
mainly composed of a metal collector and glass) also had relatively similar temperatures (from
32.6 ◦C to 33.7 ◦C). The asphalt road, stone pavement, and concrete roof (Red Nos. 1, 5 and 7)
had similar temperatures (from 39.2 ◦C to 40.7 ◦C). In contrast, the temperatures of the red-tile
roof (Red No. 8) and red-brick pavement (Red No. 10) were slightly lower (37.0 ◦C and 34.2 ◦C,
respectively), which may be related to their tilting angle, location and surroundings that cause
them not always be in the optimal sun irradiation position.
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represent vegetated features, which are tree (willow), tree (maple), wilted tulip flowers, wilted grassland,
tree (white elm), tree (ginkgo), shrub, tree (colored maple), tree (balsam fir), and grassland, respectively. The
red circles and numbers from 1 to 10 represent artificial features, which are asphalt road, black metal car,
yellow metal van, red metal van, stone pavement, glass roof, concrete roof, red-tile roof, solar water heater,
and red-brick pavement, respectively.

There are significant differences in the spatial distribution and temporal variation
rates of temperatures in different zones (Figures 4 and 5). With regard to the spatial
temperature differences, the zone mean temperature order was ranked, as exemplified
by the 15:30 ZOI_A scenario, as follows: A4 (35.3 ◦C) > A2 (31.1 ◦C) > A1 (30.9 ◦C) > A6
(30.0 ◦C) > A3 (28.7 ◦C) > A5 (28.0 ◦C). These differences are related to surface coverage
and material thermal properties. The subway station (zone A4) included materials like
concrete and steel with low specific heat capacity, high thermal conductivity, and low
infrared radiation efficiency, resulting in higher temperatures. Water bodies (zone A3)
and mountain forests (zone A5) had lower temperatures. The differences in residential
areas (zones A2, A1 and A6) may be due to variations in vegetation cover and building
layout and height. The building layout affects heat circulation, and their height affects
shading [4]. Moreover, except for the subway station (zone A4) and water bodies (zone
A3, B6), the temperature in other zones was nearly normally distributed. This was due
to the small size and sample number of the subway station and water bodies zones and
the homogeneity of the material properties in the subway station zone (Figure 4). The
water body areas included water, sparse vegetation, and bare soil, which led to distinct
temperature frequencies with multiple peaks (Figures 4 and 5). Larger zones with high
heterogeneity, large thermal capacity, and dispersed heat sources showed nearly normally
distributed temperatures. This phenomenon has important implications for remote sensing
image analysis, reminding researchers to consider plot scale effects and environmental
characteristics.

For the temperature variation rates, for AOI_A and AOI_B, the sampling intervals
were of about 1 h, and the temperature differences (∆T) between two samplings measured
the temperature variation rates in different local zones. The ∆T ranking for AOI_A was
A1 (2.3 ◦C) > A4 (2.0 ◦C) > A2 (1.4 ◦C) > A3 (1.1 ◦C) > A5 (0.5 ◦C) > A6 (0.4 ◦C). For
AOI_B, it was B5 (1.8 ◦C) > B6 (1.6 ◦C) > B2 (1.5 ◦C) > B4 (1.4 ◦C) > B1 (1.1 ◦C) > B3
(0.8 ◦C). Although the observation times for AOI_A and AOI_B were different, making
direct comparisons infeasible, the temperature variation rate differences within each zone
shared similar causes. The variation rates were influenced by surface material properties,
vegetation cover, building density and height, water bodies, topography, and microclimate
interactions. Notably, due to a higher proportion of bare soil in the river zone B6 compared
to A3, its temperature variation rate was significantly higher (Figure 5).

3.2. Temperature Comparison before and after Image Stitching

Taking zones A2 and B3 as examples, Figure 7 illustrates UAV thermal images, includ-
ing raw and stitched data, with brightness temperature distribution histograms. Differences
existed in the surface temperature before and after stitching, with varying temperature
differences among zones. For zone A2, the original image shows residential building
temperatures fluctuating between 20 ◦C and 45 ◦C (Figure 7a). Rooftops and artificial roads
are high-temperature areas, while vegetated areas are cooler. After stitching, Figure 7c
shows a more uniform temperature distribution, with rooftops still prominent but higher
temperatures in roads and vegetated areas. Pixel temperature statistics (Figure 7e) indicates
a wider range in the original image, with more points between 25 ◦C and 35 ◦C, averaging
27.9 ◦C. The stitched image reveals more concentrated pixel temperatures, with an average
temperature of 30.6 ◦C (Figure 7e), showing smoother data and more prominent high-
temperature areas. For zone B3, the original image shows concentrated lake temperatures
between 20 ◦C and 25 ◦C, averaging 21.1 ◦C (Figure 7b,f). After stitching, the distribution
remains concentrated, averaging 22.2 ◦C, but the artificial surface temperature in the lower
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right increases significantly (Figure 7d,f). Compared to zone A2, the lake temperature
changes were smaller, indicating strong regulation, and smoothing had a little impact.
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These results show that, although there were some temperature differences before and
after stitching, significant temperature differences among different zones remained, not
affecting the analysis of the temperature differences within the area (e.g., local urban heat
islands). Smoothing and detail loss during stitching led to a more uniform temperature
distribution, especially in building areas. Different area characteristics affected stitching
differently. The building area temperature differences were more pronounced, indicating a
significant increase in temperature after stitching, whereas the lake area, due to high specific
heat capacity and temperature regulation, was less affected, maintaining a relatively small
temperature distribution change.

4. Discussion

This paper focused on the development of a thermal image format conversion system
for DJI drones, called ThermoSwitcher, which can losslessly convert thermal images in
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JPG format to the Geotiff format. This system addresses challenges in the stitching and
processing of existing JPG thermal images. Additionally, the application of ThermoSwitcher
was highlighted by analyzing the spatiotemporal characteristics of local surface thermal
environments using UAV-based thermal images with sub-meter spatial resolution. The
results demonstrated that UAV-based surface temperature data with sub-meter spatial
resolution can capture fine surface details, allowing for the precise identification of subtle
temperature gradients and localized urban heat island phenomena [30]. For instance, a
UAV-based thermal sensor can capture temperature variations in narrow alleyways between
buildings, rooftop green spaces, and areas near small water bodies, providing accurate
data support for urban planning and environmental regulation. This paper primarily
provides technical support for data processing (DJI thermal JPG image format converted to
Geotiff format), and future research should pay more attention to the surface temperature
correction accuracy of UAV thermal infrared images, improving data reliability [41,42].
In particular, future research should be carried out on how to improve the precision and
accuracy of temperature measurements by corrected parameters, as well as on the design
of an optimal observation scheme for UAVs (including weather conditions, equipment
performance, flight altitude, flight speed, sampling frequency, flight path overlap, and so
on) that may affect the image stitching quality. Moreover, future research can also focus
on ThermoSwitcher’s application-related long-term observations and on the quantitative
analysis of urban microthermal environments supported by UAV remote sensing. By
establishing a database for regular drone monitoring, researchers can systematically track
the dynamic changes of urban microthermal environments and identify seasonal and long-
term trends. This has important implications for urban environmental management in
the context of climate change. For example, research can help identify areas with severe
heat island effects, providing data support for urban green space planning, building layout
optimization, and energy efficiency improvement.

Furthermore, in this study, drones were used to collect surface temperature data in the
research area four times, with each session lasting about 8 min. Due to the short collection
duration, the spatiotemporal representativeness of surface temperature was not accounted
for during image stitching. The issue of representativeness arises when the temporal or
spatial resolution of an observation system is too high, leading to inconsistencies that
may prevent the data from accurately representing the average conditions of the entire
observed area or time period [43]. Generally, when sampling a large area, if the sampling
duration exceeds 30 min, the representativeness issue should be carefully considered [39].
Neglecting this issue can result in systematic biases in surface temperature data, affecting
the accuracy of the results. This problem is particularly significant in high-resolution
thermal infrared remote sensing because the surface temperature often exhibits substantial
heterogeneity across space and time. Specifically, future research should consider the
following dimensions: (1) Temporal dimension: During drone-based surface temperature
collection, significant changes may occur over time, influenced by dynamic factors such
as solar radiation and surface heat exchange. Even within a relatively short period (e.g.,
20 min), the temperature captured by images at different times may vary, especially under
strong sunlight with rapid temperature fluctuations. As a result, the stitched images
may present a biased temperature distribution, failing to accurately reflect the actual
conditions of the study area. This issue has been widely reported in thermal infrared remote
sensing. For instance, Lagouarde et al. [39] found that short-term temperature variations
(from a few minutes to tens of minutes) can lead to significant differences, particularly
in high-resolution remote sensing data. (2) Spatial dimension: Spatial heterogeneity in
surface temperature means that small differences in surface features (such as vegetation,
buildings, or bare ground) can lead to significant temperature variations in high-resolution
thermal infrared images. With the high spatial resolution of drone remote sensing, the
temperature measured by each pixel may only represent a very small area. If these small
areas have significant spatial temperature differences that are not adequately addressed
during image stitching, the resulting temperature image may not represent the average
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temperature distribution of the entire study area. Research by Hook et al. showed that
surface temperature heterogeneity significantly affects temperature estimation accuracy in
high-resolution contexts [44]. To mitigate these representativeness issues, we recommend
further research into methods for effectively integrating multi-temporal and multi-spatial
resolution data. This would reduce the impact of these issues. First, the time window
for data collection during a single flight should be minimized, or multiple collections at
the same location should be performed to reduce the impact of temporal temperature
variations on the results. Time series analysis techniques, such as the DTC model [45],
can be employed to weight the data collected at different times, providing more stable
temperature estimates. Second, spatial downscaling or the integration of multi-source
data (such as visible light or multispectral data) can help alleviate the impact of spatial
heterogeneity on temperature estimates [46]. These approaches are expected to reduce the
impact of spatiotemporal representativeness issues on the observation results and enhance
the accuracy of thermal infrared remote sensing data.

5. Conclusions

This paper developed and applied a DJI UAV thermal image format conversion system,
ThermoSwitcher, to address existing issues in thermal image stitching and processing and
used it to analyze the spatiotemporal changes in the surface microthermal environment in
two study areas in Nanjing, China. Firstly, the ThermoSwitcher system effectively resolved
the problem of format conversion for DJI UAV thermal images, enabling the lossless conver-
sion of JPG images while retaining temperature and geographic information and producing
Geotiff format images that are easier to process and analyze. This tool not only improves
the efficiency of thermal image processing but also enhances the potential application
of UAV remote sensing technology in detailed studies of surface thermal environments.
Secondly, the analysis results of the surface microthermal environment indicated significant
heterogeneity in the spatial distribution of the surface temperatures within the study areas,
with notable differences in temperatures across different local zones. High-temperature
areas were mainly concentrated on sunlit artificial surfaces (such as asphalt pavements and
building roofs), while low-temperature areas were primarily found in vegetation-covered
and water body regions. A comparison of the temperature distribution before and after
image stitching showed that, although the temperature distribution became more uniform
after stitching, significant temperature differences between different zones remained, not
affecting the analysis of temperature differences in local zones. This study not only provides
technical support for neighbor-scale and detailed surface thermal environment monitoring,
but also offers a data case for analyzing surface microthermal conditions. Future work
should consider the zone scale effect and specific environmental characteristics, addressing
the issues of temperature sampling accuracy and stitching quality of UAV thermal images.
Furthermore, future work should also combine satellite, airborne, UAV remote sensing,
and ground measurements to more fully understand and address the challenges posed by
changes in the surface microthermal environment.
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