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Abstract: This paper presents a novel framework for 3D face reconstruction from single 2D images
and addresses critical limitations in existing methods. Our approach integrates modified adversarial
neural networks with graph neural networks to achieve state-of-the-art performance. Key innovations
include (1) a generator architecture based on Graph Convolutional Networks (GCNs) with a novel
loss function and identity blocks, mitigating mode collapse and instability; (2) the integration of
facial landmarks and a non-parametric efficient-net decoder for enhanced feature capture; and (3) a
lightweight GCN-based discriminator for improved accuracy and stability. Evaluated on the 300W-
LP and AFLW2000-3D datasets, our method outperforms existing approaches, reducing Chamfer
Distance by 62.7% and Earth Mover’s Distance by 57.1% on 300W-LP. Moreover, our framework
demonstrates superior robustness to variations in head positioning, occlusion, noise, and lighting
conditions while achieving significantly faster processing times.

Keywords: GANs; 3D reconstruction; GCNs; efficient-net

1. Introduction

The field of 3D face reconstruction from 2D images has seen significant advancements
in recent years, driven by the increasing demand for accurate and efficient 3D modelling in
various applications such as virtual reality, gaming, and biometric authentication. How-
ever, existing methods often struggle with challenges such as limited facial detail capture,
instability in training, and difficulty in handling diverse facial poses and expressions.

Our research is motivated by the need to overcome these limitations and provide a
more robust and versatile solution for 3D face reconstruction. We propose a novel approach
that leverages the strengths of both adversarial generative networks (GANs) and graph
neural networks (GNNs) to achieve this goal.

The use of GANs in our framework is motivated by their proven capability to generate
highly realistic and detailed images. In the context of 3D face reconstruction, GANs can
help in capturing fine-grained facial features and textures that might be lost in traditional
reconstruction methods. However, GANs are known to suffer from issues such as mode
collapse and training instability, which we address through our modified architecture and
training process.

Graph neural networks, on the other hand, are particularly well-suited for processing
3D mesh data due to their ability to operate directly on graph-structured data. By incor-
porating GNNs into our model, we can more effectively capture the spatial relationships

Sensors 2024, 24, 6280. https://doi.org/10.3390/s24196280 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24196280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4382-9217
https://orcid.org/0000-0001-8601-3184
https://orcid.org/0000-0002-8000-4161
https://doi.org/10.3390/s24196280
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24196280?type=check_update&version=1


Sensors 2024, 24, 6280 2 of 19

between facial landmarks and mesh vertices, leading to more accurate geometric recon-
structions. This is especially beneficial when dealing with complex facial topologies and
varying expressions.

Research on reconstructing 3D facial models from 2D images, depth images, and 3D
scans is currently a hot research topic. Advancements in deep neural network training for
supervised learning have led to significant advances in 3D face reconstruction from a single
2D image. Blanz and Vetter [1] introduced the 3D Morphable Model (3DMM), which served
as the foundation for this reconstruction process. It employs principal component analysis
(PCA) to capture variations in facial shape, texture, and expressions, enabling the generation
of realistic 3D facial representations by optimizing coefficients using methods like gradient
descent. The 3DMM effectively translates 2D image information into detailed 3D models,
making it a pivotal tool in facial analysis, animation, and biometric applications [1–5].

The use of deep neural networks has revolutionized the field of 3D facial reconstruction.
This technique involves using a convolutional neural network (CNN) for facial image
analysis, generation, and approximation of the 3DMM coefficients. This technique has
significantly enhanced the accuracy and efficiency of 3D facial reconstruction processes,
marking a substantial advancement in this domain [6–8]. Initially, a trained CNN extracts
facial features from images. Subsequently, it utilizes these features to estimate 3DMM
coefficients, leading to a more precise reconstruction of a 3D facial model. Notably, CNN-
based methods excel in swiftly and accurately estimating 3DMM coefficients, resulting in
efficient and precise 3D face reconstructions. CNN has the limitation of only working with
2D grid-structure images. The 3D mesh models have a graph structure (vertices and edges),
where each image or 3D model can have a different input shape. Graph neural networks
(GNNs) [9] and graph convolutional networks (GCNs) [10] are frequently employed in
neural networks to manage graph structure data. These networks execute operations on
these structures akin to convolutional operations performed on 2D images, offering a robust
framework for graph-based computations in deep learning architectures.

Many papers have utilized GANs as the foundational model for generating 3D images,
yet they often overlook the common challenges associated with GAN training, such as
mode collapse, superior discriminator, and unstable training [7,11]. The issue of mode
collapse has been widely observed in GAN training [12–14], wherein the generator becomes
fixated on specific distributions (modes) of the real data. These modes represent samples of
data that the discriminator consistently recognizes as authentic distributions. Consequently,
the collapsed discriminator provides meaningless feedback to the generator, leading it to
repeatedly generate the same data distributions (modes). This phenomenon restricts the
generator’s sampling to a small subset of the real data, causing the GAN to collapse into
these limited distributions. As a result, the generator tends to produce identical or similar
images, reducing the diversity and quality of the generated content.

This research presents an innovative technique that uses generative neural networks
to generate a 3D mesh model from a single 2D image in addition to its landmark. Our
generator and discriminator architectures include graph convolution layers. The model
based on the IGAN [15] technique, focuses on the quality of the produced images as well
as the model’s stability during training. Our technique focuses on using the landmarks as
input to the generator, resolving mode collapse, and stabilizing the generator architecture.
We use a unified branch in our model to create face geometry, emotion, and positioning.
The generator creates a three-dimensional facial geometry mesh model. In comparison to a
reference item, our model performs well at reconstructing facial expressions.

Our contribution is outlined as follows:

1. Proposes a novel method for reconstructing facial geometry from a single 2D image
and its landmarks, offering faster processing times and robustness to variations in
head positioning, occlusion, noise, and lighting, making it suitable for real-time
applications.
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2. Introduces a GCN-based generator architecture with custom identity blocks and a
modified loss function, which effectively mitigates mode collapse, increases training
speed, and reduces the training instability commonly encountered in GANs.

3. Develops a lightweight GCN-based discriminator that enhances both the accuracy
and stability of the generated 3D facial models, directly contributing to faster and
more efficient processing.

4. Achieves state-of-the-art performance on benchmark datasets, with significant improve-
ments in Chamfer Distance, Cross Entropy loss, and Earth Mover’s Distance metrics,
further validating the method’s accuracy, stability, and computational efficiency.

2. Related Work

This section provides an overview of key developments in 3D facial reconstruction,
organized into three main categories: 3DMM-based methods, deep learning approaches,
and GAN-based techniques.

The field of 3D facial reconstruction has seen significant advancements since the
seminal work of Blanz and Vetter [1], who introduced the 3D Morphable Model (3DMM).
The 3DMM, a linear model leveraging principal component analysis (PCA), facilitates
the dimensionality reduction of 3D face model datasets. This enables the independent
manipulation of facial shape, texture, and expression parameters. 3DMM-based approaches
offer stable linear models and good reconstruction performance. However, as they are
linear models, they have typical issues, such as challenges in reconstructing faces that differ
from the data range used to produce the 3DMM and dealing with fine details like wrinkles
and wearable objects.

The introduction of deep learning has revolutionized 3D reconstruction research,
shifting focus towards directly estimating 3DMM coefficients from 2D images [16–18].
Recognizing the limitations of pixel-wise error metrics in achieving optimal 3D facial
reconstructions, Deng et al. [19] proposed a novel approach that leverages unsupervised
and semi-supervised learning. They argue that relying solely on pixel-wise comparisons
between the original image and the rendered model can lead to convergence on local
minima, potentially hindering reconstruction accuracy. To address this, their approach
incorporates a pre-trained facial recognition network. This network extracts feature vectors
from both the original and reconstructed faces. The cosine distance between these feature
vectors is then employed as the error metric, guiding the reconstruction process towards a
more semantically meaningful solution.

Graph Neural Networks (GNNs) have emerged as a powerful tool for processing
data with inherent graph-like structures, making them particularly suitable for 3D face
reconstruction tasks. Unlike traditional neural networks that operate on regular grid-like
data (e.g., images), GNNs can directly process and learn from graph-structured data, such
as 3D meshes. Scarselli et al. [20] introduced the foundational concept of GNNs, which has
since been extended and refined. A key development in this field was the introduction of
Graph Convolutional Networks (GCNs) by Defferrard et al. [10], which efficiently perform
convolution operations on graph-structured data in the context of 3D face reconstruction.

Another significant approach for 3D reconstruction is based on generative adversarial
networks (GANs) [7,21]. Gecer et al. [7] tried to overcome the limitation of 3DMMs in
capturing high-frequency facial texture details during reconstruction. They addressed
this challenge by introducing GANs into the reconstruction pipeline. The trained GAN
effectively extracted high-resolution face textures with high-frequency components from
input photos. Our method builds on this by incorporating a GAN to generate realistic
and detailed textures. However, our approach goes a step further by leveraging modified
graph neural networks (GNNs). This is motivated by the inherent strengths of GNNs
in modelling relationships between facial landmarks. By incorporating GNNs, we aim
to capture the intricate spatial dependencies within the facial structure, leading to more
accurate and nuanced reconstructions compared to solely relying on 3DMMs or GANs
alone. Ref. [21] introduces GAN2Shape, a novel generative neural network. The GAN was
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trained on 2D images only and was able to generate 3D face images, but the quality was
poor due to difficulties in estimating the position of objects and a lack of landmarks.

Several recent studies have explored alternative approaches to 3D facial reconstruction
that bypass the use of 3DMMs and traditional GAN approaches. These methods directly
predict the 3D coordinates or texture of each vertex in the model using GCNs, demon-
strating promise for achieving more detailed reconstructions. Lin et al. [20] pioneered this
approach for fine-grained texture reconstruction. Their method utilizes GCNs within a
dedicated texture refinement module, consisting of three distinct GCNs categorized as
decoders, refiners, and combiners. The decoder GCN leverages feature vectors extracted
from a pre-trained facial recognition network (e.g., FaceNet [22]) to generate detailed tex-
tures. To improve its quality, the refiner GCN uses the initial coarse texture obtained from a
traditional 3DMM method. Finally, the combiner GCN integrates the outputs from both
decoders and refiners to produce the final vertex color, resulting in fine-grained textures.
Subsequent adversarial training with a discriminator further refines the results.

Cheng et al. [23] introduced a novel approach for detailed facial reconstruction. Their
method leverages a divide-and-conquer strategy, employing separate networks for re-
constructing coarse and fine facial geometry. Notably, to capture detailed shapes, they
incorporate a Graph Convolutional Network (GCN) refiner with a shape-from-shading (SfS)
loss [24]. This refiner network injects feature vectors obtained during the CNN encoder
process, ensuring that information from the input image is preserved. In a complementary
approach, Deng et al. [25] proposed an effective facial reconstruction method that utilizes
an attention mechanism within a Convolutional Neural Network (CNN) framework. This
attention mechanism focuses on the feature vectors extracted from the input image, ef-
fectively suppressing background noise and enhancing the prominence of facial features.
Consequently, this method contributes to improved facial reconstruction accuracy.

Zhou et al. [26] proposed an encoder-decoder architecture that integrates CNNs and
GCNs for simultaneous facial shape and texture reconstruction to address the challenges in
3DMM models, such as linearity. While the aforementioned methods have shown promising
results in 3D face reconstruction, they face several limitations that our GNN-based approach
addresses. Traditional CNNs used in many existing methods (e.g., [22,25,26]) operate on
regular grid structures, which can struggle to capture the complex spatial relationships
in 3D facial geometry and also struggle with stable training. Our GNN-based approach
naturally models these spatial relationships through graph structures, allowing for a more
accurate reconstruction of facial features and their relative positions. Additionally, many
existing methods (e.g., [7,21]) do not explicitly model the structural relationships between
facial features. Our approach, by using a graph representation, inherently models these
structural relationships, leading to more coherent reconstructions. To mitigate these issues
and achieve stable results, our model emphasizes the importance of employing strong
regularization techniques following the architecture of PWGAN and IGAN [14,15].

3. Materials and Methods

This section presents the methodology for our proposed framework, which generates
3D facial models from a single 2D image. We leverage a combination of advanced tech-
niques, GCNs, GANs, and data augmentation strategies to improve the accuracy, stability,
and speed of the reconstruction process. The proposed method is designed to handle
variations in head positioning, occlusion, noise, and lighting conditions.

The framework consists of two main stages: preprocessing and 3D construction.
The preprocessing stage focuses on noise removal and data augmentation while the 3D
construction stage applies a GCN-based generative adversarial network to generate the
final 3D model. The following subsections detail the key components of our approach, as
outlined in Algorithm 1 and Figure 1.
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Figure 1. The proposed framework methodology.

Algorithm 1: 2D to 3D Reconstruction Using IGAN

Input: 2D Face Image.
Start The Preprocessing Stage

1 Step 1: Noise Removal
2 Use U-Net with matrix factorization on image to remove image noise.
4 Use D-U-Net to remove image noise.
5 Choose best noise-free image using PSNR and SSIM metrics.
6 Step 2: Data Augmentation
7 Use LDM to augment the training dataset.
8 FOR EACH Face Image DO
9 Generate multiple augmented images using DDIM or Pix2Pix.
10 Adding pose change, smile, glasses, etc., to faces (the augmentations).
11 Generate multiple augmented mesh model with same transformation.
12 Pair the images and meshes that have same transformation into new samples.
13 END FOR
14 Start The 3D Construction Stage
15 Apply triangulation on mesh pair mesh with best Free_Noise_image.
16 Pass the pair to GCN (based which is based IGAN) along with landmarks.
17 Output: 3D mesh model.

Figure 1 presents a comprehensive overview of our 2D to 3D face reconstruction frame-
work. The process is divided into two main stages: Preprocessing and 3D Reconstruction.
The Preprocessing stage consists of three key steps:

1. Noise Removal: We employ two methods—U-Net with Matrix Factorization and
D-U-Net—to reduce noise in the input 2D images.

2. Data Augmentation: Using the Denoising Diffusion Implicit Model (DDIM), we
generate and edit both 2D images and 3D meshes to enhance our dataset.

3. Best Image Selection: We select the most suitable noise-free image using Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) metrics.
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The 3D Reconstruction stage involves the following steps:

1. Triangulation: We apply triangulation to the best noise-free image and its correspond-
ing mesh.

2. GCN-based IGAN: Our modified Graph Convolutional Network (GCN)-based Im-
proved Generative Adversarial Network (IGAN) processes the image, mesh, and
landmarks.

3. Output: The final result is a detailed 3D mesh model of the face.

3.1. Preprocessing

The preprocessing stage focuses on two main tasks: noise removal and data aug-
mentation. To reduce image noise, we employ U-Net with Matrix Factorization, which
effectively improves image quality. The best noise-free images are then selected based on
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) metrics, ensur-
ing high-quality inputs for the subsequent 3D reconstruction stage. This noise reduction
process is essential for handling common issues like lighting variations and occlusions,
leading to more accurate reconstructions.

In addition to noise removal, we apply data augmentation using Denoising Diffusion
Implicit Models (DDIM) [27], which is known for generating high-quality synthetic data.
This augmentation step enriches our dataset by improving its diversity and robustness,
thus enhancing the accuracy of the 3D reconstruction model. In our model, we adopt
LDM [28] since it maintains a balance between diversity, fidelity, and speed. Our DDIM
can generate and edit the mesh and 2D image based on [29].

3.2. Generative Adversarial Networks Modification

Generative adversarial networks have emerged as a powerful framework in deep
learning, particularly in image generation tasks. The essence of GANs lies in their unique
architecture, which comprises two neural networks, the generator and the discriminator,
engaged in an adversarial game. The generator G(z) aims to produce realistic outputs, such
as images, by minimizing the loss function (1), while the discriminator’s D(x) role is to
distinguish between real images and generated images by maximizing the loss function (2).
Through iterative training, GANs learn to generate increasingly realistic samples by lever-
aging the feedback loop between the generator’s attempts to fool the discriminator and the
discriminator’s improvements in distinguishing real from fake data; therefore, the objective
function of GAN is a minmax game, which can be formally defined by Equation (3).

LG = −Ez∼p(z)[log D(G(z))] (1)

LD = −Ex∼pdata(x)[log D(x)]− Ez∼p(z)[log(1 − D(G(z)))] (2)

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z)))] (3)

These equations represent the standard formulation of the GAN loss functions, where
(x) is the discriminator’s output for real data x, while G(z) is the generator’s output given.
The variable z ∈ Rdz is sampled from a normal distribution p(z) ∼ N (0, I). Here, the
zero signifies that the mean of the normal distribution is zero, while I denotes the identity
matrix, indicating unit variance across all dimensions. data(x) is the real data distribution

However, GAN training can face challenges such as mode collapse, where the genera-
tor converges to a limited set of outputs, and instability in training, leading to suboptimal
results. Strategies like minibatch training and label smoothing have been proposed to ad-
dress these challenges and improve the stability and diversity of GAN-generated outputs.

We implemented several modifications to the standard GAN architecture, focusing on
both the discriminator and generator, to address inherent issues and enhance performance.
These modifications serve as the foundation for integrating a Graph Convolutional Network
to generate 3D images from a single 2D image.
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The first modification involves the use of minibatch training [30] as shown in Figure 2,
on the discriminator to address the problem in which the discriminator’s gradients align
across various points in the data distribution. Put simply, the generator consistently
generates similar output images, irrespective of the latent variable’s sampling location. The
implementation of minibatch training allows the discriminator to analyze multiple data
instances simultaneously and understand the relationships between them. This approach
has proven effective in preventing mode collapse in deep learning [31].
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We made another modification to the base GAN architecture by incorporating the
identity block [15], which is shown in Figure 3, which successfully decreased training
duration. In addition to this modification, we smoothed the output of GAN’s discriminator
to 0.9 and 0.01 instead of 1 and 0 to solve the vanishing gradient since GAN uses a
sigmoid loss function as shown in Figure 4. These enhancements are achievable even with
constrained computational resources.
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3.3. 3D Reconstruction Network Architecture

Figure 5 presents a comprehensive overview of our 3D reconstruction network archi-
tecture. The network consists of two main components: a generator and a discriminator.
The generator takes a 2D input image along with its landmarks and processes it through
an EfficientNet encoder, followed by reconstruction blocks, triangulation layers, and GCN
layers to produce a 3D mesh model. The discriminator, composed of a convolutional graph
layer, an advanced GCN block, a mean node function, and a linear classification layer,
evaluates the authenticity of the generated 3D models. In the following subsections, we
detail each component of this architecture.
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3.3.1. Generator Architecture

Our model’s generator, based on [32], uses a single image and landmarks to create
a 3D geometric model of the face. To extract the features from input images, we employ
the widely used Efficient-Net [33] neural network with 7 blocks as the backbone, shown
in Figure 6. Our generator is made up of four blocks called reconstruction blocks, each
followed by a triangulation mesh layer, except for the final layer as shown in Figure 7. To
recreate the first block, we combine the output from the 7 blocks with the semi-sphere
and landmarks.
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The Efficient-Net starts with a normal 2D 3 × 3 conv with padding 0 and stride of 1.
Applying a 32-filter with a spatial extend of 3 yields a result of 111 × 111 × 32.

Mobile inverted bottleneck convolution (MBConvlayer) is a depthwise separable
convolution where each block consists of a different number of layers with possible changes
in dimensions. For MBConv1 and MBConv3 (3 × 3), we applied stride 1 and the same
padding of 111 × 111 × 16 as block 2, and for MbConv6 (5 × 5), we applied stride 2, with
the same padding of 57 × 57 × 24 output as block 3; for Block4, we get 29 × 29 × 80, and
for the next blocks, 5, 6, and 7, we applied the same padding and stride as one but with
different filters with each layer; thus, the final output features will be 29 × 29 × 320, which
will be concatenated with semi-sphere landmarks as input for the first reconstruction block.

Reconstruction Block

Every reconstruction block includes two operations: vertex alignment [33] and the
NODE block. The first operation, vertex alignment, aims to extract image features for
vertices and combine them with the semi-sphere’s properties. Given a feature map, we
compute a bilinearly interpolated image feature for each projected vertex point. We utilize
the camera’s intrinsic matrix to project each vertex onto the image plane.

The semi-sphere comprises 141 vertices and 210 polygons, which will be projected onto
the image. The output from vertex alignment, an image with the semi-sphere vertices projected
on it, is concatenated with landmarks and fed into a leaky ReLU activation function.

The second operation, the NODE block, is made up of three layers of graph convolu-
tion, each followed by a ReLU activation function, as illustrated in Figure 8.

The graph convolution [34] propagates information along mesh edges. For a set of
input vertex features ( fi) it computes updated features

(
f ′i
)
.

f ′i = leaky ReLU

W0 fi + ∑
j∈N (i)

W1 f j


N (i) represents the neighbor points of the (i)-th vertex in the mesh. (W0) and (W1)

are learned weight matrices. This process allows each vertex to incorporate information
from its neighboring vertices, effectively capturing the local structure of the mesh. The
reconstruction node block employs multiple graph convolution layers to aggregate this in-
formation, enhancing the representation of the local mesh regions. The output of node block
is then passed through the linear layer to the next block, which is the triangulation layer.
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Triangulation Layer

Triangulation layers are used to turn the raw mesh into a finer mesh with more faces,
vertices, and edges. The face can be reconstructed at ever-finer resolutions thanks to
this refinement. This can be achieved by subdividing each triangular face of the mesh.
Specifically, a vertex is inserted at the midpoint of each edge within a triangle, and new
edges are drawn between these midpoints, effectively subdividing the original triangle into
four smaller triangles. This recursive refinement process allows the mesh to capture finer
geometric details and subtle variations in the surface, which is essential for applications
requiring high-precision, realistic 3D modeling like ours. The increased density of the
mesh enhances the accuracy of 3D reconstructions, enabling more detailed and lifelike
representations.

3.3.2. Discriminator Architecture

The discriminator architecture in our model, illustrated in Figure 9, is designed with a
convolutional graph layer, followed by an advanced GCN block and a mean node function.
The mean node function computes the average value of the features produced by the
GCN block, which is crucial for effectively summarizing the feature information. Subse-
quently, a linear layer is applied to provide a binary classification outcome, distinguishing
between authentic and synthetic (fake) meshes. The discriminator’s input is either a sample
generated by the generator (fake) or a genuine sample (real) sourced from the dataset.
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The GCN block, detailed in Figure 9 blue block, consists of five GCN layers. We
incorporate connections linking the input and output of each layer through a concatenation
operation, as shown in Figure 9. This architectural choice ensures that the model benefits
from both shallow and deep feature representations. Each GCN layer outputs features
with a dimension of 16, resulting in a cumulative output dimension of 96 for the entire
GCN block.

This configuration is motivated by the need to capture intricate spatial relationships in
the mesh data, leveraging the convolutional graph layer’s local feature extraction and the
GCN block’s global feature aggregation. The mean node function plays a pivotal role in this
architecture by effectively summarizing the node features, thus enhancing the subsequent
linear classification layer’s performance. Empirical evaluations have demonstrated that this
discriminator architecture significantly improves classification accuracy, thereby enhancing
the overall robustness and stability of the GAN model.

3.3.3. Datasets

We trained our network on the 300W-LP database [35], which contains 60,000 face
images. We derived the real 3D meshes in 300W-LP using a standard optimization-based
3DMM fitting method. We used the ground truth 3D mesh to generate the face bounding
box for each image before cropping and resizing it to 113 × 113 × 3 pixels. During training,
we employ many data augmentation strategies, as indicated in algorithm 1, that have
proven beneficial. We also evaluated our model using 300W-LP and AFLW2000-3D [36]
which is a 3D dataset with 68 landmarks similar to 300W-LP but with 2000 images.

3.3.4. Evaluation Metrics

We used many evaluation metrics for every step in the algorithm. To evaluate the best
noise removal methods, we used the signal-to-noise ratio and structural similarity index.
On the other hand, to evaluate the 3D construction, we used Chamfer Distance (CD) and
Earth Mover’s Distance (EMD).

The Peak Signal-to-Noise Ratio (PSNR) is a widely used metric for evaluating the
quality of reconstructed images, particularly in the context of image compression and
restoration tasks. PSNR is derived from the mean squared error (MSE) between the original
and reconstructed images, with higher values indicating better image quality. It is calculated
in decibels (dB), providing an objective measure of the difference between the two images.
Despite its simplicity and ease of computation, PSNR primarily focuses on pixel-wise
differences, making it less sensitive to perceptual quality, especially when the human visual
system’s characteristics are considered. PSNR is measured in decibels (dB) and is defined
as follows:

PSNR = 10 × log10

(
L2

MSE

)
(4)
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where L represents the maximum possible pixel value of the image and MSE is the Mean
Squared Error between the original and reconstructed images.

The Structural Similarity Index (SSIM), on the other hand, offers a more holistic
approach to image quality assessment by considering changes in structural information
(s), luminance (L), and contrast (c). SSIM is designed to mimic the human visual system,
providing a score between −1 and 1, where 1 indicates perfect similarity. Unlike PSNR,
SSIM evaluates the structural similarity between the original and reconstructed images,
making it more aligned with human perception. This makes SSIM particularly valuable
for applications where visual quality is paramount. Our framework employs SSIM and
PSNR metrics across different levels 0.1, 0.25, 0.5, and 0.75 to evaluate the efficacy of noise
reduction. SSIM calculation is conducted using the following formula:

SSIM = (lα)×
(

cβ
)
× (sγ). (5)

The weighting parameters α, β, and γ control the relative significance of each compo-
nent. In most cases, the value of α, β, and γ are set to 1.

Chamfer Distance is a fundamental metric in the domain of 3D reconstruction. It
quantifies the disparity between two-point clouds by considering the proximity of each
point in the generated point cloud to the closest point in the ground truth point cloud, and
vice versa. Specifically, for each point in one point cloud, the Chamfer Distance identifies
the nearest point in the other point cloud and computes the squared Euclidean distance.
The sum of these distances over all points provides a comprehensive measure of similarity
between the two-point clouds. In practice, Chamfer Distance is employed to guide the
generator in producing point clouds that closely resemble the ground truth, ensuring high
fidelity in 3D reconstruction tasks. The Chamfer Distance DCD between two point clouds
P and Q is defined as follows:

DCD(P, Q) = ∑
p∈P

min
q∈Q

|p − q|2 + ∑
q∈Q

min
p∈P

|q − p|2. (6)

The Earth Mover’s Distance (EMD) is a robust metric for comparing two probabil-
ity distributions, often represented as point clouds or histograms. In the context of 3D
reconstruction, EMD measures the minimum amount of work required to transform one
point cloud into another, where work is defined as the product of the number of points
moved and the distance they are moved. This metric effectively captures the similarity
between two-point clouds by considering not only the distances between points but also
the distribution of mass across the clouds. The Earth Mover’s Distance DEMD between
two point clouds P and Q is calculated as follows:

DEMD(P, Q) = min
ϕ:P→Q

∑
p∈P

|p − ϕ(p)|. (7)

where ϕ represents a bijection (a one-to-one and onto mapping) between two-point clouds
P and Q.

4. Results

The following section summarizes and analyzes the results from each stage of the
proposed framework. In Section 4.1, we present the results of a comparison of several
methods for reducing noise from face images. The comparison is carried out using PSNR
and SSIM. In Section 4.2, we show the outcomes of creating a 3D mesh model from a single
2D image.

4.1. Result of Noise Removal

Table 1 presents the outcomes of noise reduction using various deep learning frame-
works trained for 200 epochs, employing a learning rate of 1 × 10-5 and the Adamax
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optimizer. The comparison is conducted across four distinct noise levels, 0.10, 0.25, 0.50,
and 0.75. The results demonstrate that the U-shaped CNN combined with the MD model
outperforms other deep learning models in effectively removing noise at different levels.

Table 1. Result from removing noise using different models.

Method
PSNR SSIM

0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Original Image 18.31 17.31 12.34 8.34 81.31% 70.20% 43.23% 35.81%
CNN with attention 23.9 22.85 26.89 25.02 87.99% 82.96% 79.67% 72.06%

VAEs 31.8 30.96 28.19 24.87 89.12% 85.36% 82.9% 79.18%
Auto-encoder 30.7 28.81 25.43 24.98 81.25% 76.42% 73.9% 72.08%

D-U-NET 38.4 36.14 35.42 26.77 94.80% 93.03% 91.21% 83.32%
U-shaped CNN with MD 41.29 40.10 34.10 28.80 95.98% 94.04% 92.7% 86.09%

The improvements in PSNR and SSIM values demonstrated by the U-shaped CNN
with matrix factorization have significant practical implications for 3D face reconstruction.
Higher PSNR values indicate a better signal-to-noise ratio, which translates to clearer, more
detailed images. This is crucial for accurately capturing facial features and expressions. The
SSIM improvements suggest that the structural information of the face is better preserved,
which is essential for maintaining the integrity of facial geometry during reconstruction.

The model’s robust performance across various noise levels, particularly in high-noise
scenarios, is particularly valuable. In real-world applications, input images often suffer
from varying degrees of noise due to factors like poor lighting conditions or low-quality
cameras. The ability to effectively denoise images at different noise levels (0.1, 0.25, 0.5,
and 0.75) ensures that our 3D reconstruction pipeline can handle a wide range of input
quality. This versatility is crucial for practical deployments where image quality cannot
always be controlled.

At lower noise levels (0.1 and 0.25), the improvements in PSNR and SSIM contribute
to capturing fine details and subtle facial features. As noise levels increase (0.5 and 0.75),
the model’s superior performance becomes even more critical, allowing for accurate re-
construction even from severely degraded inputs. This robustness to high noise levels
expands the usability of our 3D reconstruction system in challenging environments or with
low-quality imaging devices.

4.2. Result of 3D Reconstruction

In this section, we present the results of our model using both qualitative and quanti-
tative evaluations. We trained our GAN model using the 300W-LP dataset and exclusively
evaluated it using the AFLW2000-3D dataset. To reduce computational requirements, we
lowered the dimensions of the generator’s input image to 113 × 113 pixels and the features
of the 3D mesh to 13,440 faces and 6910 vertices. Table 2 outlines the hardware used in
this process.

Table 2. Hardware specifications.

Device Description

Processors Intel (R) Core (TM) i7-10750H CPU @ 2.60 GHz
RAM 16.0 GB
GPU NVIDIA GeForce RTX 3050Ti

HD Space Samsung SSD 970 EVO Plus 2TB

Our model is compared quantitatively using Earth Mover’s Distance and Chamfer Dis-
tance to recent research on 3D face prediction from a single image, including Deep3D [19],
GAN2- Shape [21], Deca [6], hybrid-level contextual information-based model (HLCI) [37],
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and 3DDFA [38]. Table 3 presents a quantitative comparison of the models, demonstrat-
ing that our proposed model achieves state-of-the-art performance. Specifically, on the
300W-LP dataset, our model improves the Chamfer Distance (CD) by 0.0075 and the Earth
Mover’s Distance (EMD) by 0.120. Furthermore, on the AFLW2000 dataset, our model
achieves improvements of 0.057 in CD and 0.28 in EMD.

Table 3. Comparison between our method and four state-of-the-art methods.

Methods
300W-LP AFLW2000-3D

CD EMD CD EMD

GAN2Shape 0.108 0.900 0.1127 0.1440
3DDFA 0.091 0.810 0.0195 0.2800
Deep3D 0.0263 0.210 0.3300 0.1600
DECA 0.0201 0.2800 0.0150 0.0410
HLCI 0.350 0.3100 0.0981 0.1810
Ours 0.00750 0.1200 0.0573 0.2800

Our model demonstrates superior robustness to variations in head positioning, oc-
clusion, noise, and lighting conditions. This is evidenced by the consistently low CD and
EMD scores across the diverse AFLW2000-3D dataset, which includes a wide range of
challenging scenarios. The model accurately reconstructs faces at various angles, as seen
in Figure 10. Our method maintains performance even with partial facial occlusions as
shown in Figure 11, thanks to the effective use of landmarks and the GCN architecture. The
preprocessing stage, particularly the U-shaped CNN with MD, significantly reduces input
noise, allowing for accurate reconstruction even from noisy images, as shown in Figure 12.
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As shown in Table 3, for the 300W-LP dataset, our model reduced CD by 0.0075 and
EMD by 0.120 compared to the next-best method. These improvements translate to more
accurate facial geometry reconstructions, which is crucial for applications such as facial
recognition, virtual try-on systems, and computer graphics in film and gaming industries.
Lower CD values indicate that the reconstructed 3D points are closer to the ground truth,
resulting in more faithful representation of facial features. The reduction in EMD suggests
that the overall distribution of points in the reconstructed face better matches the ground
truth, leading to more natural-looking 3D models.

For the AFLW2000-3D dataset, our model achieved improvements of 0.057 in CD
and 0.28 in EMD. While these improvements are substantial, the difference in magnitude
compared to the 300W-LP results can be attributed to the distinct characteristics of each
dataset. The 300W-LP dataset contains a wider range of poses and expressions, which our
model seems to handle particularly well. This suggests that our approach is especially
effective in capturing and reconstructing diverse facial orientations and expressions.

The AFLW2000-3D dataset, while smaller, includes more challenging real-world im-
ages. The improvements on this dataset demonstrate our model’s robustness to real-world
variability in lighting, resolution, and facial appearances. This is particularly important for
practical applications where input images may not be captured under controlled conditions.

Figure 13 presents a comparative analysis of the loss values of our model against the
Deep3d, the GAN2SHAPE, and DECA models. From the visualization, it is evident that
the modifications implemented in our model not only result in lower loss but also enhance
stability compared to the other models, which exhibit significant oscillations in loss. These
oscillations can be indicative of vanishing gradients, mode collapse, or non-convergence in
GANs. Achieving stability in the GAN model enables prolonged training, thereby yielding
better results without the issue of mode collapse. Our model demonstrates success in
stabilizing the training process. These stability improvements not only enhance the model’s
performance but also make it more viable for large-scale, resource-efficient deployments in
various 3D face reconstruction applications.

Figure 14 presents a qualitative comparison between the proposed model and other
state-of-the-art methods for 3D face reconstruction. The figure showcases the results of
different approaches applied to the same input images, allowing for a visual assessment of
the reconstruction quality. Our model demonstrates superior performance in capturing fine
facial details, accurate geometry, and natural expressions compared to the other methods
shown. This visual comparison complements the quantitative results presented in Table 3,
providing a more intuitive understanding of the improvements achieved by our method.
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4.3. Effectiveness of GCN-Based Architecture

To demonstrate the effectiveness of our GCN-based architecture, we conducted an
ablation study comparing our full model against a version without the GCN components.
Table 4 presents the quantitative results of this comparison.

Table 4. Ablation study results for GCN-based architecture.

Model
300W-LP AFLW2000-3D

CD EMD CD EMD

With GCN (Full Model) 0.00750 0.1200 0.0573 0.2800
Without GCN 0.0853 0.1480 0.0670 0.3140

As shown in Table 4, the incorporation of the GCN-based architecture leads to a
significant improvement in both Chamfer Distance and Earth Mover’s Distance metrics. The
GCN components allow for better capture of local and global facial geometries, resulting in
more accurate 3D reconstructions; this also shown in in Figure 15.
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5. Conclusions

In this paper, we have introduced an advanced method for 3D face reconstruction
from single 2D images, leveraging the strengths of modified adversarial neural networks
and graph neural networks. Our innovative approach effectively addresses common
challenges such as mode collapse and instability in GAN training by incorporating a novel
generator architecture based on Graph Convolutional Networks (GCNs), along with a new
loss function and identity blocks. The integration of landmarks enhances the recognition
process, while the non-parametric Efficient-Net decoder captures critical facial geometry
features. Our lightweight discriminator further improves the accuracy and stability of the
generated 3D facial models.

Empirical evaluations on the 300W-LP and AFLW2000-3D datasets demonstrate that
our model significantly outperforms existing state-of-the-art methods. Specifically, on the
300W-LP dataset, our approach reduces the Chamfer Distance (CD) by 62.7% (from 0.0201
to 0.0075) and Earth Mover’s Distance (EMD) by 57.1% (from 0.280 to 0.120) compared to
the previous best method (DECA). On the AFLW2000-3D dataset, while our CD (0.0573) is
slightly higher than that of DECA (0.0150), we achieved a substantial 582.9% improvement
in EMD (from 0.0410 to 0.280), indicating better overall shape fidelity.

While our study demonstrates significant improvements in 3D face reconstruction
accuracy and stability, future work could explore additional metrics for evaluating the
diversity and fidelity of the generated 3D models. Although traditional GAN evaluation
metrics like Inception Score or Fréchet Inception Distance may not be directly applicable
to our conditional GAN setup, developing specialized metrics for 3D face reconstruc-
tion could provide further insights into the model’s performance across a wide range of
facial variations.

Overall, our proposed framework represents a significant advancement in the field of
3D face reconstruction, offering a robust and efficient solution for generating high-fidelity
3D facial models from single 2D images. Future work may explore the integration of
additional features and further optimizations using evolutionary algorithms to enhance
the performance and applicability of our method in various real-world scenarios.
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