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Abstract: Place recognition is widely used to re-localize robots in pre-built point cloud maps for
navigation. However, current place recognition methods can only be used to recognize previously
visited places. Moreover, these methods are limited by the requirement of using the same types of
sensors in the re-localization process and the process is time consuming. In this paper, a template-
matching-based global re-localization framework is proposed to address these challenges. The
proposed framework includes an offline building stage and an online matching stage. In the offline
stage, virtual LiDAR scans are densely resampled in the map and rotation-invariant descriptors can
be extracted as templates. These templates are hierarchically clustered to build a template library.
The map used to collect virtual LiDAR scans can be built either by the robot itself previously, or
by other heterogeneous sensors. So, an important feature of the proposed framework is that it can
be used in environments that have never been visited by the robot before. In the online stage, a
cascade coarse-to-fine template matching method is proposed for efficient matching, considering
both computational efficiency and accuracy. In the simulation with 100 K templates, the proposed
framework achieves a 99% success rate and around 11 Hz matching speed when the re-localization
error threshold is 1.0 m. In the validation on The Newer College Dataset with 40 K templates, it
achieves a 94.67% success rate and around 7 Hz matching speed when the re-localization error
threshold is 1.0 m. All the results show that the proposed framework has high accuracy, excellent
efficiency, and the capability to achieve global re-localization in heterogeneous maps.

Keywords: global re-localization; place recognition; LiDAR SLAM; template matching; real-time
performance

1. Introduction

Simultaneous localization and mapping (SLAM) has been a hot research field in the
past years. This technology enables automated guided vehicles (AGVs) to be applied in
various applications, such as disinfection, security inspection, smart factories, etc. With the
development of 3D LiDAR sensors and their affordable costs, 3D LiDAR-based SLAM has
recently attracted more attention due to its long detection distance and insensitivity to
illumination. Furthermore, how to re-localize a 3D LiDAR-based navigation system within
a pre-built point cloud map is a classic but important problem in robotic applications.

The re-localization problem is usually regarded as a place recognition problem. Place
recognition aims to recognize a previously visited place and can be used for various robot
missions [1] such as loop detection in simultaneous localization and mapping (SLAM) [2],
global localization for navigation [3], localization error recovery for a kidnapped robot [4],
or multi-robot mapping [5]. The proposed re-localization framework focuses on the prob-
lem of re-localizing a robot in a pre-built map, and can be used for applications including,
but not limited to, navigation and localization error recovery.
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To fulfill re-localization in a pre-built 3D map, some researchers tried to adopt local
descriptors in 3D point clouds [6,7]. Others tried to design global representative descrip-
tors [2,8] for better computational efficiency and improved robustness. Applying deep
learning technologies for feature representations [9–11] and similarity modeling [12,13]
is a current hot trend in research. Also, some traditional techniques in image processing
are extended for similarity modeling, such as chamfer matching and template match-
ing [14]. Among these methods, global descriptor-based methods are robust and easy
to be applied. However, these methods rely on comparing the similarity of the current
scene with previously visited scenes, and therefore, have limitations when dealing with
unvisited places.

In order to re-localize a robot globally with promising efficiency and accuracy, a real-
time global re-localization framework is proposed. It is essentially a matching process of
global descriptors and has two stages, namely, the offline building stage and the online
matching stage. To overcome the limitation of dealing with unvisited places, virtual LiDAR
scans in the whole map are first densely collected to build a template library offline, where
the map can be built either by the robot itself previously, or by other 3D reconstruction
techniques. Then, the robot can re-localize itself in the map by matching the current scene
with the template library online. Specifically, at the offline building stage, a 3D point cloud
map is first built by a LiDAR SLAM mapping algorithm to obtain the environment model.
Then, a template library is established by collecting virtual LiDAR scans in a physical
simulation engine using the environment model and robot URDF model. Finally, templates
are hierarchically clustered and used to build a nearest-neighbor search engine consisting of
locality-sensitive hashing (LSH) and a k-dimensional tree (KD tree). At the online matching
stage, a cascade coarse-to-fine online template matching method with high efficiency is
proposed, which takes full advantage of the properties of descriptors, the hierarchical
structure between templates, and the nearest-neighbor search engine.

The main contributions are summarized as follows:

1. The proposed framework is designed to re-localize a robot globally in a pre-built map
for navigation, even at locations that have not been visited during mapping.

2. The proposed framework also works with heterogeneous 3D maps. The map does
not have to be acquired with the same sensors or the same robot. Instead, it could
be provided by an external service, which is a trend that is becoming increasingly
popular in the future for applications like autonomous driving.

3. An efficient cascade coarse-to-fine template matching method is proposed for online
matching and has a promising real-time performance on large-scale datasets.

4. The proposed global re-localization framework is validated on both our simulated
dataset and a public dataset, where it shows promising accuracy and efficiency.

2. Related Works

Three-dimensional LiDAR-based place recognition methods try to discern places that
an AGV has visited before. They can be divided into local descriptor-based methods, global
descriptor-based methods, and deep learning-based methods.

Local descriptor-based methods adopt similar ideas to visual SLAM. Instead of ex-
tracting local invariant descriptors of keypoints in 2D images, these methods extract local
descriptors of keypoints in 3D point cloud data to build a bag of words (BOW). As for 3D
point cloud local descriptors, on the one hand, some are extended from their 2D versions,
such as 3D-SIFT [6] and 3D-SURF [7]. On the other hand, others can be extended from
existing well-designed point cloud descriptors. For example, point feature histograms
(PFHs) [15] and fast point feature histograms (FPFHs) [16] explore the geometry information
by comparing local surface normal differences. Signature of Histograms of Orientations
(SHOT) [17] divides the space around a keypoint into several regions and collects the
normal distribution histogram of each region to generate a descriptor. Guo et al. [18]
enriched SHOT with intensity information and proposed a new probabilistic keypoint
voting approach to fulfill place recognition. However, detecting distinctive keypoints with
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high repeatability is still a challenging problem [19]. Also, identifying local descriptors
is usually a compute-intensive operation, requiring keypoint detection and lots of local
geometric calculations.

Global descriptor-based methods reduce the computational complexity and improve
the robustness by extracting the features from the whole point cloud [3]. Kim et al. [2]
proposed an egocentric spatial descriptor named Scan Context (SC). The SC descriptor
encodes a whole point cloud in a 3D LiDAR scan into a matrix using the height information
of the point cloud. It has been shown that extracting only the highest points of a visible
point cloud outperforms other existing global descriptors. Wang et al. [8] proposed Intensity
Scan Context by replacing the height information of the point cloud with the intensity and
improved the robustness of the descriptor. Compared with [2], Wang et al. [20] also encoded
the height information to obtain LiDAR Iris images but achieved rotation invariance by
applying the Fourier transform to the descriptors. Cop et al. [21] established a local reference
frame to generate a rotationally invariant descriptor regardless of viewpoint changes.
Other than directly computing the height and intensity properties of point clouds, some
researchers also use the geometric primitive properties of global point clouds to represent
the scene abstractly. Wohlkinger et al. [22] proposed the Ensemble of Shape Functions
(ESFs), which describes distance, angle, and area distributions on the surface of the partial
point cloud using a series of histograms. Wietrzykowski et al. [23] represented both the
scene and global map by planar segments and used multiple triplets of planar segments to
generate a localization probability distribution. Schaefer et al. [24] extracted pole landmarks
from 3D LiDAR scans to represent the scene to improve localization robustness, as poles
are common and not affected by seasonal changes in urban environments.

Since global descriptors are computed in the LiDAR sensor’s reference frame, most de-
scriptors are not translation-invariant. So they can only be used for place recognition within
keyframe data collected on the mapping trajectory for loop-closure detection and coarse
re-localization. Mapping an unfamiliar environment has now become easy. Benefiting from
the long detection range of LiDAR, a global 3D point cloud map can be generated from
point cloud data collected at only a few locations. In this case, the AGV must re-localize
itself where it has not visited. Thus, the lack of translation invariance limits the application
of existing place recognition algorithms.

To date, deep learning techniques have been applied to solve the place recognition
problem in many processes, including point cloud feature extraction, descriptor similarity
evaluation, and even end-to-end solutions. A typical way to leverage deep learning
techniques is to extract semantic features by segmentation and detection in point cloud
data. This semantic information can be used for building graphs, and place recognition is
then carried out by solving a graph matching problem [9,10]. In contrast, Jiang et al. [25] also
used graph matching but relied only on plane semantic information. Yin et al. [12] proposed
a semi-handcrafted deep learning framework that learns representations by LocNet and
solves the place recognition problem as a similar modeling problem. Chen et al. [13]
utilized a deep neural network exploiting different cues generated from LiDAR data for
similarity computation. Uy et al. [26] extracted point cloud descriptors using deep learning,
allowing end-to-end training and inference to extract the global descriptor from a given 3D
point cloud. Kim et al. [4] used SC maps to train a CNN for long-term place recognition.
And, Fu et al. [27] even proposed a novel method to localize the vehicle by extracting and
comparing the spatially discriminative feature maps of the satellite image patch and the
LiDAR scans using a neural network. Although deep learning has surprised us in some
datasets, deep learning-based methods require a large amount of data and manual labels
for parameter training.

Thus, to re-localize the navigation system in the map even if the location has not been
visited during the mapping stage, we propose that virtual LiDAR scans in the whole map
are first densely collected to build a template library. Then, a cascade coarse-to-fine online
template matching method is designed for efficient template matching, balancing both
efficiency and accuracy.
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3. The Proposed Re-Localization Framework

As shown in Figure 1, the proposed global re-localization framework consists of an
offline building stage, including environment modeling, virtual LiDAR scan collection,
descriptor extraction, hierarchical clustering, nearest-neighbor index building, etc.; and an
online matching stage, including descriptor extraction, coarse matching of template cluster
candidates, and refined matching into clusters.

Figure 1. The proposed global re-localization framework.

At the offline stage, a simulation environment is first established based on the 3D point
cloud map. Then, an AGV model is placed in the simulation environment to collect point
cloud data densely. After that, Principal Component Analysis Scan Context (PCASC) de-
scriptors [28] can be extracted from each point cloud and stored as templates together with
the metadata. All templates are clustered using the agglomerative hierarchical clustering
method to produce representative templates of each cluster, which can reduce the overall
number of templates and build a hierarchical structure. Finally, a nearest-neighbor search
engine is built on representative templates. The construction of the template library in-
volves template generation, template clustering, and organizing the templates by building
an index, which is actually the entire offline build phase.

At the online matching stage, coarse matching based on the offline-built nearest-
neighbor search engine is used to find template cluster candidates. Then, refined matching
proceeds on these clusters for more accurate estimation results.

3.1. Template Generation

At present, dense reconstruction of unfamiliar environments has become easy using
SLAM technologies and products like DJI Terra. A mesh model of the environment can be
easily accessed and used to establish a simulation environment using the Gazebo physical
simulation engine.

To collect point cloud data, an AGV model is placed at densely sampled positions
in the Gazebo physical simulation engine while moving the AGV in small steps. At each
sampling location, we detect collisions between the AGV and the environment, as in [29],
which guarantees that the sampled templates make sense, i.e., the AGV will lie on the
surface and not clash with any objects in the environment.

For each frame point cloud data point, a PCASC descriptor [28] can be extracted from
it. The PCASC descriptor is an improvement of the Scan Context descriptor [2] to deal
with the rotation invariant issue. It is achieved by performing a principal component
analysis on the point cloud to determine a local reference coordinate before generating the
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SC descriptor. It speeds up the process of similarity computation between two descriptors
by eliminating the ambiguity of rotation.

At last, a template is defined as a collection of the PCASC descriptor and its metadata,
where the metadata include the descriptor’s dimensions, robot’s position in the map, PCA
angle, etc. The sampling procedure in the simulation engine and a visualized PCASC
descriptor can be seen in Figures 2 and 3.

Figure 2. Resampling in Gazebo using mesh model. (Left) AGV in Gazebo with mesh model,
collecting point cloud data. (Right) Collected point cloud data.

Figure 3. Extracted PCASC global descriptor (20 row × 60 column) from point cloud data in Figure 2.

3.2. Template Clustering

Since densely collected templates are oversampled, they are clustered by the agglom-
erative hierarchical clustering method to produce representative templates of each cluster.
On one hand, the number of templates is reduced and representative templates are more
distinguishable. On the other hand, a hierarchical structure can be established from the
template library. At the online matching stage, the reduced templates can offer a coarse
re-localization result efficiently, then the hierarchical structure can be used to conduct a
hierarchical matching to improve the re-localization accuracy.

Templates are clustered in a bottom-up way, with each sample starting in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy. In order to decide
which clusters should be combined, a measure of matrices of dissimilarity between clusters
is required. The maximum, minimum, and average linkage matrices are widely used to
specify the dissimilarity of sets as a function of the pairwise distances of samples in the
cluster. And they can be formulated as

Dmax
(
Ci, Cj

)
= maxx∈Ci ,y∈Cj d(x, y), (1)

Dmin
(
Ci, Cj

)
= minx∈Ci ,y∈Cj d(x, y), (2)

Davg
(
Ci, Cj

)
= avgx∈Ci ,y∈Cj

d(x, y), (3)

where D(Ci, Cj) is the distance matrix between clusters, C is a cluster of samples, x and y are
samples belonging to each cluster, and d(x, y) is the distance matrix between two samples.

The distance matrix between two samples is calculated in the same way as in [28],
which is

d(x, y) =
1
n

n

∑
i=1

(
1 − xi · yi

∥xi∥ · ∥yi∥

)
. (4)
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As the similarity and distance are all normalized from 0 to 1, they can be converted by

s(x, y) = 1 − d(x, y), (5)

where s(x, y) is the similarity measure between two samples.
For point clouds collected at the same position, different sensor orientation leads to

column vectors shifting of the descriptor but still expressing the same scene, which is
also known as the viewpoint change challenge. So, in the similarity calculation of the SC
descriptor, we calculate it as

smax(x, y) = max
i∈n

s(xi, y), (6)

where smax(x, y) is the highest score by calculating the similarity between two descriptors
by shifting n columns. Since the uncertainty of sensor orientation is eliminated through
the principal component analysis of the point cloud, n is set to one when calculating the
similarity between two PCASC descriptors in this paper.

Each cluster’s representative templates are selected by maximizing the total similarity
between the representative template and all other templates within the cluster as

ti
rep =

{
x | max

y∈Ci
∑ s(x, y), x ∈ Ci

}
, (7)

where ti
rep is the representative template of cluster Ci.

The clustering procedure is based on similarity calculations between samples. The cal-
culation has a complexity of O(n2), where n is the total number of samples (templates).
However, the computation cost is unaffordable when n increases, and samples far from
each other may be clustered together, which is not preferred in building a local hierarchical
structure. So, local constraints are introduced while clustering by only considering similari-
ties of connected samples and regarding others as zero. Connectivity between samples is
determined by searching the sample’s nearest neighbors. Local constraints significantly
optimize the time for clustering.

3.3. Nearest-Neighbor Search Engine Building

The number of representative templates is much smaller after clustering than that of
the original templates. Nevertheless, the total matching time still grows approximately
linearly with the number of representative templates and the size of the PCASC descriptor.
Therefore, a cascade matching is proposed to improve the real-time performance, consisting
of coarse matching using the nearest-neighbor search engine to obtain template cluster
candidates and refined matching on these clusters to improve accuracy.

The coarse matching aims to reduce the search scope by finding template cluster
candidates. The coarse matching includes candidate searching and candidate sorting
stages. The backbone of the coarse matching is a nearest-neighbor search engine combining
locality-sensitive hashing (LSH) and k-dimensional trees (KD trees).

The search engine is built using column non-zero vectors (CNZ vectors) of all repre-
sentative templates. The CNZ vector is a compression of the PCASC descriptor, a column
vector with each element representing the number of non-zero values in each row of the
PCASC descriptor. CNZ vectors are used to build the nearest-neighbor search engine
to make the most of the sparsity of the PCASC descriptor. The CNZ vector remains
rotation-invariant and compresses the number of dimensions of the data. For example,
if the PCASC descriptor has 20 rows and 60 columns, we can obtain a CNZ vector of
20 dimensions, with each element representing the number of non-zero values in each row
of the PCASC descriptor.

The nearest-neighbor search engine is built as in Figure 4. The CNZ vector is used to
compute the hash key of the LSH and used as the key value to build the KD tree. CNZ
vectors are first used to compute hash keys with appropriate hash functions, and similar
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vectors will produce the same hash keys and be grouped into a subset. Then, all samples in
the subset are stored in a KD tree using CNZ vectors as keys. This can avoid exhaustive
matching within the subset when querying online. LSH can determine a subset in an
instant, and the KD tree of the subset can be used to efficiently search for nearest neighbors.

Figure 4. The nearest-neighbor search engine building process.

As for the hash function, we use the binary projection function, which projects the CNZ
vectors onto several basis vectors and assigns a binary value (zero or one) according to the
sign. Thus, the hash key is the sequence of all binary values (a string like 1101100110). LSH
is probabilistic in finding nearest neighbors, so multiple hash functions are used to increase
the success rate of finding nearest neighbors in this paper, as in [30]. In practice, we used the
principal component analysis binary projection (PCA-BP) and random binary projection
(RBP). The basis vectors of the PCA-BP function are obtained by principal component
analysis of the CNZ vectors, while those of RBP are selected randomly.

3.4. Online Template Matching

Online template matching consists of three stages, descriptor computation, coarse
matching, and refined matching, as shown in Figure 5. The coarse matching aims to find
template cluster candidates among all representative templates, and the refined matching
aims to improve accuracy by searching these clusters.

Figure 5. The online template matching procedure.

At the descriptor computation stage, for each test sample noise points are filtered by
applying a radius outlier removal filter on the LiDAR scan. Then, a PCASC descriptor is
extracted from the point cloud as well as its CNZ vector.

At the coarse matching stage, template cluster candidates are determined by candidate
searching and candidate sorting procedures. Firstly, the CNZ vector is used to calculate
hash keys. Each hash key corresponds to a KD tree storing a set of similar templates, which
produces K candidates. Distances are measured based on the Manhattan distance [31]
between CNZ vectors during the candidate searching procedure. Secondly, all candidates
are sorted together based on the distance definition, as in Equation (4). This candidate
sorting procedure is based on the similarities between PCASC descriptors instead of the
Manhattan distance between CNZ vectors, as this is more discriminative.

At the refined matching stage, the top 10 candidates are kept, and hierarchical search-
ing is performed on the corresponding clusters for more accurate re-localization results.
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In the candidate searching procedure of the coarse matching stage, CNZ vectors are
taken as the key values to conduct the nearest-neighbor search. However, due to the
similarity of some scenes and their CNZ vectors, wrong template cluster candidates may
be found if K is too small, resulting in an increase in the final re-localization error. So it
is critical to find the correct nearest neighbors using the CNZ vector for high re-location
accuracy. The number of candidates K affects the re-location accuracy and calculation
efficiency to a certain extent. It is a trade-off between matching speed and precision.

4. Experimental Results

In this section, the framework is firstly validated using simulated data. During the
simulation, both templates and testing scenarios are collected using the same sensor in a
simulation engine. A 3D point cloud map, built by adopting the SC-LeGO-LOAM [2,32]
algorithm on the school campus, is used as the environment model. Then, the framework
is further validated on The Newer College Dataset [33] using real LiDAR scans. During val-
idation on the public dataset, templates are collected in the simulation engine using a
pre-built 3D map collected by a Leica BLK360 sensor. Testing scenarios are real 3D LiDAR
scans (point cloud) collected by Ouster 64 multi-beam LiDAR. Thus, the sensor used for
mapping and that used for re-localization are heterogeneous in the public dataset used
for validation.

In Section 4.1, we show the visualization results of hierarchical clustering and illustrate
the importance of local constraints during similarity calculation in terms of saving total
clustering time while not decreasing clustering performance. In Section 4.2, we demonstrate
the feasibility of enabling global descriptors to re-localize globally in a 3D point cloud map
by densely sampling descriptors offline. The results in Section 4.2 are obtained without
any acceleration, and the only purpose is to show the global re-localization ability. Then,
the accuracy and efficiency of the algorithm are validated using simulated data and real
data, respectively, in Sections 4.3 and 4.4. Some potential capabilities and limitations of this
work are discussed in Section 5.

The experiments were carried out on a computer with an Intel 9700 CPU and 32 G
DDR4 RAM. The code was developed in the Python language and the running time was
calculated using a single thread.

4.1. Configuration of Clustering

First, we compare the performance of different clustering principles. The visualization
results of clustering under different principles are shown in Figure 6. For clear visualization,
only part of the whole map is shown using 10 K samples.

(a) average linkage (b) maximum linkage (c) minimum linkage

Figure 6. Different clustering principles while merging clusters using 10 K samples. Clusters are
identified from each other by color, where each dot represents a real sample, and representative
templates for each cluster are plotted with black dots.

Maximum linkage constrains that the maximum distance between each pair of samples
in the cluster is lower than the clustering threshold and produces the best local constraints.
In contrast, average and minimum linkage loosen the constraints and prefer to link more
dissimilar samples into one cluster. The minimum linkage criterion produces the worst
clustering result.

Second, to prove that local constraints during the clustering procedure can distinctively
decrease the total clustering time while not decreasing the matching accuracy, we repeat
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clustering and matching with and without local constraints. The statistical results in Table 1
are collected using 100 K samples, clustered by the maximum linkage principle. The success
rate is defined as the percentage of test samples for which the re-localization error is less
than the threshold.

Table 1. Hierarchical clustering with or without local constraints.

Number
of Templates

Local
Constraint

Similarity
Compute Time (s)

Cluster
Threshold

Number
of Clusters

Success Rate at Re-Localization Error Threshold (m)

0.2 0.4 0.6 0.8 1.0

100 K

None 228 s × 100 K

0.2 15 K 99.99% 100% 100% 100% 100%
0.3 7.7 K 99.99% 99.99% 99.99% 99.99% 99.99%
0.4 4.4 K 99.93% 99.95% 99.96% 99.97% 99.97%
0.5 2.4 K 99.72% 99.79% 99.84% 99.88% 99.89%

Using KNN 0.11 s × 100 K

0.2 15 K 99.99% 100% 100% 100% 100%
0.3 8.4 K 99.99% 99.99% 99.99% 99.99% 99.99%
0.4 6.0 K 99.77% 99.88% 99.92% 99.93% 99.94%
0.5 4.6 K 98.80% 99.30% 99.61% 99.69% 99.74%

We compare the clustering and matching performance with and without local con-
straints. The clustering and matching results are similar in the following aspects: the
number of clusters, time for clustering, and re-localization errors. This shows the local
connection constraints have no negative influence. In contrast, the time cost by similarity
calculation when not using local constraints is 2000 times that with constraints. As observed
in Table 1, the number of clusters without constraints is a little smaller, and the success rate
is a little higher because similar samples are clustered together despite how far they are
apart from each other.

All things considered, using local constraints during similarity calculation is important
for saving total clustering time while not decreasing clustering performance.

4.2. Global Re-Localization Performance

To prove the global re-localization ability of the proposed framework, the PCASC
descriptors of trajectory points and those of resampled points are used to carry out a
cross-matching. Both of them are collected in the simulation engine using a 3D point cloud
map built by the SC-LeGO-LOAM [2,32] algorithm in the school campus. The trajectory
points mean the PCASC is collected where the AGV has visited while mapping, while the
resampled points are collected in the whole map.

During the test, 100 K samples are divided into 50 K template samples and 50 K test
samples when using resampled templates to match the resampled template scenes.

The results in this subsection are obtained without any acceleration, and the re-
localization is achieved only by exhaustive matching. The purpose of this experiment
is to show the global re-localization capability of the proposed framework. The matching
time is the average time to match a scene using the Python implementation and is almost
linearly related to the number of templates.

The statistical results in Table 2 show that if the template library is built from trajectory
points and tested by resampled points, the success rate is extremely low. Because the
trajectory points cannot cover the entire map, it only succeeds if the test sample is within
a limited distance of the trajectory path. In contrast, if the template library is built from
resampled points, all test samples can be matched successfully, whether tested by resampled
points or by trajectory points.

The results indicate that global descriptors like PCASC have a limitation when used
for global re-localization because of the lack of translation invariance. And it is feasible to
re-localize a robot using global descriptors with the proposed framework.



Sensors 2024, 24, 6288 10 of 16

Table 2. Ability to re-localize globally (without any acceleration).

Query Scene Number
of Scenes Template Library Number

of Templates Match Time (s)
Success Rate at Re-Localization Error Threshold (m)

0.2 0.4 0.6 0.8 1.0

Resampled points 100 K Trajectory points 1.6 K 2.3 2.39% 5.02% 7.78% 10.07% 12.51%
Resampled points 50 K Resampled points 50 K 66.3 39.70% 96.15% 98.19% 98.72% 99.05%
Trajectory points 1.6 K Resampled points 100 K 139.3 100% 100% 100% 100% 100%

4.3. Validation on Simulated Data

In this subsection, we test the performance of the framework using 100 K templates
collected through the Gazebo physical simulation engine and 2000 test samples randomly
selected from the templates. Each sample is matched with the template library to obtain
the re-localization result.

The distance between the re-localization result and the reference position is counted
as the re-localization error in Figure 7. The success rate curve is defined as the proportion
of the test samples whose re-location error is less than the current threshold. Each curve
represents a matching success rate curve for a certain K value, where K indicates the
number of template candidates.

Figure 7. Accuracy comparison between different number of candidates on simulated data.

The online matching is divided into four processes including descriptor generation,
template cluster candidate searching, candidate sorting, and hierarchical searching in the
clusters, of which the running time of the last two are counted in Figure 8.

Figure 8. Efficiency comparison between different numbers of candidates on simulated data.
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Since the test sample is a subset of templates, the success rate at 0.2 m should ideally
be 100%. But the success rate is less than 100%, and it increases as the number of candidates
increases. This indicates that CNZ vectors from similar environments reduce the search
accuracy of the nearest neighbor, thus reducing the re-localization accuracy. This problem
is alleviated by increasing the number of candidates (K) at the cost of reducing efficiency.

When the cluster threshold is 0.1, the number of template candidates is 10, then the
average time for matching is about 30 ms, as in Figure 8, with a success rate of 99.85% at
the re-localization threshold of 1.0 m, as in Figure 7. Considering the time for calculating
one PCASC descriptor is about 60 ms, the re-localization speed is about 11 Hz overall.

4.4. Validation on Public Dataset

The proposed re-localization framework is further validated on a public dataset with
real LiDAR scans and ground truth robot position in this subsection. The dataset used
in this subsection is The Newer College Dataset [33], which satisfies the scenario that an
AGV can map the whole environment by visiting only a small path but can re-localize itself
within the whole area.

The quad in the dataset is about 2000 square meters, as shown in Figure 9. A recon-
structed mesh model based on a point cloud obtained from a Leica BLK360 sensor is used
to collect 43,770 templates, using a step size of 0.2 m. The total size of the templates is
679 MB. Then, 600 real LiDAR scans obtained from an Ouster OS-0 sensor are used as test
samples for querying. And, 43,770 resampled virtual LiDAR scans are used as a template
library for matching.

(a) Top view of test environment (b) Distribution of test samples

Figure 9. The NCD dataset used for validation. (a) Top view of the test environment. Each test sample
is plotted with a red dot at the location in the environment where it was collected. (b) Distribution of
test samples on X-Y plane.

The accuracy and efficiency change as the number of template candidates increases, as
calculated in Figures 10 and 11. The definition is the same as in Figures 7 and 8.
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Figure 10. Accuracy comparison between different numbers of candidates on real data.

Figure 11. Efficiency comparison between different numbers of candidates on real data.

In terms of efficiency, the time for matching 10 clusters in our dataset is 30 ms but in
the NCD dataset is about 56 ms. This is caused by the difference in the average number
of samples per cluster. More specifically, in the template clustering phase, all samples are
recursively merged until the clustering threshold is reached. The clustering threshold can
be the maximum similarity difference between samples in the cluster (used in this paper) or
the maximum number of samples contained in the cluster. When different environmental
models are used, due to the characteristics of the environment model, the number of
samples contained in the cluster may be different even if the clustering threshold is the
same. For example, the average number of samples per cluster in the NCD dataset is about
twice that of our dataset while using the same clustering threshold of 0.1, as is the ratio of
the matching time between them.

In terms of accuracy, it can be seen from Figure 10 that the matching accuracy on the
public dataset has decreased compared to the tests on the simulated dataset in Figure 7.
Specifically, the success rate in Figure 10 is lower than that in Figure 7 when the same
localization threshold is chosen. This is because, although the point clouds were acquired
for the same environment, there are still differences between the virtual and real point
clouds. For this reason, the matching result may not be exactly the same as the ground true
value, resulting in a decrease in accuracy. However, if an acceptable threshold is chosen,
such as specifying a maximum localization error of 1.0 m, 94.67% of the test samples can
still be successfully matched, which can be seen from Figure 10.

The matching result distribution of this test is plotted in Figure 12, with each point
representing a match result for one test sample. The horizontal axis indicates the similarity
between the test sample and the matched template. And the vertical axis indicates the
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Euclidean distance between the ground truth position of the test sample and the coordinates
of the matched template, which is called the matching error or localization error in this
paper. Figure 12a shows the result of the exhaustive matching method and Figure 12b shows
the result of the proposed cascade coarse-to-fine online template matching method. For the
exhaustive matching result in Figure 12a, the success rate is 97.83% when the threshold is
set to 1.0 m, taking approximately 191 s per sample. For the proposed LSH-KDT match
result in Figure 12b (K is 40), the success rate is 94.67% when the threshold is set to 1.0 m,
taking approximately 0.135 s matching per sample. Figure 12 is used to illustrate that the
degradation in matching accuracy is not a defect in the proposed framework, but a result
of the inconsistency of the point cloud data. It also shows that the proposed framework
achieves almost the same accuracy performance as exhaustive matching.

(a) Exhaustive match result distribution (b) LSH-KDT match result distribution

Figure 12. Match result distribution between distance and similarity. (a) Exhaustive match result
distribution. (b) LSH-KDT match result distribution.

Since the exhaustive match is a traversing matching process without acceleration, it
stands for the best performance under the experimental setup. But the re-localization errors
of some test samples are still bigger than 0.2 m. This might be caused by two factors. One
is the difference in noise distribution between real LiDAR scans and templates resampled
by the Gazebo physical simulation engine. The other is the similarity between scenarios.
Under this premise, the LSH-KDT match result achieves good performance compared to
the exhaustive match result. The slight difference in their matching accuracy is also caused
by the error of searching for the nearest neighbor using CNZ vectors of similar scenarios,
as in Figure 7.

5. Discussion

The online matching process is divided into four parts, starting from descriptor gener-
ation and ending with receiving an estimated position, which are descriptor generation,
candidate searching, candidate sorting, and hierarchical searching into clusters. The de-
scriptor generation time is constant, about 60 ms. The candidate searching time is less than
1 ms during testing, so it is too small to be counted in Figures 8 and 11. The candidate
searching time varies with the number of samples but is negligible, as shown in Figure 13,
which shows the potential to use the framework in a large-scale environment. The candi-
date sorting time is directly proportional to the number of candidates, resulting in a higher
success rate and some performance loss costs. Finally, the matching time of the cluster is
only related to the number of samples contained in the cluster. In conclusion, the proposed
matching framework can guarantee similar matching efficiency even on a much bigger
template library and larger-scale environment.
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Figure 13. The change in candidate searching time with the increase in the number of representative
templates for different K values.

It is noted that in the validation phase on the NCD dataset, the LiDAR scans collected
by the real robot are incomplete because the LiDAR’s field of view is partly blocked by
the operator. From the point cloud data perspective, this results in some sectors being
completely blank. From the point of view of the PCASC feature map, this will lead to
about three all-zero column vectors, failing similarity calculation. Therefore, we complete
the missing part of the real point cloud using virtual point clouds rendered at the same
position and orientation.

6. Conclusions

This study proposed a template matching-based re-localization framework to re-
localize a robot navigation system globally in a pre-built 3D point cloud map in real
time, even at unvisited places where the robot has not actually visited before. The global
re-localization ability and accuracy are achieved by resampling virtual LiDAR scans in
the whole map when building the template library. The real-time matching efficiency is
achieved by template clustering and the proposed cascade coarse-to-fine online template
matching method. The proposed global re-localization framework is tested with a pure
python implementation using one thread on both simulation data and a public dataset.
In the simulation with 100 K templates, the proposed framework achieves a 99% success
rate and around 11 Hz matching speed when the re-localization error threshold is 1.0 m.
In the validation on The Newer College Dataset with 40 K templates, it achieves a 94.67%
success rate and around 7 Hz matching speed when the re-localization error threshold is
1.0 m. Thus, the proposed global re-localization framework is both effective and efficient.

Moreover, the framework’s efficiency can be greatly improved when optimized using
the C++ language, SIMD instruction, multiprocessing coding, etc., which is predictable.
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