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Abstract: In recent years, the simplified computation of position and velocity changes in nonlinear
systems using Lie groups and Lie algebra has been widely used in the study of robot localization
systems. The unscented Kalman filter (UKF) can effectively deal with nonlinear systems through the
unscented transformation, and in order to more accurately describe the robot localization system, the
UKF method based on Lie groups has been studied successively. The computational complexity of
the UKF on Lie groups is high, and in order to simplify its computation, the Lie groups are applied
to the manifold, which efficiently handles the state and uncertainty and ensures that the system
maintains the geometric constraints and computational simplicity during the updating process.
In this paper, a multi-sensor fusion localization method based on an unscented Kalman filter on
manifolds (UKF-M) is investigated. Firstly, a system model and a multi-sensor model are established
based on an Autonomous Underwater Vehicle (AUV), and a corresponding UKF-M is designed for
the system. Secondly, the multi-sensor fusion method is designed, and the fusion method is applied
to the UKF-M. Finally, the proposed method is validated using an underwater cave dataset. The
experiments demonstrate that the proposed method is suitable for underwater environments and can
significantly correct the cumulative error in the trajectory estimation to achieve accurate underwater
localization.

Keywords: unscented Kalman filter; underwater localization; manifolds; Lie groups

1. Introduction

When an Autonomous Underwater Vehicle (AUV) performs complex oceanographic
tasks such as underwater exploration, seafloor topographic mapping, and environmental
monitoring, the localization and navigation of the AUV becomes a key issue due to the
special characteristics of the underwater environment, including signal attenuation, noise
interference, and dynamic changes, which make the use of conventional satellite navigation
systems impossible. To provide accurate real-time position information to the navigation
system, AUVs are typically equipped with a variety of sensors, such as an inertial measure-
ment unit (IMU), Doppler velocity log (DVL), and depth sensor. These sensors provide
detailed information about the speed, direction, and depth of the AUV while operating in
the underwater environment, and the accuracy of underwater localization can be improved
by realizing the synergy between the sensors for the position estimation of the AUV [1,2].

The accuracy of AUV 3D attitude estimation is of critical importance during underwa-
ter navigation. Filtering algorithms are commonly employed for robot attitude estimation,
with traditional filtering methods utilizing Bayesian estimation such as the Kalman filter
(KF) frequently encountering difficulties, particularly when confronted with nonlinear
dynamic systems [3]. These challenges have led to the development of more sophisticated
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filtering methods, including the extended Kalman filter (EKF) [4] and the unscented Kalman
filter (UKF) [5]. These methods exhibit enhanced accuracy and robustness in dealing with
nonlinear estimation tasks.

Underwater environments are characterized by complex topographies, such as subma-
rine mountains, canyons, coral reefs, etc., which usually exhibit nonlinear three-dimensional
structures. An AUV needs to deal with these complex underwater topographies and envi-
ronments when equipped with multiple sensors for underwater navigation and localization.
Manifolds offer a natural framework for processing and simplifying high-dimensional
nonlinear data. The fusion of multi-sensor information using nonlinear Manifolds [6,7]
can improve the accuracy and reliability of the AUV’s 3D attitude estimation, thereby
enhancing the precision of underwater navigation and localization [8,9]. The Lie group,
as a manifold with a group structure, is better suited to handle rotations and transforma-
tions in nonlinear state spaces when filtered using the geometric constraints inherent in its
own elements. This avoids mathematical problems such as singularity and linearization
errors [10,11]. In recent years, Lie groups have been widely used in robot navigation. For
mobile robots, it is necessary to represent the robot’s pose and position relative to the
environment in a 3D space. Using the Special Orthogonal Group SO(3) in Lie groups to
represent rotations can avoid the singularity problem of Euler angles and the redundancy
of quaternions. Meanwhile, the Special Euclidean group SE(3) combines the representation
of translations and rotations and is able to completely describe the robot’s position in
space [12]. Relying on Kalman filtering in Lie groups, Fernandes [13] et al. investigated an
extended Kalman filter built into a smoother mapping that aggregates the position, velocity,
attitude, and IMU deviations of a UAV in a single element. Experiments are conducted to
test the superiority of a loosely coupled GNSS/INS integrated navigation scheme utilizing
Lie groups over multiplicative quaternions and Euler-based navigation schemes. Therefore,
the state of a robot during its movement usually includes its position, velocity, acceleration,
and attitude, and the representation of the position and attitude relies on the Lie group. By
estimating the Lie group, the discontinuity and ambiguity of dealing with angles directly
in a Euclidean space can be avoided.

To improve the accuracy of AUV position estimation, combining Lie groups with
filters has become a major research direction [14]. In recent years, there has been a great
deal of interest in the application of the invariant extended Kalman filter (IEKF) [15,16] and
the unscented Kalman filter (UKF) [17,18] on Lie groups. Du, Siyuan, et al. [19] proposed a
nonlinear strapdown inertial navigation system (SINS)/global navigation satellite system
(GNSS) combined navigation estimation algorithm based on a Lie group manifold space.
The nonlinear algorithm used is based on the unscented Kalman filter, and the proposed
algorithm is experimentally demonstrated to have higher accuracy and good consistency
compared with the existing combined navigation algorithms. Jeong, et al. [20] proposed
a sensor fusion method for unmanned underwater vehicle navigation by combining Lie
groups with extended Kalman filters, and experimentally demonstrated that the EKF on Lie
groups can be accurately discretized in a differentiable space, which improves the accuracy
of navigation. Therefore, the filters on Lie groups have been demonstrated to maintain
consistency and stability in systems to a greater extent than filters applied on conventional
Euclidean spaces. Furthermore, the geometric and algebraic structure of Lie groups has
been utilized to enhance the accuracy and robustness of robot state estimation in nonlinear
estimation.

The invariant extended Kalman filter (IEKF) leverages the inherent symmetry of the
dynamical system to optimize the filtering performance. When the dynamics and observa-
tion model of the system are invariant under the action of Lie groups, the IEKF provides
numerical stability and improved performance by maintaining this invariance [21,22]. Ross
Hartley et al. [23] designed a contact-assisted inertial navigation observer for a 3D bipedal
robot based on the IEKF, and demonstrated that the IEKF provides better accuracy in state
estimation. Easton R. Potokar et al. [24] demonstrated that the IEKF can be applied to
underwater navigation and that it is capable of faster convergence in terms of long-term
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localization when navigation is performed underwater by fusing the sensor information
from the IMU and DVL. The IEKF can thus be applied to AUV dynamical systems with
inherent symmetry, significantly reducing the estimation error and improving the accuracy
of the filtering by naturally representing the system over the SE(3) group.

The unscented Kalman filter, as an effective nonlinear filter, circumvents the lineariza-
tion error present in the extended Kalman filter by employing Sigma points, which are
representative points selected around the estimated mean to approximate the true probabil-
ity distribution [25]. Brossard et al. [26] derived simple left- and right-variant unscented
Kalman filters on Lie groups and applied them to robot localization. The experiments
demonstrated that this improved method outperforms the traditional UKF. However, the
computational complexity of the UKF is higher than that of the EKF, and the computational
and storage requirements are significantly higher for systems of a higher dimensional-
ity [27]. Brossard et al. [28] simplified the computation and extended the unscented Kalman
filters on the Lie group to generalize them to all manifolds. Meanwhile, corresponding
localization frameworks were designed for different application scenarios of robots. The
Lie group possesses both group and manifold structures. Its group operation is smooth
under the manifold structure, and local linearization through Lie algebra enhances the
computational efficiency and suitability for real-time systems.

In this paper, a multi-sensor fusion method based on the unscented Kalman filter
on manifolds for underwater navigation is studied using the unscented Kalman filter
framework of [28]. The main contributions of this paper are as follows:

1. Accurate AUV kinematic state modeling in an SE2(3) space and sensor modeling
for the hydroacoustic sensors of the IMU, DVL, depth sensor, and gyroscope are
established;

2. The retraction and inverse retraction functions are established for this AUV system
to realize the propagation of the Sigma points of the Lie algebra state uncertainty
between the Lie group space and the Li algebra space, and two different propagation
methods, left-equivariant and right-equivariant, are designed based on this;

3. A manifolds-based UKF algorithm in this SE2(3) space is constructed to estimate and
update the state of the AUV. The feasibility of the proposed algorithm as well as its
implementation are finally verified using a real underwater cave dataset to ensure the
improvement of the localization accuracy of the AUV.

The remainder of this paper is organized as follows: Section 2 presents the system
model, including the motion model of the AUV, the sensor models of the IMU, DVL, depth
sensor, and magnetometer. The specifics and intricate workings of the proposed algorithm
are elaborated upon in Section 3. The experimental results based on AUV underwater cave
data are analyzed in Section 4. Finally, Section 5 summarizes the principal conclusion of
this work and discusses future work.

2. Establishment of System Model
2.1. AUV Model Description

This system focuses on the efficient localization method of AUV in an underwater
environment that does not have a flat terrain, when the motion of the AUV can be regarded
as an autonomous motion of rotation and translation on a three-dimensional nonlinear
manifold. The Lie group, as a mathematical structure that is both a group and a smooth
manifold, can be used to represent rotations and translations in a three-dimensional space
through the Special Euclidean Group SE(3), which is used to characterize the robot’s pose
and position.

Since Lie groups are inherently nonlinear, a Lie algebra is a local linearization of a
Lie group, i.e., a Lie group’s tangent space in the neighborhood of the unit element. As
in Figure 1, Te M denotes the tangent space of the Lie group manifold M at point e, which
describes the “local linear approximation” of the point, and G1 and G2 define two basis
vectors that provide the base for the vectors in the tangent space. The transition from Lie
groups to Lie algebras transforms the AUV from a local motion of the surface to a linear
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motion. Elements of Lie algebra can be mapped to elements of the corresponding Lie
group by the exponential map exp(·), and points on the Lie group can be mapped back to
the tangent space by logarithmic mapping log(·). The exponential map exp(·) is used to
generate complete rotations and translations from small changes, and elements in the Lie
algebra can be viewed as infinitesimal generators of Lie group elements [29,30].
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The design of the AUV motion model, expressed in terms of Lie groups using the
Special Euclidean Group, indicates that the instantaneous state of the AUV at any moment
n is Xn ∈ SE2(3) = G, denoted as Equation (1).

Xn =

Rn3×3 vn3×1 pn3×1
01×3 1 0
01×3 0 1

 (1)

Equation (1) describes the state of AUV on a matrix group over SE2(3), where Rn ∈
SO(3) is the rotation matrix, vn ∈ R3 is the velocity vector of the AUV, and pn ∈ R3 is the
position vector of the AUV.

In this system, changes in the AUV’s attitude and position are described using the Lie
group SE2(3), and its Lie algebra representation is se2(3), where the element is ξ ∈ R5. The
elements in the Lie algebra are utilized to represent the infinitesimal changes in the motion
of the AUV. The mapping of the state of the AUV to the Lie algebra, as represented by
Equation (2), through the application of transformation ξ → ξ∧ , is employed to describe
the minor fluctuations in the attitude and position of the AUV within the spatial domain.
This methodology can be utilized to illustrate the uncertainty of the system.

ξ∧ =

[
ξR3×3 ξv3×1 ξp3×1

02×5

]
(2)

where ξR, ξv, and ξp denote the perturbations of the rotational angular velocity, linear
velocity, and position, respectively. These mapping vectors in the Lie algebra are converted
into elements in the Lie group, representing continuous or small changes. This is carried
out in order to determine the actual position and attitude of the rigid body, which is then
used to estimate the system state on the manifold.

2.2. IMU Measurement Model

The IMU measurements return the angular velocity and linear acceleration of the AUV
itself, while the state changes of the AUV, including the velocity, attitude, and position
changes, are obtained by integrating the output of the IMU [31].
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The state of the system at moment n can be described as xn = [Rn, vn, pn, bn], where
the orientation R ∈ SO(3), velocity v ∈ R3, position p ∈ R3, and offset b =

[
bω ba

]
∈ R6.

The angular velocity and linear acceleration obtained by the IMU in the body coordinate
system are used as inputs to the system to describe the state of the AUV itself at moment n,
as expressed by Equation (3).

·
R(n) = R(n)>ω(n)∧ = R(n)(ω(n) + bω(n) + ηω(n))

∧
·

v(n) =>a(n) = RT(n)(a(n)− g) + ba(n) + ηa(n)
·
p = v

(3)

where g is the gravity vector, the control input denoted as un =
[
ωn an 01×3

]T is set,
b denotes the sensor bias, and η ∼ N(0, Q) denotes the observed Gaussian white noise,
which represents the motion model of the AUV.

2.3. DVL Measurement Model

The DVL employs the Doppler effect of acoustic waves to determine the velocity
of the AUV relative to the water bottom or layer of water. The measured value is the
velocity of the AUV itself at moment n, which is denoted as v′n =

[
vx vy vz

]T. Since
the velocity measured by the DVL is the combined velocity of the actual velocity of the
vehicle in the water and the rotational velocity of the vehicle, the velocity measured by the
DVL is calibrated in order to obtain the actual measured value of the AUV linear velocity.
For fusion with the IMU, it is necessary to subtract the velocity component k × ωn due to
the rotation of the vehicle, as expressed in Equation (4), from the velocity measured by
the DVL.

v′n − k × ωn = ṽn =
[
ṽx ṽy ṽz

]
(4)

where ṽn is the actual AUV linear velocity measurement returned by the system at moment
n, which defines the observation model for DVL as Equation (5)

yDVL = hDVL(Xn) + υn = −RTvn + υn (5)

where hDVL(Xn) is used to describe the observed function of the DVL, while the estimated
linear velocity value of the system at moment n is represented by the value of vn.υn ∼
N(0, Rn) is a Gaussian noise. The AUV linear velocity at moment n is transformed to the
sensor coordinate system as the sensor measurement at this time to update the velocity
state of the AUV.

2.4. Depth Sensor Measurement Model

The depth sensor is utilized to measure the vertical position of the AUV in relation to
the water surface z̃n. This measurement is transformed into the actual position of the AUV
on the z-axis at the moment n expressed as p̃n = −RT[px py z̃k

]T, which is utilized
to update the state of the system. To fuse the depth information, the depth observation
function is transformed to the sensor coordinate system, defining the observation model of
the depth sensor as Equation (6).

yD = hD(Xn) + υn = −RT pn + υn (6)

where hD(Xn) is used to describe the observation function of the depth sensor, while pn
is the AUV position information estimated by the system at moment n. υn ∼ N(0, Rn)
is Gaussian noise, and the position component of the observation model on the z-axis is
selected as the observation function input to update the model and correct the depth value
of the AUV.
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2.5. Magnetometer Measurement Model

Magnetometers acquire data by measuring the strength and direction of the magnetic
field in the surrounding environment. In order to enhance the precision of the orientation
during localization, the orientation of the AUV is corrected through the utilization of a
magnetometer. The magnetometer measurement is denoted as m̃n =

[
m̃x m̃y m̃z

]T,
whereas the canonical magnetic vector at the location where the data were collected is
m =

[
mx my mz

]T
= [0.24494 −0.002385 −0.38615]T. The observation model for the

magnetometer is defined as Equation (7).

yM = hM(Xn) + υn = RTmn + υn (7)

where hM(Xn) is used to describe the magnetometer’s observation function, which trans-
lates the region’s canonical magnetic vector into the sensor coordinate system as a sensor
observation, making the measured direction of travel of the AUV more accurate.

3. Multi Sensor Fusion Localization Method
3.1. Filter Design

To study the motion of the AUV on a nonlinear manifold, the unscented Kalman filter
on the manifold is designed to fuse the information from the IMU, DVL, depth sensors,
and magnetometer for 3D attitude estimation of the AUV. The state space function of the
AUV, Equation (1), is expressed in the form of a Lie group, which can be described as a
discrete-time dynamical system. The predicted state of the AUV at moment n is denoted as
Equation (8).

Xn+1 = f (Xn, un, wn) (8)

where the state Xn of the AUV at moment n is on the special Euclidean group G = SE2(3),
denoted Xn ∈ G =

{
R ∈ SO(3), v ∈ R3, p ∈ R3}, un is a known input variable, and wn ∼

N(0, Qn) is Gaussian white noise.
In Section 2, we described the individual sensor observation models used to observe

the state of the AUV, as well as the sensor observation functions utilized by the system.
These include the DVL (5), the depth sensor (6), and the magnetometer (7). The fusion of
the observation models of these sensors mentioned above into the observation function
yn = h(Xn, υn) can be expressed as Equation (9).

yn = h(Xn, υn) =

hDVL(Xn)
hD(Xn)
hM(Xn)

+ υn =

−RTv + υn
−RT p + υn
RTm + υn

 (9)

where υn ∼ N(0, Rn) is Gaussian white noise. Based on the information from each observed
sensor at each moment, the state mean and covariance at the next moment are predicted
and estimated.

3.2. Estimating State Uncertainty

The system state model Equation (1) is represented in the form of a Lie group, and
in order to represent the estimated state X̃ and the true state X in a uniform mapping, the
traditional UKF represents the uncertainty of the system by defining the error e = X − X̃
between the true state and the estimated state. Since the Lie group G is not a vector space
and representing the uncertainty of the Lie group by the error may destroy the orthogonality
of the rotation matrix when adding noise, the noise in the Lie group cannot be defined in
the usual way of attaching noise [28,32]. In this paper, we use the Lie algebra Equation (2)
to represent the uncertainty of the system, and realize the mapping relation between Lie
groups and Lie algebras by using retraction and inverse retraction functions to ensure that
the geometric constraints are strictly adhered to, so that the elements of the Lie groups
remain legal after adding noise.
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In order to simplify the computational complexity of the unscented Kalman filter,
the inter-transformation between the nonlinear manifold and the linear space is realized
by designing the retraction function and the inverse retraction function on the filter. The
retraction is a smooth mapping from the linear space to the manifold, realizing the local
linear approximation on the nonlinear space and mapping the approximation back to the
actual position on the manifold. Inverse retraction is the inverse process of remapping,
which inversely maps the real state on the manifold back to the linear space, and more
simplified operations are realized by these two transformations [33,34].

In order to exponentially map the estimated state and state uncertainty ξ to the new
state of the manifold, the retraction function is designed as X = φ(X̃, ξ) ∈ M. Likewise,
the inverse retraction function is designed as ξ = φ−1

X̃ (X) ∈ Rd to map the logarithm of the
state on the manifold back to the state uncertainty ξ of the estimated state, where φ satisfies
φ(X, 0) = X. For an AUV whose state function is Equation (1), the retraction function is
defined as Equation (10), and the inverse retraction function is defined as Equation (11)
to realize the Lie group matrix with Lie algebra uncertainty on the manifold for state
estimation and update.

φ(X, ξ) =

Rexp(ξ(0:3))

v + ξ(3:6)
p + ξ(6:9)

 (10)

φ−1
X̃ (X) =

log(RR̃T)
v − ṽ
p − p̃

 (11)

In Equation (10), R exp(ξ(0:3)) is the exponential mapping of the rotation vector to
update the pose, the state uncertainty ξ is a 9-dimensional matrix, and ξ(0:3) denotes
the initial three components of the input ξ representing the components of the rotation.
v + ξ(3:6) represents the update of the current velocity by increment ξ, ξ(3:6) represents
the vector of velocity changes, p + ξ(6:9) represents the update of the current position by
increment ξ, and ξ(6:9) represents the vector of position changes. Equation (11) inversely
differentiates the deviation between a state X on manifold and its estimated state X̃ from the
state X itself. The deviation is also the uncertainty of the state ξ. log(RR̃T) in Equation (11)
is the inverse rotational transformation to obtain the deviation between two poses.

The above UKF designed on manifolds transforms uncertainties in the Lie algebra into
state changes in the manifolds by retraction and inverse retraction. When a state function in
the form of a Lie group acts on a manifold M, there are two forms of action, the left action
and the right action. The left action refers to the mapping Φ: G × M → M of the Lie group
G action on the manifold M, expressed as the left multiplication of g and x, where g is Lie
group element on the manifold and x is the state at this moment. The left action is written as
Φ(g, x), which realizes the transformation of the Lie group on the manifold. Similarly, the
right action is another form of transformation, when the Lie group G acts on the manifold
M as mapping, Φ: M × G → M , which is expressed as the right multiplication of g and x,
where g is Lie group element on the manifold and x is the state at this moment. The right
action is written as Φ(x, g). Applying the two transformations to the unscented Kalman
filter simplifies the computation of the Lie group by transforming it into the manifold.

When the AUV state X obeys the probability distribution X ∼ N(X, P), the system’s
uncertainty ξ can be shifted using left and right multiplications about the centering of
X ∈ G. The resulting shifted state X obeys the left-equivariant and right-equivariant
Gaussian distributions on G, respectively. For the system Equation (12), with states on
G = SE2(3) manifolds, the homogeneous transformation matrix T is computed from the
elements of the Lie algebra Equation (2), and then the uncertainty of the states is computed
using the homogeneous transformation matrix Equation (13).

SE2(3) =
{

T =

[
R
0T

v p
I

]
∈ R5×5

∣∣∣R ∈ SO(3), v ∈ R3, p ∈ R3
}

(12)
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T(ξ) = exp(ξ∧) =
[

exp(ξR)
0T

Jξv Jξp
I

]
(13)

Using the homogeneous transformation matrix, the left-equivariant retraction function
Equation (14) is designed for the state of the AUV in the system using the left multiplication
of the Lie group for state updating. Likewise, the right-equivariant retraction function
Equation (16) is designed for state updating using the right multiplication of the Lie
group. Equations (14) and (16), respectively, correspond to inverse retraction function
Equations (15) and (17) to reflect the uncertainty of the system.

le f t φ(X, ξ) =

 RT(ξ)R
v + RT(ξ)v
p + RT(ξ)p

 (14)

le f t φ−1
X̃ (X) = log(X−1X̃) =

ln (R′)∨

J−1v′

J−1 p′

 (15)

right φ(X, ξ) =

 T(ξ)RR
T(ξ)Rv + T(ξ)v
T(ξ)R p + T(ξ)p

 (16)

right φ−1
X̃ (X) = log(X̃−1X) =

ln (R′′ )∨

J−1v′′

J−1 p′′

 (17)

where (·)′ denotes the state resulting from state multiplication X̃−1X, (·)′′ denotes the state
resulting from state multiplication X−1X̃, and J is the Jacobian matrix associated with the
rotation. The use of the left-equivariant and right-equivariant retraction functions with
the inverse retraction function allows for efficient handling of states and uncertainties on
manifolds, ensuring that the system maintains geometrical constraints and computational
simplicity during updating, and realizing 3D attitude estimation of the AUV.

3.3. Predicting System Status

The algorithm of the proposed multi-sensor fusion localization method designed
based on unscented Kalman filtering on manifolds is displayed in Algorithm 1, which
includes two steps.

(1) The prediction step in lines 3–7 of the algorithm: update the system’s state and
covariance by propagating the IMU measurements.

(2) The updating step in lines 8–15 of the algorithm: further correct the state of the
system by fusing the observations from the DVL, the depth sensors, and the gyroscope.

The two steps are described in detail as the following:

(1) Propagation Step.

During the propagation process, in order to avoid linearizing the system, some Sigma
points around the current state estimate and covariance matrix are selected by the unscented
Kalman filter on the manifolds to approximate the state distribution, and then these
points are propagated through the nonlinear function Equation (3) to obtain the new state
distribution. Considering the noise wn in the state model Equation (8), the covariance
matrix of the state x at each moment is augmented and denoted as Paug = diag(P, R)

and the mean of the state x is re-expressed as x =
[
0T wT]T. At this point, the state X

of the system is an n-dimensional state vector with a mean of x and a variance of Paug.
Constructing a Sigma point by unscented transform (UT) is expressed as Equations (18)
and (19).

xi = x + col(
√
(λ + d)Paug)

i
, i = 1 ∼ d (18)
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xi = x − col(
√
(λ + d)Paug)

i
, i = d + 1 ∼ 2d (19)

where λ is the scale factor. The larger λ is, the further away the sigma point is from the
mean value of the state; the smaller λ is, the closer the sigma point is to the mean value of

the state. (
√
(λ + d)Paug)

i
denotes the i-th column of the matrix square root

√
(λ + d)Paug.

The corresponding weights of the sampling points are calculated by Equation (20).
w(0)

m = λ
d+λ

w(0)
c = λ

d+λ + (1 − α2 + β)

w(i)
m = w(i)

c = λ
2(d+λ)

, i = 1 ∼ 2d

(20)

Algorithm 1: A Multi-sensor Fusion Underwater Localization Method

1 Input: Angular velocity ω, Acceleration a
DVL, Depth Sensor and Magnetometer measurement
Observing noise Rn, System noise Qn, State input noise wn, Sigma point α
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DVL n n
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9      Else if Depth Sensor measurement then 

            transform robot coordinate system 
= −   n x y kp R p p z

 

   
         state estimation = − +

D n n
y R p

 
10     Else if Magnetometer measurement then

 
            obtain magnetometer data 


=   n x y zm m m m

 
            state estimation = +

M n n
y R m

 
11     Fusion observation data 



 









 − +
 

= = − + 
 + 

( , )
n

n n n n

n

R v

y h X R p

R m
 

12     Propagation observe Sigma points    = =( ) ( ( , ), ) , 0 2
i i

y h x i n  

13     Calculate the predicted mean of observations =
2

( )
n i

s ii
y w y  

14     Update observe covariance yyP , xyP   

15     Update status and covariance +x , +P  

16 End
 

The two steps are described in detail as the following: 

16 End

When x follows a Gaussian distribution, β = 2 is the optimal parameter. By setting
the input state x’s systematic uncertainty ξ ∼ N(0, P), the systematic uncertainty is added
as noise to the set of Sigma points at this point, and mapped to the new set of Sigma points
by Equation (21). [

ξT
i wT

i
]
= xT

i (21)

In order to enact the Lie group on the manifold, the three action methods designed in
the previous section, retraction, left-equivariant retraction, and right-equivariant retraction,
are selected. The designed retraction function and inverse retraction function are used
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to propagate the Sigma points and compute the new state mean and covariance based
on the propagated Sigma points on the tangent space of the manifold. The results are
mapped back to the manifold to obtain the new estimate and uncertainty of the state after
the time update.

(2) Update Step.

First, Sigma points are generated based on the new state estimates obtained from the
propagation process and their covariance matrices. The Sigma points at this point not only
capture the mean and variance, but also retain the higher-order statistical properties of the
original probability distribution. The new set of Sigma points is propagated through the
observation model Equation (22). Each Sigma point on the manifold is transformed into
the expected measurement space by means of the designed retraction function and inverse
retraction function to obtain the expected measurement results.

yi(ξ) = h(φ(x, ξ), υi) , i = 0 ∼ 2n (22)

The mean in Equation (23) and covariance in Equation (24) of the measurements were
predicted after performing a weighted Equation (20) on the new set of Sigma points.

y =
2n

∑
i=0

wi
syi(ξ) (23)

Pyy =
2n

∑
i=0

wi
c(yi(ξ)− y)(yi(ξ)− y)T (24)

Subsequently, the nonlinear observations of the Sigma point set state measurements
are calculated and the Kalman gain is computed using the covariance of the predicted
measurements in Equation (24) and the cross-covariance in Equation (25). This Kalman
gain will be used to determine the degree of influence of the difference between the actual
and predicted measurements.

Pxy =
2n

∑
i=0

wi
c(xi − x)(yi − y)T (25)

ξ = K(y − y) (26)

where K = PxyP−1
yy denotes the Kalman gain of the system, and finally, the Kalman gain

and measurement residuals are used to update the system’s state estimate, Equation (27),
with the covariance, Equation (28).

x+ = φ(x, ξ) (27)

P+ = P − Pxy(PxyP−1
yy )

T
(28)

Since the system is carried out on the manifold, the updated state needs to be mapped
back to the manifold again, otherwise the linear combination of results may cause the
results to deviate from the manifold. At this point, the system fuses the information from
multiple sensors to complete the state prediction and update, and x+ and P+ denote the
final state estimation result and covariance of the system, respectively.

4. Experimental Result and Analysis
4.1. Underwater Cave Dataset

To study the localization effect of the method proposed in this article, the method is
performed on a dataset collected by an AUV named Sparus II. The collection of the dataset
was carried out by Mallios et al. [35] from an unstructured natural underwater cave in the
L’Escala area of the Costa Brava, Spain. Figure 2 shows the external view of the cave with
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the route of the collection trajectory (white dotted line). The data were collected with the
setup of six fixed cones, and the position of each cone is also labeled cones 1–6 in Figure 2.
A diver led the AUV through the cave and the shuttle route passed through each cone twice.
The location of the cones acts as the reference to verify the accuracy of the localization
method [36].
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Figure 2. External environment of underwater caves.

Figure 3 shows the internals of the Sparus II AUV, which is equipped with a variety of
sensors such as IMU, DVL, gyroscope, and depth sensor. The data were collected while the
AUV was manually guided through the cave. Table 1 shows the system’s main on-board
sensors.
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Table 1. Sensors on board Sparus II AUV.

Sensors Specifications

AHRS—XSens MTi

Angular resolution 0.05 deg
Repeatability 0.2 deg

Static accuracy (roll/pitch) 0.5 deg
Static accuracy (Heading) 1 deg

Dynamic accuracy 2 deg RMS

DVL—LinkQuest NavQuest 600
Micro

Frequency 600 kHz
Velocity accuracy 0.2% ± 1 mm/s

Altitude 0.3–140 m
Max ping rate 5 Hz

Depth—DS2806 HPS-A

Pressure range 0–5 bar
Output span 4 V ± 1%
Output zero 1 V ± 1% of span
Repeatability ±0.25% of span

Profiling sonar—Tritech Super
SeaKing DFP

Frequency 0.6|1.1 MHz
Max range 80|40 m
Beamwidth 2|1 deg

Scan rate (360 deg sector) 4–25 s

Down-looking analog camera
System PAL

Resolution 384 × 288 pixels
Lighting source 2 × 24 W HID

4.2. Experimental Effect of Fusion Algorithm

Using the individual sensor data returned by the AUV in the underwater cave, the
above proposed unscented Kalman filter fusion method based on manifolds is applied to
estimate the 3D attitude of the AUV. The parameters of each sensor are shown in Table 1.
The AUV is localized by fusing the IMU, DVL, and depth sensor information with the
above-designed conventional manifolds UKF, left-equivariant UKF, and right-equivariant
UKF, respectively.

In Figure 4, we plot the results of the comparison of the three localization methods
of the conventional manifolds UKF-M (blue line), the left-equivariant UKF-M (red line),
and the right-equivariant UKF-M (green line) among the three filters designed in this
paper. Different colored triangles are used to represent the positions of the six cones in the
trajectory estimation. The three-axis coordinate system represents the position of the AUV
in meters. It can be seen from the figure that the trajectory estimates obtained from the
three methods are very similar.

In order to better observe the difference between the trajectories obtained by the three
methods, the transformations of the three filters in the three position coordinate axes x,
y, z and the three attitude angles of the yaw, pitch, and roll axes with respect to time are
displayed in Figure 5. Three regions in the pre and post time periods were randomly
selected for the zoomed-in display. The estimation of the position coordinate axes and the
attitude angles of the three filters, UKF-M, LeftUKF-M, and RightUKF-M, are somewhat
consistent, which shows that these filters have a similar performance in processing these
data. Moreover, the three filters have significant variations in the yaw, pitch, and roll axes
(especially in the pitch and roll axes), which show a better dynamic response capability. The
three filters perform well in processing different coordinates and attitude angles without
significant degradation or deviation, showing their validity and reliability.
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Due to the consistency of the three filters UKF-M, LeftUKF-M, and RightUKF-M, one of
them, i.e., the LeftUKF-M, is selected for comparison for the sake of the convenience of the
result evaluation. Three other commonly used navigation and localization methods, EKF,
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RI-EKF, and Dead Reckoning (DR), are chosen as the reference of comparison to evaluate
the performance of the proposed methods. Among them, EKF has been widely used in
localization studies of nonlinear systems for decades, a right-invariant extended Kalman
filter (RIEKF) brought out by Easton R. Potokar’s team [24] was applied to underwater
localization on Lie groups, while DR has been used as one of the most basic and direct
localization methods. These three methods can be representative of the regular navigation
and localization performance.

In Figure 6, we plot the trajectories estimated by the LeftUKF-M (blue line), DR (red
line), EKF (orange line), and RIEKF (green line). The cones are still represented by different
colored triangles. It can be seen that both the proposed methods, EKF and RIEKF, are able
to correct the cumulative error in trajectory estimation. Similar to Figure 5, Figure 7 shows
the transformation of DR, RIEKF, EKF, and LeftUKF-M in the x, y, and z axes and yaw,
pitch, and roll axes over time. The estimation results on the position coordinates of the
x, y, and z axes show that the three filters, DR, RIEKF, and LeftUKF-M, have comparable
performances in position estimation with some consistency. In the attitude change plots, DR
shows significant inaccuracy as the yaw, pitch, and roll remain almost constant throughout
the process, while RIEKF, EKF, and LeftUKF-M show more significant changes in the yaw,
pitch, and roll axes, showing better dynamic responsiveness. Overall, RIEKF, EKF, and
LeftUKF-M perform more consistently and stably in the estimation of each coordinate axis
and pose angle, and the DR filter performs poorly in the pose estimation.
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in this paper. (a) The 3D trajectory estimation results; (b) 2D trajectory estimation results.

Since it is not possible to use GPS to measure the ground truth in underwater environ-
ments, in order to quantitatively rate the accuracy of the proposed methods, we use the six
cones in the dataset to rate the results of these six trajectory estimates.

Two criteria were used to quantitatively assess the accuracy of localization using the
filter. The first criterion: (1) the AUV trajectory passes through the six cones successively
and the same cone is passed through twice, and the position estimation error of passing
through the same cone successively is quantitatively analyzed. The position error of the
AUV passing through the same cone twice is shown in Table 2.
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Table 2. Position error of AUV passing through the same cone twice.

Cone Num DR UKF-M LeftUKF-M RightUKF-M EKF RIEKF

1 6.60 2.76 2.11 2.52 2.66 3.74
2 3.84 2.21 2.02 1.97 2.30 2.96
3 2.81 2.41 1.92 2.14 2.89 3.37
4 3.54 2.99 2.98 2.84 3.48 3.39
5 2.44 0.99 0.97 0.98 1.00 1.03
6 4.37 1.72 1.36 1.67 2.29 1.87

Avg. 3.93 2.18 1.89 2.02 2.44 2.73

The second criterion: (2) the placement of each cone is fixed and known, and the AUV
passes through six cones according to the path 1→2→3→4→5→5→4→3→2→6→6→1.
The distances between two neighboring cones in the estimated trajectory of the filter are
compared with the actual distances of the ground. The distances between neighboring
cones that the AUV passes through according to the paths of the proposed methods are
demonstrated in Table 3. The absolute value of the error between each method and the
ground truth distance are displayed in Table 4.
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Table 3. The distance between AUVs passing through cones in sequence.

Cone Distance Ground Truth DR UKF-M LeftUKF-M RightUKF-M EKF RIEKF

1→2 19 17.07 17.51 17.50 17.44 17.42 17.82
2→3 32 31.53 31.32 31.36 31.28 30.81 30.88
3→2 32 31.38 32.29 32.13 32.11 31.65 31.96
3→4 16 12.52 14.35 14.46 14.10 14.19 14.11
4→3 16 13.23 17.79 17.68 17.66 17.71 17.77
6→1 30 26.42 31.50 31.46 31.80 30.96 31.03

Table 4. Absolute value of error between the true distance from the ground.

Cone Distance DR UKF-M LeftUKF-M RightUKF-M EKF RIEKF

1→2 1.93 1.49 1.50 1.56 1.58 1.18
2→3 0.47 0.68 0.64 0.72 1.19 1.12
3→2 0.62 0.29 0.13 0.11 0.35 0.04
3→4 3.48 1.65 1.54 1.90 1.81 1.89
4→3 2.77 1.79 1.68 1.66 1.71 1.77
6→1 3.58 1.50 1.46 1.80 0.96 1.03
Avg. 2.14 1.23 1.16 1.29 1.27 1.17

In the above two criterion, the optimal estimates are marked in bold, and in Table 2,
the three proposed filters show a clear advantage over RIEKF, EKF, and DR in the positional
error of the AUV passing through the same cone twice. In Tables 3 and 4, the three proposed
filters, EKF and RIEKF, show better performances in the distance error of neighboring cones
in accordance to the ground truth, whereas the difference between DR and the ground
truth is larger. In conclusion, through the above analysis, the proposed method has a clear
advantage in the first criterion, and in the second criterion, the results are slightly better
than RIEKF. Hence, the proposed method shows obvious advantages in the correction of
the cumulative error in the trajectory estimation and in the improvement of the accuracy
of localization.

5. Conclusions

In this paper, we derive a multi-sensor fusion localization method that can be applied
to underwater navigation and localization using a recently developed unscented Kalman
filter on manifold framework for underwater vehicle systems. Information from common
underwater sensors, the IMU, DVL, depth sensor, and magnetometer, are used to correct
the state and position of the AUV during navigation in order to eliminate the inaccuracy of
localization due to accumulated errors during navigation. By fusing the underwater depth
sensor information, the 3D trajectory estimation of the AUV is realized, and the proposed
method is validated using an underwater cave dataset. The experiments demonstrate
that the proposed method can be applied to underwater environments and can effectively
improve the accuracy of underwater localization. A comparison with EKF and RIEKF
based on Lie groups reveals that the localization accuracy has been improved. Future work
will be integrating more underwater sensors, such as a sonar and binocular camera, and
further improving the localization accuracy based on this method. And furthermore, the
mapping of the underwater environment can be realized based on the results of sensor
integration and the improved localization.
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