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Abstract: Existing studies on gait phase estimation generally involve walking experiments using
inertial measurement units under limited walking conditions (WCs). In this study, a gait phase
estimation algorithm is proposed that uses data from force sensing resistors (FSRs) and a Bi-LSTM
model. The proposed algorithm estimates gait phases in real time under various WCs, e.g., walking
on paved/unpaved roads, ascending and descending stairs, and ascending or descending on ramps.
The performance of the proposed algorithm is evaluated by performing walking experiments on
ten healthy adult participants. An average gait estimation accuracy exceeding 90% is observed
with a small error (root mean square error = 0.794, R2 score = 0.906) across various WCs. These
results demonstrate the wide applicability of the proposed gait phase estimation algorithm using
various insole devices, e.g., in walking aid control, gait disturbance diagnosis in daily life, and motor
ability analysis.

Keywords: continuous gait phase estimation; ground reaction force; force sensing resistors; bidirec-
tional long short-term memory; insole device; gait analysis

1. Introduction

Gait analysis involves the analysis of human body movements while walking, and
gait phase estimation is the most basic gait analysis technique. Continuous gait phase esti-
mation (cGPE) is usually used to estimate gait phases continuously during gait disturbance
diagnosis, walking rehabilitation [1–7], and the assessment of control over exoskeleton
robots or walking aids [8–12].

The commonly used cGPE methods can be categorized into three main types. The
first comprises estimation methods that use the linear relationship between joint angle
and/or angular velocity information and the gait phase [8,9,13–15]. These methods usually
estimate gait phases by attaching inertial measurement units (IMUs) to the femoral region or
the calf of subjects. They are generally utilized for level-walking analysis; their application
to multilocomotion tasks (e.g., stairs and ramps) is difficult [15,16].

Methods of the second type estimate gait phases by analyzing the change cycle of
biosignal information measured during walking using an adaptive oscillator (AO) [17–22].
AO is a non-model-based method that expresses the cGPE result as a gait phase value in
the range [0, 1]. However, AO-based cGPE cannot adapt to changes in walking speed; thus,
the estimated value may diverge [19].

Methods of the third type address the shortcomings of the first two types. They are
used to estimate gait phases using machine learning [12,23–30]. For example, Lee et al.
proposed a Bi-LSTM model that estimates gait phases using data measured through IMUs
mounted on the femoral region and waist of subjects [23]. Lu et al. estimated gait phases
using long short-term memory (LSTM) corresponding to varying ground slopes; however,
they did not consider the boundary conditions of level ground and ramps [30]. Choi et al.

Sensors 2024, 24, 6318. https://doi.org/10.3390/s24196318 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24196318
https://doi.org/10.3390/s24196318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1772-5054
https://orcid.org/0000-0002-0162-6342
https://doi.org/10.3390/s24196318
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24196318?type=check_update&version=2


Sensors 2024, 24, 6318 2 of 14

proposed a neural network domain for estimating gait phases using an unsupervised
learning model that does not rely on gold-standard gait phase data [27].

Existing machine learning-based cGPE studies exhibit two characteristics. First, they
are commonly used in connection with controlling exoskeleton robots or prosthetic legs.
In this case, cGPE results are obtained based on joint angle and/or angular velocity in-
formation acquired using an IMU attached to artificial joints [13–16,26,27,29,30]. There-
fore, most research on controlling auxiliary devices has used cGPE algorithms based on
IMUs [17–19,23,25,28].

Although other sensors have also been used, they are mostly minor sensors that are
utilized as part of composite sensors or used to provide learning reference values [20,22].
Few studies have obtained cGPE results by focusing on biosignals measured using everyday
footwear [20,31].

Second, only simple walking environments are considered in experiments in existing
machine learning-based cGPE research. In other words, changes in walking speed or
walking conditions (WCs) have not been considered adequately [15,22,23,30]. In some
studies, walking experiments were performed under two WCs (level ground and stairs)
using IMUs [19,28]; however, there are only a few such studies.

In this study, we developed a cGPE algorithm using force sensing resistors (FSRs)
data while also classifying various WCs. High cGPE accuracy is secured under varying
WCs (multilocomotion tasks) by proposing a cGPE algorithm that analyzes FSR data
using an LSTM. The proposed algorithm consists of two main stages: WC classification
during walking experiments and cGPE based on the classified WCs. The performance
of the proposed algorithm is verified using walking experiments involving ten healthy
adult subjects.

The contributions of this study to technology development in cGPE research can be
summarized as follows:

• Real-time classification of WCs is performed by analyzing FSR data using machine
learning methods.

• Accurate real-time cGPE is performed to correspond to continuously varying WCs
using a combination of WC classification results and FSR data.

• Walking experiments involving healthy adults are performed to verify the source-
specific application of the proposed cGPE, irrespective of WCs.

2. Methods

In this section, a data acquisition system (DAS) for FSR data is introduced, and the
experimental protocol, subject information, and cGPE algorithm are described.

2.1. DAS

Figure 1a depicts the insole device, comprising an insole containing the FSRs (FSR
402, Interlink Electronics, Inc., Irvine, CA 93012, USA) used to acquire FSR data, a printed
circuit board (PCB) used to collect and store FSR data, and the shoes containing the insole
device. The insole device is designed to transmit the measured FSR data wirelessly from
the left foot to the right foot, synchronize the data, and wirelessly transmit the entire FSR
dataset to a personal computer (PC). The microprocessor unit (MPU) mounted on the PCB
is an STM32F411x (STMicroelectronics, Marlow, UK), with a data sampling rate of 100 Hz.
The FSRs are installed at the toe, first metatarsal bone, 5-th metatarsal bone, cuboid bone,
and heel, as in a previous study [32]. In aggregate, ten units are used on each foot.
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the subject with a laptop to collect the experimental data. Changes in WC are tallied by 
pressing the space bar every time they happen, and this signal is stored alongside the FSR 
data for subsequent gait analysis. 

Each experiment is performed three times for scenario 1, three times in the forward 
direction, and three times in the reverse direction for scenarios 2 and 3. 

Ten healthy adults are included in the walking experiments: five males (age 25 ± 2 
years, height 176.0 ± 4.5 cm, and weight 74.3 ± 9.7 kg, mean ± standard deviation (STD)) 
and five females (age 21 ± 6 years, height 165.6 ± 9.8 cm, and weight 62.3 ± 11.7 kg). In the 
experiment, each subject was asked to participate in the three aforementioned scenarios 
at a walking speed that they were comfortable with. 

The experimental protocol was approved by the Institutional Review Board (IRB) of 
the Korea Institute of Science and Technology (approval no. KIST-202309-HR-001). More-
over, all participants provided written informed consent for this study prior to participa-
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Figure 1. Experimental configuration: (a) data acquisition system; (b) walking conditions; (c) test
protocol for the multi-locomotion task. * The reverse direction walking conditions.

2.2. Experimental Conditions and Protocol

In this study, five WCs are considered, as depicted in Figure 1b: level walk (LW), stair
ascent (SA), stair descent (SD), ramp ascent (RA), and ramp descent (RD).

Three experimental walking scenarios are created by combining various WCs, as
depicted in Figure 1c. While performing the walking experiments, the operator walks
behind the subject with a laptop to collect the experimental data. Changes in WC are tallied
by pressing the space bar every time they happen, and this signal is stored alongside the
FSR data for subsequent gait analysis.

Each experiment is performed three times for scenario 1, three times in the forward
direction, and three times in the reverse direction for scenarios 2 and 3.

Ten healthy adults are included in the walking experiments: five males (age 25 ± 2 years,
height 176.0 ± 4.5 cm, and weight 74.3 ± 9.7 kg, mean ± standard deviation (STD)) and
five females (age 21 ± 6 years, height 165.6 ± 9.8 cm, and weight 62.3 ± 11.7 kg). In the
experiment, each subject was asked to participate in the three aforementioned scenarios at
a walking speed that they were comfortable with.

The experimental protocol was approved by the Institutional Review Board (IRB) of the
Korea Institute of Science and Technology (approval no. KIST-202309-HR-001). Moreover,
all participants provided written informed consent for this study prior to participation.

2.3. Walking Condition Classification and cGPE

Bi-LSTM is used in the proposed algorithm, and the WC classification model and the
cGPE algorithm are connected in series, as depicted in Figure 2.



Sensors 2024, 24, 6318 4 of 14Sensors 2024, 24, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Architecture of the proposed continuous gait phase estimation algorithm using two steps 
Bi-LSTM. 

In the WC classification model, ten FSR sensor data points are received as input val-
ues, and one of the five WCs (LW, SA, SD, RA, and RD) is classified and exported as the 
output value. Two ground surfaces (paved and unpaved roads) are mixed in the RA/RD 
conditions; however, they are not classified or learned. 

The proposed cGPE algorithm estimates gait phases based on four types of data: the 
WC classification results exported from the WC classification model, the individual FSR 
data obtained from the ten FSRs, the sum of the FSR data obtained from three FSRs (toe, 
first metatarsal bone, and 5th metatarsal bone) in the front part of the insole, and that 
corresponding to two FSRs (cuboid bone and heel) in the back part (FSRFore and FSRBack, 
respectively) of the insole. 

Here, FSRFore and FSRBack are calculated using Equations (1) and (2) and normalized 
by dividing them by FSRFore.max and FSRBack.max. 

FSRFore = FSRToe + FSR1st-meta + FSR5th-meta (1)

and 

FSRBack = FSRCub + FSRHeel. (2)

The starting point of the gait phase is defined as the point at which the FSR data from 
the right-foot FSRHeel increases. Thus, the gait phase can be expressed using a value be-
tween 0% and 100%. When this value is substituted into Equations (3)–(5), the continuous 
sinusoidal function (CSF) value is obtained. This value is used as input data for machine 
learning models [23,28]. 𝜃 = Gaitphase × (2π/100), (3)Output1 =  cos 𝜃, (4)

and Output2 =  sin 𝜃. (5)

Figure 2. Architecture of the proposed continuous gait phase estimation algorithm using two steps
Bi-LSTM.

In the WC classification model, ten FSR sensor data points are received as input
values, and one of the five WCs (LW, SA, SD, RA, and RD) is classified and exported as the
output value. Two ground surfaces (paved and unpaved roads) are mixed in the RA/RD
conditions; however, they are not classified or learned.

The proposed cGPE algorithm estimates gait phases based on four types of data: the
WC classification results exported from the WC classification model, the individual FSR
data obtained from the ten FSRs, the sum of the FSR data obtained from three FSRs (toe,
first metatarsal bone, and 5th metatarsal bone) in the front part of the insole, and that
corresponding to two FSRs (cuboid bone and heel) in the back part (FSRFore and FSRBack,
respectively) of the insole.

Here, FSRFore and FSRBack are calculated using Equations (1) and (2) and normalized
by dividing them by FSRFore.max and FSRBack.max.

FSRFore = FSRToe + FSR1st-meta + FSR5th-meta (1)

and
FSRBack = FSRCub + FSRHeel. (2)

The starting point of the gait phase is defined as the point at which the FSR data
from the right-foot FSRHeel increases. Thus, the gait phase can be expressed using a value
between 0% and 100%. When this value is substituted into Equations (3)–(5), the continuous
sinusoidal function (CSF) value is obtained. This value is used as input data for machine
learning models [23,28].

θ = Gaitphase × (2π/100), (3)

Output1 = cos θ, (4)

and
Output2 = sin θ. (5)

Table 1 lists the parameters of the Bi-LSTM network architecture used for cGPE. The
Adam optimizer is employed with a learning rate of 0.001 for training. The batch size is
100. A sequence length of 100 is used for the WC classification model and 25 for the cGPE
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model. Categorical cross-entropy is used as the loss function for the Walking Condition
Classification model, and mean squared error (MSE) is used for the cGPE model.

Table 1. Architecture of a Bi-LSTM network for cGPE based on ground reaction force data. Table
annotations: 1: sequence size of the classification model; 2: sequence size of the gait phase estimation
model; 3: input vector of the classification model (FSR data); 4: input vector of the gait phase
estimation model (FSR, FSRFore, FSRBack, and classification model’s output results).

Model Layer Shape

Walking
Condition

Classification

Bi-LSTM (128, 100 (1), 10 (3))
Drop out 0.25
Bi-LSTM 64
Drop out 0.25

Fully Connected 64
Output layer 5

Continuous
Gait Phase
Estimation

Bi-LSTM (128, 100 (2), 10 (4))
Drop out 0.25
Bi-LSTM 32
Drop out 0.25

Fully Connected 2
Output layer 2

Among the FSR data, the third data point of each scenario is used for testing, while
80% and 20% of the remaining data are used for training and validation, respectively.

3. Results
3.1. Experimental Measurement of FSRs

FSR data are normalized using the max–min method. They are then grouped by
sequence size for learning, and no noise filters are applied. Figure 3 depicts the FSR data
of subject #1, which are subjected to linear interpolation based on each stride and then
expressed with respect to varying WCs. The use of DAS, which is adopted in this study,
makes it possible to secure FSR data based on walking experiments.
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3.2. Walking Condition Classification Results

In the first Bi-LSTM model for WC classification, data learning for the WCs is ter-
minated when no improvement is observed in validation loss over five epochs during
five-fold cross-validation.

Table 2 lists the accuracies of the WC classification models described in Table 1. All
estimation results obtained from all ten subjects in the walking experiments are presented.
The WC classification accuracy based on FSR data is 90 ± 1%, 91 ± 4%, 90 ± 5%, 90 ± 3%,
and 91 ± 3% for LW, SA, SD, RA, and RD, respectively, confirming the distribution of true
positive data.

Table 2. Confusion matrix for walking condition classification.

Actual
Class

Predict Class

Level Walk Stair Ascent Stair Descent Ramp Ascent Ramp Descent

Level walk 90 ± 1% 0 ± 0% 0 ± 0% 5 ± 2% 4 ± 2%
Stair ascent 6 ± 2% 91 ± 4% 1 ± 1% 2 ± 2% 1 ± 2%

Stair descent 5 ± 4% 1 ± 1% 90 ± 5% 0 ± 0% 4 ± 4%
Ramp ascent 9 ± 3% 0 ± 0% 0 ± 0% 90 ± 3% 1 ± 1%

Ramp descent 8 ± 3% 0 ± 0% 0 ± 0% 0 ± 0% 91 ± 3%

3.3. cGPE Results

The performance of the proposed cGPE algorithm is evaluated in terms of root mean
square error (RMSE) and R2 score between the estimated and actual cGPE values. An R2

score close to 1 indicates high-quality estimation performance.
The cGPE algorithm is trained using FSR data acquired from all subjects. However,

both own-subject and cross-subject tests are conducted to validate model training. A cross-
subject test is conducted using the data obtained from the third experiment among the FSR
data obtained under the three walking experiment scenarios for each subject.

The performance of the cGPE algorithm is described in Tables 3 and 4, which classify
the subjects into two groups: Subjects 1–5 and Subjects 6–10.

Table 3. RMSE with R2 scores in parenthesis of the continuous gait phase estimation algorithm
trained on the multi-locomotion task data for Subjects 1–5. Black blocks highlight the own-subject
test results.

Subject Used for
Learning

Subject Used for Testing
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#1

LW 0.607
(0.928)

1.750
(0.793)

1.487
(0.824)

2.988
(0.648)

1.083
(0.872)

1.149
(0.864)

0.633
(0.926)

0.824
(0.903)

0.795
(0.907)

0.717
(0.916)

SA 0.895
(0.894)

1.833
(0.783)

1.277
(0.851)

3.070
(0.638)

2.177
(0.746)

2.438
(0.714)

2.581
(0.695)

2.404
(0.717)

3.936
(0.534)

3.349
(0.604)

SD 1.359
(0.841)

1.668
(0.804)

1.142
(0.864)

2.968
(0.646)

1.225
(0.855)

1.523
(0.819)

0.956
(0.887)

1.438
(0.830)

1.486
(0.827)

1.523
(0.820)

RA 0.985
(0.884)

0.669
(0.921)

0.696
(0.918)

2.678
(0.685)

1.134
(0.866)

0.802
(0.906)

0.546
(0.935)

0.379
(0.955)

0.672
(0.921)

0.707
(0.916)

RD 0.598
(0.929)

1.286
(0.848)

1.464
(0.827)

2.978
(0.648)

1.143
(0.865)

1.503
(0.822)

0.798
(0.906)

1.271
(0.850)

0.988
(0.883)

0.520
(0.938)

#2

LW 0.886
(0.895)

0.692
(0.918)

0.785
(0.907)

1.717
(0.798)

0.819
(0.903)

2.038
(0.759)

1.028
(0.879)

0.850
(0.900)

1.159
(0.864)

2.086
(0.755)

SA 3.244
(0.617)

0.979
(0.884)

2.549
(0.702)

3.018
(0.644)

2.216
(0.742)

5.199
(0.390)

3.994
(0.529)

3.520
(0.586)

7.061
(0.164)

4.757
(0.437)

SD 6.430
(0.246)

1.172
(0.862)

1.599
(0.810)

1.977
(0.764)

1.483
(0.825)

1.544
(0.816)

1.667
(0.803)

1.007
(0.881)

3.324
(0.612)

2.117
(0.749)
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Table 3. Cont.

Subject Used for
Learning

Subject Used for Testing
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#2
RA 1.647

(0.806)
0.821

(0.903)
0.668

(0.921)
1.617

(0.810)
1.311

(0.846)
2.917

(0.658)
1.296

(0.847)
1.272

(0.851)
1.706

(0.800)
1.770

(0.790)

RD 1.154
(0.864)

0.736
(0.913)

0.757
(0.911)

1.388
(0.836)

0.747
(0.911)

1.745
(0.794)

0.939
(0.889)

1.064
(0.875)

1.231
(0.855)

1.490
(0.824)

#3

LW 1.334
(0.843)

1.129
(0.866)

0.618
(0.927)

5.778
(0.319)

0.793
(0.906)

3.317
(0.608)

1.166
(0.863)

1.150
(0.864)

0.964
(0.887)

1.614
(0.811)

SA 2.999
(0.646)

2.350
(0.721)

1.424
(0.833)

4.576
(0.461)

1.983
(0.769)

4.529
(0.469)

2.853
(0.663)

2.617
(0.692)

5.447
(0.355)

3.765
(0.555)

SD 4.245
(0.502)

1.190
(0.860)

0.952
(0.887)

3.593
(0.572)

0.907
(0.893)

2.778
(0.670)

1.518
(0.820)

1.186
(0.860)

2.901
(0.662)

2.703
(0.680)

RA 2.001
(0.765)

1.546
(0.818)

0.847
(0.900)

3.943
(0.537)

0.931
(0.890)

2.260
(0.735)

1.261
(0.851)

1.422
(0.833)

1.417
(0.834)

1.344
(0.840)

RD 1.287
(0.848)

1.545
(0.818)

0.558
(0.934)

5.330
(0.369)

0.760
(0.910)

3.262
(0.614)

1.031
(0.878)

1.108
(0.869)

0.981
(0.884)

1.202
(0.858)

#4

LW 1.967
(0.768)

1.507
(0.822)

4.254
(0.498)

0.433
(0.949)

1.991
(0.765)

3.545
(0.581)

1.012
(0.881)

0.659
(0.922)

0.933
(0.890)

0.991
(0.884)

SA 1.892
(0.777)

2.989
(0.646)

1.800
(0.790)

0.977
(0.885)

1.950
(0.773)

2.757
(0.677)

2.557
(0.698)

1.122
(0.868)

4.581
(0.457)

4.231
(0.500)

SD 11.929
(−0.399)

1.679
(0.803)

2.754
(0.673)

0.906
(0.892)

3.081
(0.636)

1.623
(0.807)

1.143
(0.865)

1.185
(0.860)

1.760
(0.795)

1.591
(0.812)

RA 2.782
(0.673)

0.936
(0.890)

1.177
(0.861)

0.628
(0.926)

2.050
(0.759)

2.748
(0.677)

0.894
(0.894)

0.537
(0.937)

1.201
(0.859)

0.814
(0.903)

RD 2.319
(0.726)

1.189
(0.860)

5.750
(0.322)

0.564
(0.933)

4.150
(0.508)

2.594
(0.693)

0.912
(0.892)

1.231
(0.855)

1.037
(0.877)

0.731
(0.914)

#5

LW 1.155
(0.864)

1.013
(0.880)

0.970
(0.886)

1.654
(0.805)

0.727
(0.914)

3.501
(0.587)

1.309
(0.846)

1.531
(0.819)

1.215
(0.857)

2.081
(0.756)

SA 2.745
(0.676)

1.316
(0.844)

1.389
(0.838)

2.289
(0.730)

1.040
(0.879)

4.116
(0.517)

1.964
(0.768)

1.586
(0.813)

5.551
(0.343)

4.166
(0.507)

SD 9.937
(−0.165)

1.268
(0.851)

1.712
(0.797)

1.921
(0.771)

0.919
(0.891)

2.451
(0.709)

1.441
(0.829)

1.449
(0.829)

2.686
(0.687)

2.620
(0.690)

RA 1.598
(0.812)

0.891
(0.895)

0.643
(0.924)

1.260
(0.852)

0.798
(0.906)

2.206
(0.741)

1.223
(0.855)

1.506
(0.823)

1.889
(0.778)

1.388
(0.835)

RD 1.532
(0.819)

0.815
(0.904)

1.031
(0.878)

1.191
(0.859)

0.736
(0.913)

3.445
(0.593)

1.166
(0.862)

1.811
(0.787)

1.290
(0.848)

1.234
(0.854)

Table 4. RMSE values with R2 scores in parentheses of the continuous gait phase estimation algorithm
trained on the multi-locomotion task data for Subjects 6–10. Black blocks highlight the own-subject
test results.

Subject Used for
Learning

Subject Used for Testing
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#6

LW 2.010
(0.763)

2.631
(0.689)

1.888
(0.777)

2.233
(0.737)

2.504
(0.705)

0.955
(0.887)

1.946
(0.771)

0.795
(0.906)

1.242
(0.854)

0.587
(0.931)

SA 10.036
(−0.185)

3.164
(0.625)

4.864
(0.431)

4.742
(0.441)

3.057
(0.644)

1.104
(0.870)

3.050
(0.640)

4.529
(0.467)

2.269
(0.731)

4.609
(0.455)

SD 12.719
(−0.491)

3.866
(0.546)

2.267
(0.731)

1.925
(0.770)

7.350
(0.132)

0.792
(0.906)

1.325
(0.843)

1.496
(0.823)

1.344
(0.843)

1.350
(0.840)

RA 10.081
(−0.186)

5.471
(0.355)

2.817
(0.668)

2.471
(0.710)

4.541
(0.465)

0.438
(0.949)

2.642
(0.688)

0.505
(0.941)

0.737
(0.913)

0.642
(0.924)

RD 1.648
(0.806)

2.321
(0.726)

1.083
(0.872)

1.822
(0.784)

4.646
(0.449)

1.320
(0.844)

2.885
(0.659)

1.087
(0.872)

1.395
(0.835)

0.647
(0.923)
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Table 4. Cont.

Subject Used for
Learning

Subject Used for Testing
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#7

LW 1.985
(0.766)

1.435
(0.828)

2.042
(0.759)

5.838
(0.312)

1.442
(0.930)

4.309
(0.491)

0.545
(0.936)

0.654
(0.923)

0.745
(0.913)

1.148
(0.865)

SA 7.603
(0.103)

3.618
(0.571)

1.728
(0.798)

6.780
(0.201)

4.002
(0.534)

4.291
(0.497)

0.592
(0.930)

2.222
(0.739)

3.723
(0.559)

2.398
(0.716)

SD 9.771
(−0.146)

2.610
(0.693)

1.188
(0.859)

5.720
(0.318)

2.394
(0.717)

4.435
(0.473)

0.756
(0.910)

1.260
(0.851)

2.103
(0.755)

1.791
(0.788)

RA 2.753
(0.676)

1.436
(0.831)

1.636
(0.807)

4.516
(0.469)

2.105
(0.752)

2.654
(0.688)

0.722
(0.915)

0.903
(0.894)

1.211
(0.858)

1.120
(0.867)

RD 2.248
(0.735)

1.592
(0.812)

2.455
(0.710)

5.248
(0.379)

2.032
(0.759)

4.332
(0.488)

0.564
(0.933)

1.492
(0.824)

0.949
(0.888)

0.811
(0.904)

#8

LW 2.270
(0.732)

1.476
(0.825)

2.771
(0.673)

5.000
(0.411)

1.303
(0.846)

2.434
(0.713)

1.269
(0.851)

0.721
(0.915)

1.662
(0.805)

1.252
(0.853)

SA 5.530
(0.347)

4.611
(0.453)

2.857
(0.666)

4.400
(0.482)

2.248
(0.738)

4.138
(0.515)

1.113
(0.869)

0.584
(0.931)

3.685
(0.564)

2.289
(0.729)

SD 4.261
(0.500)

1.829
(0.785)

2.621
(0.689)

4.751
(0.433)

3.654
(0.568)

3.951
(0.530)

1.059
(0.875)

0.962
(0.886)

3.144
(0.633)

2.277
(0.730)

RA 2.255
(0.735)

1.541
(0.818)

1.947
(0.771)

4.832
(0.432)

2.418
(0.715)

7.870
(0.076)

1.485
(0.824)

0.667
(0.922)

2.498
(0.707)

0.997
(0.882)

RD 2.280
(0.731)

2.070
(0.756)

3.704
(0.563)

4.161
(0.508)

1.209
(0.857)

2.581
(0.695)

1.121
(0.868)

0.957
(0.887)

1.452
(0.828)

1.044
(0.876)

#9

LW 2.488
(0.707)

2.873
(0.660)

3.336
(0.606)

1.984
(0.766)

4.820
(0.432)

1.703
(0.799)

0.909
(0.893)

0.705
(0.917)

0.794
(0.907)

0.420
(0.951)

SA 4.358
(0.486)

2.717
(0.678)

2.606
(0.695)

1.849
(0.782)

6.069
(0.293)

2.174
(0.745)

1.508
(0.822)

1.796
(0.789)

0.797
(0.906)

3.075
(0.636)

SD 12.343
(−0.447)

3.041
(0.643)

1.454
(0.827)

1.593
(0.810)

2.297
(0.729)

1.136
(0.865)

1.457
(0.827)

1.144
(0.865)

0.660
(0.923)

1.765
(0.791)

RA 3.169
(0.627)

4.738
(0.442)

2.714
(0.680)

4.092
(0.519)

2.845
(0.665)

6.273
(0.264)

2.096
(0.752)

0.406
(0.952)

0.535
(0.937)

0.422
(0.950)

RD 2.399
(0.717)

3.354
(0.605)

1.859
(0.781)

2.477
(0.707)

7.358
(0.128)

1.654
(0.804)

0.851
(0.900)

1.176
(0.861)

1.341
(0.842)

0.456
(0.946)

#10

LW 2.032
(0.760)

1.821
(0.785)

3.630
(0.572)

4.447
(0.476)

3.589
(0.577)

3.137
(0.630)

0.518
(0.939)

0.635
(0.925)

0.837
(0.902)

0.486
(0.943)

SA 3.742
(0.558)

3.304
(0.608)

2.832
(0.669)

4.341
(0.489)

2.243
(0.739)

5.493
(0.355)

1.166
(0.862)

1.722
(0.797)

5.566
(0.341)

0.995
(0.882)

SD 8.383
(0.017)

1.896
(0.608)

1.969
(0.766)

3.500
(0.583)

3.579
(0.577)

5.342
(0.365)

0.736
(0.913)

1.077
(0.873)

2.249
(0.738)

0.689
(0.918)

RA 8.031
(0.055)

1.508
(0.822)

3.537
(0.583)

2.617
(0.693)

8.233
(0.030)

1.933
(0.773)

0.394
(0.953)

0.667
(0.922)

0.829
(0.903)

0.382
(0.955)

RD 2.339
(0.724)

2.289
(0.730)

2.935
(0.654)

3.872
(0.542)

6.821
(0.192)

4.114
(0.514)

0.785
(0.907)

1.089
(0.872)

1.085
(0.872)

0.377
(0.955)

The RMSE for the own-subject test is observed to be 0.794 (the RMSE values of LW,
SA, SD, RA, and RD are 0.658, 0.939, 0.917, 0.682, and 0.775, respectively), whereas that for
the cross-subject test is 2.434 (with corresponding RMSEs of 1.845, 3.365, 2.842, 2.144, and
1.974 respectively), which is 67% higher than that of the own-subject test.

The R2 score of the estimated cGPE is 0.906 (0.922, 0.889, 0.892, 0.920, and 0.908, respec-
tively) in the own-subject test, and 0.728 (0.780, 0.612, 0.723, 0.758, and 0.767, respectively)
in the cross-subject test. In other words, practically applicable gait phase estimation per-
formance is observed in the own-subject test, as the average R2 score exceeds 0.9, but the
cGPE performance is evaluated to be relatively poor in the cross-subject test.
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The applicability of the cGPE algorithm only to its own subjects is also confirmed in
Figure 4. In Figure 4, the CSF value is converted into a phase variable using the arctan
function from Python’s NumPy 1.23 library, as follows:

θ̂ = tan−1(Output2̂/Output1̂
)

(6)

and

P̂ =


∥∥θ̂

∥∥/2π, Output2̂ ≥ 0

1 −
∥∥θ̂

∥∥/2π, Output2̂ < 0
. (7)

Sensors 2024, 24, x FOR PEER REVIEW 7 of 14 
 

 

As depicted in Figure 4a, when own-subject data are entered into the proposed 
model, the estimated gait phase values converge well to the ground truth gait. However, 
when cross-subject data are entered into the proposed model, the error in the estimated 
gait phase values increases compared to what is shown in Figure 4a, as shown in Figure 
4b. 

Table 5 and Figure 5 describe the RMSE and R2 scores of the cGPE algorithm with 
respect to the input feature type. However, only the own-subject test results are presented. 

First, as depicted in Figure 5, Input #1 exhibits the highest cGPE performance among 
the five input features, with RMSE and R2 scores of 0.794 and 0.906, respectively. In other 
words, the best cGPE performance is obtained when all FSR data, along with FSRFore, FSR-
Back, and the WC classification results estimated from the previous stage, are used as input 
data. 

The RMSE and R2 values for Input #2, which excludes the WC classification results, 
are 1.015 and 0.880, respectively. In particular, the R2 scores for the SA/SD classification 
results are observed to be 0.9 or less. The RMSE and R2 scores for Input #3, which does not 
include FSRFore and FSRBack, are 1.207 and 0.857, respectively, whereas those for Input #4, 
which uses only the features of FSRFore and FSRBack, are 1.184 and 0.860, respectively. This 
indicates that all 14 FSR data points are essential, in addition to the WC classification re-
sults, to improve cGPE performance. 

 
Figure 4. Performance of the proposed cGPE algorithm evaluated using own-subject data and cross-
subject data. The own-subject estimation results converge well to the ground truth gait. (a) R2 score 
in the own-subject test scenario, where Subject #1 is trained and tested, is 0.895, (b) R2 score in the 
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test results. 

Subject Used for 
Learning 

Subject Used for Testing 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

#1 

LW 0.607 
(0.928) 

1.750 
(0.793) 

1.487 
(0.824) 

2.988 
(0.648) 

1.083 
(0.872) 

1.149 
(0.864) 

0.633 
(0.926) 

0.824 
(0.903) 

0.795 
(0.907) 

0.717 
(0.916) 

SA 0.895 
(0.894) 

1.833 
(0.783) 

1.277 
(0.851) 

3.070 
(0.638) 

2.177 
(0.746) 

2.438 
(0.714) 

2.581 
(0.695) 

2.404 
(0.717) 

3.936 
(0.534) 

3.349 
(0.604) 

SD 1.359 
(0.841) 

1.668 
(0.804) 

1.142 
(0.864) 

2.968 
(0.646) 

1.225 
(0.855) 

1.523 
(0.819) 

0.956 
(0.887) 

1.438 
(0.830) 

1.486 
(0.827) 

1.523 
(0.820) 

RA 0.985 
(0.884) 

0.669 
(0.921) 

0.696 
(0.918) 

2.678 
(0.685) 

1.134 
(0.866) 

0.802 
(0.906) 

0.546 
(0.935) 

0.379 
(0.955) 

0.672 
(0.921) 

0.707 
(0.916) 

RD 0.598 
(0.929) 

1.286 
(0.848) 

1.464 
(0.827) 

2.978 
(0.648) 

1.143 
(0.865) 

1.503 
(0.822) 

0.798 
(0.906) 

1.271 
(0.850) 

0.988 
(0.883) 

0.520 
(0.938) 

#2 

LW 0.886 
(0.895) 

0.692 
(0.918) 

0.785 
(0.907) 

1.717 
(0.798) 

0.819 
(0.903) 

2.038 
(0.759) 

1.028 
(0.879) 

0.850 
(0.900) 

1.159 
(0.864) 

2.086 
(0.755) 

SA 3.244 
(0.617) 

0.979 
(0.884) 

2.549 
(0.702) 

3.018 
(0.644) 

2.216 
(0.742) 

5.199 
(0.390) 

3.994 
(0.529) 

3.520 
(0.586) 

7.061 
(0.164) 

4.757 
(0.437) 

SD 6.430 1.172 1.599 1.977 1.483 1.544 1.667 1.007 3.324 2.117 

Figure 4. Performance of the proposed cGPE algorithm evaluated using own-subject data and cross-
subject data. The own-subject estimation results converge well to the ground truth gait. (a) R2 score
in the own-subject test scenario, where Subject #1 is trained and tested, is 0.895, (b) R2 score in the
cross-subject test scenario, where Subject #1 is trained, and Subject #2 is tested, is 0.830.

In Equations (6) and (7), Output1̂ and Output2̂ denote the estimated values of the CSF,
and P̂ denotes the cGPE value estimated using Bi-LSTM.

As depicted in Figure 4a, when own-subject data are entered into the proposed model,
the estimated gait phase values converge well to the ground truth gait. However, when
cross-subject data are entered into the proposed model, the error in the estimated gait phase
values increases compared to what is shown in Figure 4a, as shown in Figure 4b.

Table 5 and Figure 5 describe the RMSE and R2 scores of the cGPE algorithm with
respect to the input feature type. However, only the own-subject test results are presented.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 5. Comparison of RMSE and R2 score corresponding to five input features. 

Now, we analyze cGPE performance under LW conditions by analyzing the center of 
pressure (COP) data generated during walking using an AO, as reported in a previous 
study [32]. As such, cGPE is performed under the conditions of Input #5, which adds COP 
to Input #1. The RMSE and R2 scores are observed to be 1.045 and 0.877, respectively. 
Compared to Input #1, performance is observed to be degraded—the R2 score decreases, 
and the RMSE increases. This indicates that the COP data do not have a positive impact 
on the convergence of the CSF value. 

Figure 6 depicts the R2 scores of the developed algorithm with respect to varying 
WCs. The average R2 score is 0.922 for LW and 0.920 and 0.908 for RA and RD, respec-
tively. Additionally, relatively low average values of 0.889 and 0.892 are observed for SA 
and SD, respectively. This phenomenon indicates that the cGPE performance is degraded 
in these two cases because only the fore part of the sole or heel touches the ground while 
going up or down a staircase, decreasing the fidelity of the aforementioned 14 FSR data. 

 
Figure 6. R2 scores evaluated in different WCs. Each value is assessed individually for each subject 
and then averaged. 

4. Discussion 
Yu et al. [28] estimated gait phases for up to 200 ms under the WCs of LW, SA, and 

SD. Their model comprised one artificial neural network (ANN) for WC classification and 
another ANN for gait phase estimation. The proposed model used data collected from an 
IMU affixed to the lower limb joints of subjects. To evaluate the proposed model under 

Figure 5. Comparison of RMSE and R2 score corresponding to five input features.

First, as depicted in Figure 5, Input #1 exhibits the highest cGPE performance among
the five input features, with RMSE and R2 scores of 0.794 and 0.906, respectively. In other
words, the best cGPE performance is obtained when all FSR data, along with FSRFore,
FSRBack, and the WC classification results estimated from the previous stage, are used as
input data.
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Table 5. RMSE values with R2 scores in parentheses of the continuous gait phase estimation algorithm.
Each model is trained on five types of input features.

Input Data Used for
Learning

Subject Used for Own-Subject Prediction
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

each FSR
FSRFore
FSRBack

WC
(input#1)

LW 0.607
(0.928)

0.692
(0.918)

0.618
(0.927)

0.433
(0.949)

0.727
(0.914)

0.955
(0.887)

0.545
(0.936)

0.721
(0.915)

0.794
(0.907)

0.486
(0.943)

SA 0.895
(0.894)

0.979
(0.884)

1.424
(0.833)

0.977
(0.885)

1.040
(0.879)

1.104
(0.870)

0.592
(0.930)

0.584
(0.931)

0.797
(0.906)

0.995
(0.882)

SD 1.359
(0.841)

1.172
(0.862)

0.952
(0.887)

0.906
(0.892)

0.919
(0.891)

0.792
(0.906)

0.756
(0.910)

0.962
(0.886)

0.660
(0.923)

0.689
(0.918)

RA 0.985
(0.884)

0.821
(0.903)

0.847
(0.900)

0.628
(0.926)

0.798
(0.906)

0.438
(0.949)

0.722
(0.915)

0.667
(0.922)

0.535
(0.937)

0.382
(0.955)

RD 0.598
(0.929)

0.736
(0.913)

0.558
(0.934)

0.564
(0.933)

0.736
(0.913)

1.320
(0.844)

0.564
(0.933)

0.957
(0.887)

1.341
(0.842)

0.377
(0.955)

each FSR
FSRFore
FSRBack

(input#2)

LW 0.799
(0.906)

0.827
(0.927)

0.632
(0.905)

0.808
(0.905)

1.158
(0.863)

0.886
(0.895)

0.645
(0.924)

0.835
(0.902)

0.762
(0.911)

0.372
(0.956)

SA 1.366
(0.839)

2.786
(0.670)

1.403
(0.797)

1.822
(0.785)

1.887
(0.780)

1.997
(0.766)

0.658
(0.922)

0.951
(0.888)

0.945
(0.888)

1.478
(0.825)

SD 1.661
(0.805)

0.936
(0.890)

1.060
(0.879)

1.311
(0.844)

1.541
(0.818)

0.821
(0.902)

0.662
(0.922)

0.824
(0.903)

0.673
(0.922)

0.933
(0.889)

RA 1.269
(0.851)

1.367
(0.839)

0.958
(0.940)

0.842
(0.901)

1.226
(0.856)

0.474
(0.944)

0.723
(0.914)

0.764
(0.910)

0.670
(0.921)

0.445
(0.947)

RD 0.754
(0.911)

1.059
(0.875)

0.548
(0.888)

0.664
(0.921)

1.082
(0.872)

1.424
(0.832)

0.590
(0.930)

0.815
(0.904)

1.206
(0.857)

0.424
(0.950)

each FSR
WC

(input#3)

LW 1.001
(0.882)

1.254
(0.852)

1.277
(0.849)

0.849
(0.900)

1.003
(0.882)

0.940
(0.889)

1.077
(0.873)

1.580
(0.814)

0.596
(0.930)

1.023
(0.880)

SA 1.814
(0.709)

1.316
(0.844)

1.630
(0.809)

1.733
(0.796)

1.686
(0.804)

1.249
(0.853)

1.390
(0.836)

1.186
(0.861)

1.004
(0.881)

1.279
(0.849)

SD 2.480
(0.709)

1.240
(0.854)

1.484
(0.824)

0.985
(0.883)

1.357
(0.840)

0.966
(0.885)

1.392
(0.835)

1.142
(0.865)

1.042
(0.878)

1.126
(0.867)

RA 1.525
(0.820)

1.589
(0.813)

1.333
(0.843)

0.991
(0.884)

0.944
(0.889)

0.783
(0.908)

0.995
(0.882)

1.385
(0.837)

0.852
(0.932)

0.995
(0.882)

RD 1.123
(0.867)

1.237
(0.854)

1.137
(0.866)

0.842
(0.900)

1.123
(0.867)

1.430
(0.831)

0.886
(0.895)

1.471
(0.827)

0.781
(0.908)

0.827
(0.902)

FSRFore
FSRBack

WC
(input#4)

LW 0.786
(0.907)

1.053
(0.875)

1.133
(0.866)

1.265
(0.851)

1.468
(0.827)

0.966
(0.886)

0.844
(0.901)

1.570
(0.815)

0.593
(0.930)

0.930
(0.891)

SA 1.346
(0.841)

1.515
(0.820)

1.647
(0.807)

2.183
(0.743)

2.041
(0.762)

1.410
(0.835)

0.806
(0.905)

1.762
(0.793)

0.905
(0.893)

1.260
(0.851)

SD 1.366
(0.840)

1.113
(0.869)

0.988
(0.883)

0.957
(0.886)

1.635
(0.807)

0.887
(0.895)

0.913
(0.892)

1.526
(0.820)

1.052
(0.877)

0.916
(0.891)

RA 1.210
(0.858)

1.779
(0.790)

1.570
(0.815)

1.388
(0.837)

1.441
(0.830)

0.719
(0.916)

0.817
(0.903)

1.514
(0.822)

0.586
(0.931)

0.813
(0.903)

RD 0.715
(0.916)

1.253
(0.852)

0.909
(0.893)

1.003
(0.881)

1.584
(0.812)

1.403
(0.834)

0.768
(0.909)

1.490
(0.824)

0.783
(0.908)

0.608
(0.928)

FSRFore
FSRBack

COP
WC

(input#5)

LW 0.870
(0.897)

1.048
(0.876)

0.632
(0.925)

0.420
(0.951)

1.581
(0.814)

1.093
(0.871)

0.806
(0.905)

1.034
(0.878)

1.139
(0.866)

0.395
(0.954)

SA 2.190
(0.741)

1.336
(0.842)

1.403
(0.836)

1.289
(0.848)

2.006
(0.766)

1.176
(0.862)

0.763
(0.910)

1.308
(0.846)

0.929
(0.890)

0.883
(0.896)

SD 1.554
(0.818)

1.198
(0.859)

1.060
(0.874)

0.778
(0.907)

1.518
(0.821)

0.640
(0.924)

0.791
(0.906)

0.844
(0.900)

1.085
(0.874)

0.806
(0.905)

RA 0.715
(0.916)

1.215
(0.857)

0.958
(0.887)

0.554
(0.935)

1.850
(0.782)

0.373
(0.956)

0.963
(0.886)

1.071
(0.874)

0.792
(0.907)

0.444
(0.947)

RD 0.836
(0.901)

1.056
(0.876)

0.548
(0.935)

0.702
(0.917)

1.661
(0.803)

1.540
(0.818)

0.811
(0.904)

0.923
(0.891)

2.271
(0.732)

0.408
(0.952)
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The RMSE and R2 values for Input #2, which excludes the WC classification results,
are 1.015 and 0.880, respectively. In particular, the R2 scores for the SA/SD classification
results are observed to be 0.9 or less. The RMSE and R2 scores for Input #3, which does
not include FSRFore and FSRBack, are 1.207 and 0.857, respectively, whereas those for Input
#4, which uses only the features of FSRFore and FSRBack, are 1.184 and 0.860, respectively.
This indicates that all 14 FSR data points are essential, in addition to the WC classification
results, to improve cGPE performance.

Now, we analyze cGPE performance under LW conditions by analyzing the center
of pressure (COP) data generated during walking using an AO, as reported in a previous
study [32]. As such, cGPE is performed under the conditions of Input #5, which adds
COP to Input #1. The RMSE and R2 scores are observed to be 1.045 and 0.877, respectively.
Compared to Input #1, performance is observed to be degraded—the R2 score decreases,
and the RMSE increases. This indicates that the COP data do not have a positive impact on
the convergence of the CSF value.

Figure 6 depicts the R2 scores of the developed algorithm with respect to varying
WCs. The average R2 score is 0.922 for LW and 0.920 and 0.908 for RA and RD, respectively.
Additionally, relatively low average values of 0.889 and 0.892 are observed for SA and SD,
respectively. This phenomenon indicates that the cGPE performance is degraded in these
two cases because only the fore part of the sole or heel touches the ground while going up
or down a staircase, decreasing the fidelity of the aforementioned 14 FSR data.
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4. Discussion

Yu et al. [28] estimated gait phases for up to 200 ms under the WCs of LW, SA, and
SD. Their model comprised one artificial neural network (ANN) for WC classification and
another ANN for gait phase estimation. The proposed model used data collected from an
IMU affixed to the lower limb joints of subjects. To evaluate the proposed model under
each WC, the relative RMSEs (rRMSEs) were calculated, and accuracy was evaluated. The
rRMSE was 1.66% for LW, 4.55% for SA, and 3.51% for SD, whereas the R2 score was not
evaluated. As per the definition by Yu, rRMSE is obtained by dividing the RMSE between
the ground truth gait and the cGPE estimated before 200 ms by the average value of the
estimated cGPE. In this study, the rRMSE of cGPE was evaluated to be 1.31% for LW, 1.87%
for SA, 1.80% for SD, 1.37% for RA, and 1.55% for RD, indicating better performance than
the model proposed by Yu. Yu et al. obtained an extremely high WC classification accuracy
of 99.55% for standing, level walking, ascending stairs, and descending stairs.
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Wu et al. [19] conducted cGPE research under the WCs of LW, SA, and SD. Their
proposed model comprised an ANN for WC classification and an AO model for cGPE.
The proposed model used hip angle information as input values, and its accuracy was
evaluated in terms of the average phase estimation error (APEE), which was calculated
based on the error evaluated corresponding to each WC. The calculated APEE values were
6.61% for LW, 4.12% for SA, and 5.42% for SD; however, the R2 score was not evaluated.
In this study, the APEE of the proposed cGPE algorithm was 0.66% for LW, 0.94% for SA,
0.93% for SD, 1.06% for RA, and 0.78% for RD, indicating lower errors than Wu’s results.
In the study by Wu et al., the WC classification accuracy exceeded 92% for standing, level
walking, ascending stairs, and descending stairs.

A comparison of the results of the two studies reveals that the cGPE errors reported
by Wu et al. are slightly higher than those reported by Yu et al. However, the latter study
did not require additional sensors to be attached, unlike the former, in which an IMU
was installed to measure joint angle information using an encoder installed on a walking
assistance robot.

Choi et al. [27] performed cGPE only under the LW condition using a treadmill. They
developed an LSTM-based cGPE algorithm that introduced a domain-adversarial model
and conducted a cross-subject test using data obtained from an IMU installed on the femoral
region of each subject. Regarding the performance of the proposed algorithm, the R2 value
was at least 0.916. Choi defined the normalized RMSE (NRMSE) by dividing the RMSE by
the difference between the maximum and minimum estimated cGPE values. The NRMSE
from the walking experiment performed on a treadmill was used to evaluate the cGPE
performance. The NRMSE was observed to be 4.54%. In this study, the NRMSE of the
proposed cGPE algorithm is 0.66% for LW, 0.94% for SA, 0.92% for SD, 0.68% for RA, and
0.78% for RD, indicating smaller errors compared to the case of Choi et al. Thus, a capable
cGPE algorithm that can be used for cross-subjects has been created.

Meanwhile, Mazon et al. and Feng et al. obtained WC classification accuracies
exceeding 95% and 90%, respectively, by classifying WCs using data obtained from an
IMU attached to the lower limb [26] and classifying WCs using strain gauges to control
prosthetic legs [33].

The proposed cGPE algorithm, developed in this study, meets the performance of
previous studies, even in a multi-locomotion task environment based solely on FSR data.

5. Conclusions

In this study, a cGPE algorithm is proposed that analyzes FSR data using two Bi-LSTM
models. The proposed method represents a single algorithm that applies to paved and
unpaved roads and enables GPE under five WCs: LW, SA, SD, RA, and RD. The WC
classification accuracy exceeds 90%. The cGPE algorithm, trained on individual subjects,
estimates the gait phase with the highest accuracy when it is applied to its own subject.
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